Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov models: M+ and M —
 - Then compare

Markov Models

+	Α	С	G	Т		Α	С	G	Т
Α	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	С	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
Τ	0.079	0.355	0.384	0.182	Т	0.177	0.239	0.292	0.292

How to distinguish?

• Compute

$$S(x) = \log\left(\frac{P(x \mid M +)}{P(x \mid M -)}\right) = \sum_{i=1}^{L} \log\left(\frac{p_{x(i-1)xi}}{m_{x(i-1)xi}}\right) = \sum_{i=1}^{L} r_{x(i-1)xi}$$

r=p/m	Α	С	G	Т	$\frac{\text{Score}(\text{GCAC})}{= 461 - 913 + 419}$
Α	-0.740	0.419	0.580	-0.803	< 0.
С	-0.913	0.302	1.812	-0.685	GCAC not from CpG Island.
G	-0.624	0.461	0.331	-0.730	= .461685 + .573
Т	-1.169	0.573	0.393	-0.679	> 0. GCTC from CpG island.

09/26/2002

Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov Models: M+ & M-
 - Then compare

Problem 2:

- Input: Long sequence S
- Output: Identify the CpG islands in S.
 - Markov models are inadequate.
 - Need Hidden Markov Models.

Markov Models

+	A	С	G	Τ	
A	0.180	0.274	0.426	0.120	
С	0.171	0.368	0.274	0.188	
G	0.161	0.339	0.375	0.125	
Τ	0.079	0.355	0.384	0.182	

09/26/2002

CpG Island + in an ocean of – First order ^{Hidden} Markov Model

MM=16, HMM= 64 transition probabilities (adjacent bp)

Hidden Markov Model (HMM)

- States
- Transitions
- Transition Probabilities
- Emissions
- Emission Probabilities

• What is <u>hidden</u> about HMMs?

Answer: The <u>path</u> through the model is hidden since there are many valid paths.

How to Solve Problem 2?

- Solve the following problem: Input: Hidden Markov Model M, parameters Θ , emitted sequence S Output: Most Probable Path Π How: Viterbi's Algorithm (Dynamic Programming) Define $\Pi[i,j] = MPP$ for first j characters of S ending in state i Define $P[i,j] = Probability of \Pi[i,j]$
 - <u>Compute</u> state i with largest P[i,j].

Problem 3: LIKELIHOOD QUESTION

- Input: Sequence S, model M, state i
- Output: Compute the probability of reaching state i with sequence S using model M
 - Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION

- Input: Sequence S, model M
- Output: Compute the probability that S was emitted by model M
 - Forward Algorithm (DP)

Problem 5: LEARNING QUESTION

- Input: model structure M, Training Sequence S
- Output: Compute the parameters Θ
- Criteria: ML criterion
 - maximize $P(S | M, \Theta)$ HOW???

Problem 6: DESIGN QUESTION

- Input: Training Sequence S
- Output: Choose model structure M, and compute the parameters Θ
 - No reasonable solution
 - Standard models to pick from

Iterative Solution to the LEARNING QUESTION (Problem 5)

- Pick initial values for parameters Θ_0
- <u>Repeat</u>

Run training set S on model M
Count # of times transition i ⇒ j is made
Count # of times letter x is emitted from state i
Update parameters Θ

• <u>Until</u>(some stopping condition)

Simple Models

- Helps to model simple sequence features.
 - single sequences e.g. **TTGACA** or **TATATT** [??]
 - sets of sequences e.g. [AT] C [GC] TC [AGC]
 - sets of sequences with inserts e.g. GCA [AT] [AT]* AG
 - & deletes too, e.g. TATA [G –] T

• long sequences with a sequence of domains H-B-T-B-H

How to model Pairwise Sequence Alignment

