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Problem 5: LEARNING QUESTION
• Input: model structure M, Training Sequence S
• Output: Compute the parameters Θ
• Criteria: ML criterion

• maximize P(S | M, Θ)    HOW???

Problem 6: DESIGN QUESTION
• Input: Training Sequence S
• Output: Choose model structure M, and compute 

the parameters Θ
• No reasonable solution
• Standard models to pick from



10/1/2002 Lecture 10 2

Iterative Solution to the LEARNING 
QUESTION (Problem 5)

• Pick initial values for parameters Θ0

• Repeat
Run training set S on model M
Count # of times transition i ⇒ j is made
Count # of times letter x is emitted from state i
Update parameters Θ

• Until (some stopping condition)
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How to model Pairwise Sequence 
Alignment

MATCH

Pair HMMs
• Emit pairs of synbols
• Emission probs?
• Related to Sub. Matrices

• How to deal with InDels?
• Global Alignment? Local?
• Related to Sub. Matrices

LEAPVE
LAPVIE

DELETE

START END

INSERT
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How to model Pairwise Local 
Alignments?

Skip Module Align Module Skip ModuleSTART END

How to model Pairwise Local 
Alignments with gaps?

Skip Module Align Module Skip ModuleSTART END
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Profile HMMs

STATE 1 ENDRT STATE 2 STATE 3 STATE 4 STATE 5 STATE 6STA
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Profile HMMs with InDels
• Insertions
• Deletions
• Insertions & Deletions

STATE 1 ENDSTART STATE 2 STATE 3 STATE 4 STATE 5 STATE 6

INSERT 4

DELETE 2 DELETE 3DELETE 1

INSERT 3 INSERT 4
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Profile HMMs with InDels

STATE 1 ENDSTART STATE 2 STATE 3 STATE 4 STATE 5 STATE 6

INSERT 4

DELETE 2 DELETE 3DELETE 1

INSERT 3

DELETE 4 DELETE 5 DELETE 6

INSERT 4INSERT 4 INSERT 4 INSERT 4

Missing transitions from DELETE j to INSERT j and 
from INSERT j to DELETE j+1.
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Standard HMM architectures
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Standard HMM architectures
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Standard HMM architectures
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Profile HMMs from Multiple 
Alignments

HBA_HUMAN VGA--HAGEY
HBB_HUMAN V----NVDEV
MYG_PHYCA VEA--DVAGH
GLB3_CHITP VKG------D
GLB5_PETMA VYS--TYETS
LGB2_LUPLU FNA--NIPKH
GLB1_GLYDI IAGADNGAGV

Construct Profile HMM from above multiple alignment.
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Entropy

∑−=
c

cc ppE log

• Entropy measures the variability observed 
in given data.

• Entropy is useful in multiple alignments & 
profiles.

• Entropy is max when uncertainty is max.
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G-Protein Couple Receptors

• Transmembrane proteins with 7 α-helices 
and 6 loops; many subfamilies

• Highly variable: 200-1200 aa in length, 
some have only 20% identity.

• [Baldi & Chauvin, ’94] HMM for GPCRs
• HMM constructed with 430 match states 

(avg length of sequences) ; Training: with 
142 sequences, 12 iterations
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GPCR - Analysis

• Compute main state entropy values

• For every sequence from test set (142) & random 
set (1600) & all SWISS-PROT proteins
– Compute the negative log of probability of the most 

probable path π
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GPCR Analysis
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Entropy
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GPCR Analysis (Cont’d)
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Applications of HMM for GPCR

• Bacteriorhodopsin
– Transmembrane protein with 7 domains
– But it is not a GPCR
– Compute score and discover that it is close to the 

regression line. Hence not a GPCR.

• Thyrotropin receptor precursors
– All have long initial loop on INSERT STATE 20.
– Also clustering possible based on distance to regression 

line.
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HMMs – Advantages

• Sound statistical foundations
• Efficient learning algorithms
• Consistent treatment for insert/delete penalties for 

alignments in the form of locally learnable probabilities
• Capable of handling inputs of variable length
• Can be built in a modular & hierarchical fashion; can be 

combined into libraries.
• Wide variety of applications: Multiple Alignment, Data 

mining & classification, Structural Analysis, Pattern 
discovery, Gene prediction.
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HMMs – Disadvantages

• Large # of parameters.
• Cannot express dependencies & correlations 

between hidden states.
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