CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS15.html

Genetics Software: STRUCTURE

Structure

Basically a (Bayesian) clustering tool with genotype data

- With unknown # of clusters (populations) & allele frequencies, while assuming Hardy-Weinberg principle
- Uses multi-locus genotype data to investigate population structure
 - Infers presence of distinct populations
 - Assigns individuals to populations
 - Studies hybrid zones; Identifies migrants and admixed individuals
 - Estimates allele frequencies in populations
- Types of markers
 - Microsatellites, RFLPs, SNPs
- Papers
 - http://pritch.bsd.uchicago.edu/publications/structure.pdf
 - > Pritchard, Stephens, and Donnelly, *Genetics* 155:945-959, June 2000
 - http://pritch.bsd.uchicago.edu/publications/FalushEtAlO3_Genetics.pdf
 > Falush, Stephens, Pritchard, *Genetics* 164:1567-1587, August 2003

Structure: Methods

Model-based clustering method

Assumptions

- K populations (K may be unknown), each characterized by a set of allele frequencies at each locus
- Within each population, loci are at Hardy-Weinberg equilibrium, and at linkage equilibrium
- Objective is to assign individuals to populations to achieve the equilibria
- Markers are not in LD within subpopulations (cannot handle markers extremely close together; weakly linked markers can be handled in Version 2.0)
- Organisms may be diploid of non-diploid
- Do not assume a particular mutation process

Data

□ For diploid organisms, data for each individual can be

Stored in 2 successive rows with each locus in one column

> George	1	-9	145	66	0	92	
> George	1	-9	-9	64	0	94	
Or stored in 1 row with each locus in 2 consecutive columns							
> George	1	1	-9	-9	145	-9	66
64	0	0	92	94			

Phase/Haplotype Information

								data; e.g., i econd X cl le (MARk able (MA	hr hence phased COVP' SE = 0)
	102 100 0.5	156 148 0.5	165 163 0.5	101 101 0.5	143 143 0.5	105 -9 1.0	104 -9 1.0	101 -9 1.0	5 unphased (e.g., autosomal microsatellite) loci and 3 phased (e.g., X chr) loci Perfectly in phase with previous allele
	102 100 0.5	156 148 0.5	165 163 0.5	101 101 0.5	143 143 0.5	105 -9 0.5	104 -9 1.0	101 -9 1.0	

Ancestry Models

- No admixture
 - Pure discrete populations
 - Output: Posterior probability that i is from population j
 - Occasionally better than admixture model at detecting subtle structure

Admixture

- Individuals with mixed ancestry
- Output: Posterior mean estimates of fraction that i inherited from pop j
- Flexible, realistic model and good starting point
- Difficulty if there are very few representations of the parental populations

Linkage

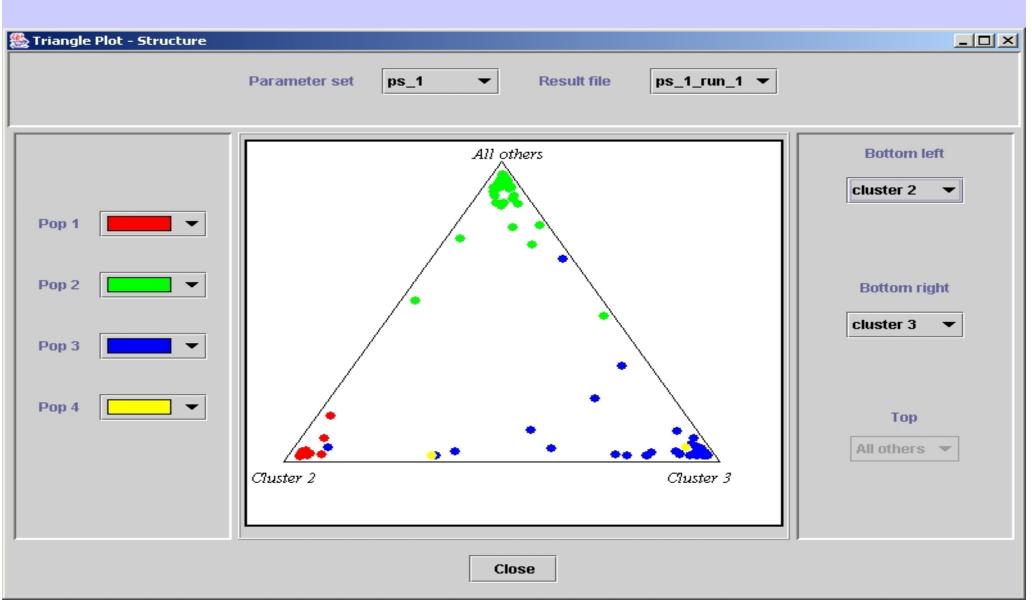
Generalizes the Admixture model

Ancestry Models (Cont'd)

Linkage

- Generalizes the Admixture model
- Assumes an admixture event t generations in the past, at which time the chromosome inherited distinct chunks from ancestors
- LD arises because linked alleles are often on the same chunk, and therefore come from ancestral population
- Sizes of chunks are independent exponential random variables with mean length 1/t
- Recombination rate r dictates rate of switching from a chunk to a future chunk
- MCMC algorithm integrates over the possible chunk sizes and break points
- Needs location of markers (genetic map)
- Reports ancestry of each individual
- Slower computations, but practical for hundreds of loci & individuals

Variants


□ Can handle prior info on population

- Useful to test if an individual is an immigrant to that population or has recent immigrant ancestors
- Useful to incorporate training data and to classify individuals of unknown origin
- Parameter called MIGPRIOR to allow for limited misclassification
- Can handle 2 models for allele frequencies
 - Allele frequency in each population are independently drawn from a distribution with parameter $\boldsymbol{\lambda}$
 - Can be determined by fixing K = 1, and then estimating λ
 - Allele frequencies are correlated, i.e., different populations may have similar allele frequencies
- □ K has to be estimated carefully.

Miscellaneous

Missing data (as long as it is independent of the allele)
 Dominant Loci

Results

Applications

- Diversity and introgression in Scottish wildcats (Beaumont et al., Mol Ecol, 10:319-336)
- Study of 20 chicken breeds (Rosenberg et al., *Genetics*, 159:699-713)