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Summary

We brie
y review computational methods for �nding genes in genomic DNA sequences.
Speci�c programs are now available to �nd genes in the genomic DNA of many organisms.
We discuss the approaches used by these programs, their performance, and future directions
for this �eld.

1 Introduction

Computational methodology for �nding genes and other functional sites in genomic DNA
has evolved signi�cantly over the last 20 years. Excellent recent surveys have been given by
Gelfand [27], Fickett [20, 21], Guig�o [31], Claverie [13], Milanesi and Rogosin [50], and Krogh
[41]. Extensive bibliographies are available at http://linkage.rockefeller.edu/wli/gene/
and http://www-hto.usc.edu/software/procrustes/fans_ref/. Here we give only a
very brief overview.

Among the types of functional sites in genomic DNA that researchers have sought to
recognize are splice sites, start and stop codons, branch points, promoters and terminators of
transcription, polyadenylation sites, ribosomal binding sites, topoisomerase II binding sites,
topoisomerase I cleavage sites, and various transcription factor binding sites [27]. Local sites
such as these are called signals and methods for detecting them may be called signal sensors.
Genomic DNA signals can be contrasted with extended and variable length regions such as
exons and introns, which are recognized by di�erent methods that may be called content

sensors [64, 65].

2 Signal Sensors

The most basic signal sensor is a simple consensus sequence or an expression that describes
a consensus sequence along with allowable variations, such as a PROSITE expression [66, 2].
More sensitive sensors can be designed using weight matrices in place of the consensus, in
which each position in the pattern allows a match to any residue, but di�erent costs are
associated with matching each residue in each position [64, 67, 66, 3, 12]. The score returned
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by a weight matrix sensor for a candidate site is the sum of the costs of the individual residue
matches over that site. If this score exceeds a given threshold, the candidate site is predicted
to be a true site. Such sensors have a natural probabilistic interpretation in which the score
returned is a log likelihood ratio under a simple statistical model in which each position in
the site is characterized by an independent and distinct distribution over possible residues.
A mathematically equivalent interpretation of the score is that it is the discrimination energy
for site recognition [3].

Weight matrices can also be viewed as a simple type of neural network, sometimes called
a perceptron [67, 66]. Many investigators have also applied more complex neural networks,
such as multi-layer feed-forward networks and time delay networks, to various DNA signal
recognition problems [8, 19, 49, 53, 54, 46, 32]. Multi-layer nets have the ability to cap-
ture statistical dependency between the residues at di�erent positions in a site, an ability
that perceptrons (and hence weight matrices) lack. Time delay neural networks also allow
insertions and deletions while evaluating a match to a prospective site, whereas weight ma-
trices and feed-forward neural networks do not [56]. Other statistical/pattern models besides
neural networks, such as nonhomogeneous Markov models (a weight matrix where the dis-
tribution at position i depends on the residue at position i � 1, sometimes called \WAM"
models), decision trees, quadratic discriminant functions, and graphical models, have also
been used as biosequence signal sensors [37, 76, 63, 15, 58, 1]. In general, the penalty for
these more sophisticated models is that much more training data is needed to estimate the
many parameters that they contain, so they are unsuitable in cases where relatively few
veri�ed examples are known of the site to be modeled.

3 Content Sensors

The most important and most studied content sensor is the sensor that predicts coding
regions. An extensive review of computational methods to detect coding regions is given
by Fickett and Tung [23] (see also [20, 21]). In prokaryotes, it is still common to locate
genes by simply looking for long open reading frames (ORFs); this is certainly not adequate
for higher eukaryotes. To discriminate coding from non-coding regions in eukaryotes, exon
content sensors often use in-frame hexamer counts or, what is nearly equivalent, a set of 3
�fth-order Markov models, one for each of the three nucleotide positions within a codon, as
pioneered in the gene�nder GeneMark [7]. It is also important to consider local compositional
biases, as the codon preferences are quite di�erent between genes in G+C rich regions and
genes in A+T rich regions [55, 18, 7]. While many other measures of coding potential have
been investigated (Fickett tested 19 di�erent measures, which he took from the literature
[21]), few others have been proven to be as e�ective. However, combinations of several
measures can be e�ective, as in the popular GRAIL exon detector, in which several coding
measures are combined along with base composition and signal sensor output for 
anking
splice sites, and fed into a neural net to predict exons [71].

Other content sensors include sensors for CpG islands, which are regions that often occur
near the beginnings of genes where the frequency of the dinucleotide CG is not as low as it
typically is in the rest of the genome [4, 25, 47], and sensors for repetitive DNA, such as ALU
sequences [36, 35, 51]. The latter sensors are often used as masks or �lters that completely
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remove the repetitive DNA, leaving the remaining DNA to be analyzed.

4 Integrated Gene Finding Methods

Signal and content sensors alone cannot solve the gene�nding problem. The statistical signals
they are trying to recognize are too weak [1], and there are dependencies between signals
and contents that they cannot capture [11], such as the possible correlation between splice
site strength and exon size [78]. During the last �ve years, a number of systems have been
developed that combine signal and content sensors to try to identify complete gene structure.
Such systems are capable, in principle, of handling more complex interdependencies between
gene features. A linguistic metaphor is sometimes applied here, likening the process of
breaking down a sequence of DNA into genes, each of which is a series of exons and introns,
to the process of parsing a sentence by breaking it down into its constituent grammatical
parts. Indeed this parsing metaphor can be pushed deeper. Searls[60, 16] was the �rst
major proponent of describing gene structure in linguistic terms using a formal grammar.
His gene�nding program, GenLang, was one of the earliest integrated gene�nders, following
on the pioneering work of Gelfand [26], Gelfand and Roytberg [30], Fields and Soderlund
[24], and Phil Green's GeneFinder[69], and was one of the inspirations for signi�cant later
work (e.g. [6, 5] and the HMM methods described below.)

Nearly all integrated gene�nders use dynamic programming to combine candidate exons
and other scored regions and sites into an complete gene prediction with maximal total
score. A brief and lucid tutorial on this topic can be found in [41] and a more detailed
exposition in [17]. Gelfand, et al, proposed a dynamic programming scheme, embodied
in the gene�nder GREAT[29], that calculates the set of all so-called Pareto-optimal gene
structure predictions, which include the optimal predictions for a wide variety of di�erent
scoring functions. Dynamic programming methods are also used in Grail II [73], GeneParser
[62], FGENEH [63], and recent versions of GeneID [31].

Dynamic programming methods �nd the candidate gene structure with the best overall
score. The key to success in these methods is developing the right score function. A fruit-
ful approach here has been to de�ne a statistical model of genes that includes parameters
describing codon dependencies in exons, characteristics of splice sites (e.g. the parameters
of a weight matrix for splice sites), as well as \linguistic" information on what functional
features are likely to follow other features (see Figure 1). In this approach the observed DNA
sequences are actually modeled as if they were manifestations of a stochastic process that
generates gene-containing DNA. This process includes a latent (or \hidden") variable asso-
ciated with each nucleotide that represents the functional role or position of that nucleotide,
e.g. a G residue might be part of a GT consensus donor splice site or it might be in the
third position of a start codon. Taken together, the states of these hidden variables de�ne a
candidate gene structure. The linguistic rules for what functional features follow what other
features are expressed by the parameters of a Markov process on the hidden variables. For
this reason, these models are called hidden Markov models, or HMMs. Because a Markov
process is just a �nite state machine with probabilities on the state transitions, gene�nd-
ing HMMs are merely a stochastic version of the gene�nding �nite state machines (regular
grammars) introduced by Searls.
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Figure 1: A simpli�ed diagram representing the liguistic rules for what might follow what
when parsing a sequence consisting of a multiple exon gene. The arcs represent contents and
the nodes represent signals. The contents are J5' : 5' UTR, EI : Initial Exon, E : Exon, I :
Intron, E : Internal Exon, EF: Final Exon, ES : Single Exon, and J3' : 3' UTR. The signals
are B : Begin sequence, S : Start Translation, D : Donor splice site, A : Acceptor splice site,
T : Stop Translation, F : End sequence. A candidate gene structure is created by tracing
a path in this �gure from B to F. An HMM (GHMM) is de�ned by attaching stochastic
models to each of the arcs and nodes. Figure taken from [44].

The advantage of HMMs is that, being probabilistic models, they de�ne a natural score
function. Let X denote the DNA sequence, Q denote a possible sequence of hidden states,
one for each nucleotide in X, and � denote the parameters of the HMM. Since Q represents
a candidate gene structure for X, to �nd the genes in X, we want to �nd the Q that is
most likely given the sequence X, i.e., we want to �nd the Q that maximizes P (QjX; �),
the probability of the gene structure Q given the DNA sequence X and the parameters �.
Equivalently, we can maximize logP (QjX; �). This is the score function that is optimized in
a gene�nding HMM. It can be optimized using standard dynamic programming methods.

Early gen�nding HMMs were EcoParse (for E. coli [42], also recently used in the an-
notation of the M. Tuberculosis genome [14]) and Xpound (for human) [70]. More recent
programs are GeneMark-HMM (for bacterial genomes) [48] Veil [33] and HMMgene (for hu-
man) [41]. A somewhat more general class of probabilistic models, called generalized HMMs
(GHMMs) or (hidden) semi-Markov models, have their roots in GeneParser [62], and were
more fully developed in Genie [44, 57, 45] and then GenScan [9] (see also [72]).

The probabilistic approach has further advantages. For example, for any given feature,
such as a 5' splice site, and any position in the DNA sequence X, we can calculate the prob-
ability that that feature occurs at that position. If we do this for separately for each feature
of our overall predicted gene structure, then this gives us a kind of individual \con�dence"
value for each part of our prediction. GeneParser [62] pioneered this methodology (see fur-
ther theoretical discussion in [68]), and it is used to give highly accurate con�dence values for
predicted exons in Genscan [9]. In addition, the probabilistic formulation provides various
new ways to estimate the parameters � of the gene-�nding model. Given a large \training"
DNA contig (or set of contigs) X and its correct state sequence annotation Q, we can �nd
� to maximize P (X;Qj�) (the maximum likelihood approach), P (�jX;Q) (the maximum a

posteriori approach), or P (QjX; �) (the conditional maximum likelihood approach) [40]. It
is even possible to estimate the parameters � from partially annotated training sequences
using the expectation-maximization method [17].
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So far we have focused on gene�nders that predict gene structure based only on general
features of genes, rather than using explicit comparisons to other, previously known genes,
or auxiliary information such as expressed sequence tag (EST) matches. One way to include
information about previously known genes is to use the database of known proteins as a basis
for gene prediction. Current state-of-the-art gene�nding systems combine multiple statisti-
cal measures with database homology searches, obtained by translating the DNA to protein
in all possible reading frames, and then searching the protein databases for similar protein
sequences. Examples are Genie [45], GeneID+ [10], GeneParser3 [62], and recent versions of
Grail [75]. The program AAT [34] and new versions of Grail also take into account EST in-
formation [74]. Database homology has long been used as a post hoc method to validate gene
predictions, but these systems were among the �rst to integrate database homology directly
into the gene�nding algorithm itself. This approach has been taken to its extreme limit in a
gene�nding program developed by Gelfand, Mironov, and Pevzner[28]. This system, called
Procrustes, requires the user to provide a close protein homolog of the gene to be predicted.
Then a \spliced alignment" algorithm, similar to a Smith-Waterman[61] alignment, is used
to derive a putative gene structure by aligning the DNA to the homolog. The major dis-
advantage to this method is the requirement of a close homolog. It is often the case that
homologs are unknown or are remote, in which case this system would be inappropriate.
Nevertheless, in the presence of a very close homolog, Procrustes is an extremely e�ective
gene �nding method. Recent related methods, based on HMM models, have been developed
by Birney and Durbin [5] and are currently being developed by Kulp [43].

In 1995, a number of di�erent integrated gene�nders were tested on a benchmark set of
570 vertebrate genes by Burset and Guig�o [10]. They looked at not only how many bases
were predicted correctly as either coding or non-coding, but how many exons were predicted
exactly, with both splice sites located correctly. In the former case, accuracy was about
75-80%. In the latter it was about 40-60%. These numbers are for systems that do not
employ protein database homology searches. When database homology is employed, the
upper limit for the accuracy increases about 10% in both categories. Integrated eukaryotic
gene�nding systems based on HMM and GHMM models, starting with Genie, and followed
by Veil, Genscan and HMMgene have pushed beyond these early performance numbers, with
the latter two programs now obtaining upwards of 90% accuracy at the level of individual
nucleotides and 80% for exact exon prediction, without the use of database homologies. A
new category of completely correct gene prediction has been added to the list of performance
measurements, and Genscan achieves an accuracy of about 40% on the Burset and Guig�o
dataset in this category [9]. Tests have also been conducted on the identi�cation of promoters,
showing that the accuracy of currently available methods is much lower on this task [22].

The currently available gene�nding performance results must be approached with ex-
treme caution. The primary reason is that they depend very strongly on the di�culty of the
genes in the test set, and for some gene�nders, on the homology overlap between the genes in
the test set and those in the training set that is used to optimize the parameters of the models
[31, 41]. The latter is a factor even when no homology is explicitly used by the gene�nding
method. To avoid this problem, it is best to compare gene�nders by training and testing on
the same genes, and to avoid homologies between genes used for training and testing. Reese
has constructed benchmark sets for human and for Drosophila genes of this type that are ran-
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domly partitioned into speci�ed parts for use in cross-validated train-test experiments. These
have been used by Genie, Genscan and HMMgene (ftp://www-hgc.lbl.gov/pub/genesets/).
Reese's human dataset is a bit harder than the original Burset and Guig�o dataset as well,
so gene�nding programs get overall lower scores on it. Furthermore, the variance in per-
formance from one train-test partition to another is quite high, since some parts by chance
ended up with more \hard-to-predict" genes (usually genes with many exons and or long
introns) than others. This graphically demonstrates the unreliability of the currently avail-
able gene�nding performance �gures: if by chance a di�erent set of human genes had been
included in Genbank, the numbers would have been quite di�erent, and probably lower, since
Genbank is biased towards genes with fewer exons and shorter introns. We need a much
larger sample of human genes before we can get stable performance numbers.

Reese's datasets, like those of Burset and Guig�o, contain exactly one gene per sequence.
Little is known about the accuracy of gene�nders on large genomic sequences containing
multiple genes. Some harder and more realistic human genomic data, consisting of large
annotated contigs, is available at http://igs-server.cnrs-mrs.fr/banbury/index.html.
Annotated C. elegans gene data is available at

http://www.sanger.ac.uk/Projects/C_elegans/genefinding/.

The latter site also proposes a standardized format (Gene Finding Format, or GFF) for
both gene annotation and comparing the results of various gene�nders. It would greatly
aid the maturation of this �eld if we could agree on a simple standard data interchange
format like this. Once this is established, we could then share a set of tools for the display,
comparison, analysis and combination of di�erent gene predictions, along with auxiliary
sequence annotation.

5 Discussion

It is important to distinguish two di�erent goals in gene�nding research. The �rst goal
is to provide computational methods to aid in the annotation of the large volume of ge-
nomic data that is produced by genome sequencing e�orts. The second goal is to provide
a computational model to help elucidate the mechanisms involved in transcription, splic-
ing, polyadenylation and other critical processes in the pathway from genome to proteome.
While there is some overlap in these goals, there is also some con
ict. No one computational
gene�nding approach will be optimal for both goals. A \purist" system that mimics the
cellular processes cannot take advantage of homologies with other proteins and matches to
EST sequences when deciding where to splice. It presumably should not use codon statis-
tics, frame consistency between exons, or lack of in-frame stop codons to predict overall gene
structure, although there is some evidence that absence of early in-frame stop codons may be
involved in biological start site selection [39]. One would think that these restrictions would
completely cripple computational gene�nding methods, however Guig�o has shown that just
using simple weight matrices to �nd the best combination of splice site signals, translation
start and stop signals, along with the standard syntactic constraints on gene structure (frame
consistency, no in-frame stop codons, minimum intron size), gives results on his benchmark
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data set that are comparable to those obtained by most of the gene�nders he and Burset
tested in 1995 [31]. These results are not competitive with the older gene�nders that use
protein homology, nor with the newer methods that use exon coding potential but not ho-
mology, but they nevertheless indicate a surprising potential for purist gene�nding models.
More detailed models of the splicing process, the selection of translation start and the pro-
cess of polyadenylation may signi�cantly improve such purist models. These models may
prove useful in human genome annotation for �nding rapidly evolving and rarely expressed
genes, especially those with unusual codon usage. However, if we simply want to produce
gene�nders that give the most reliable annotation in \everyday" genome center annotation
e�orts, it is clear that more work needs to be done to incorporate EST information along
with protein homology and powerful statistical models.

There are other key issues that will e�ect future research in both of the above computa-
tional gene�nding paradigms. One is the issue of alternative splicing. No currently available
gene�nders handle alternative splicing in an e�ective manner. Intimately tied with this issue
is that of gene regulation. The abundant regulatory signals 
anking genes, and appearing
in introns (and sometimes in exons [52]), combined with regulatory proteins speci�c to the
cell type and cell state, determine the expression of the gene. Gene annotation is not com-
plete until these signals are identi�ed, and the cellular conditions that give rise to di�ering
expression levels for di�erent transcripts are worked out. This implies, among other things,
that future gene�nders will need to explicitly take into account experimental data relating to
di�erential expression, along with the other types of data we have discussed (see e.g. [38]).
It may be anticipated that this task will occupy gene�nding researchers for some years to
come.
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Glimmer [59]: http://www.cs.jhu.edu/labs/compbio/glimmer.html
Grail [73]: http://compbio.ornl.gov/
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