BLASTing Tools

• **BLAST & FASTA**: Search database for sequences that can be aligned with query sequence

• **ProfileSearch**: prepare profile from a multiple sequence alignment (Profilemake) and align profile with database sequence

• **MAST**: Search in database with profile representing ungapped sequence alignment

• **Prosite, Interpro, Pfam**: Search query sequence for patterns representative of protein families
More Tools

- **PHI-BLAST**: Searching for Regular Expressions & Motifs
- **PSI-BLAST**: Iterative alignment search for similar sequences that starts with a query sequence, builds a gapped multiple alignment, and then uses the alignment to augment the search
PSI-BLAST

• Version of BLAST to find protein families for a given query sequence. Helps to find distant neighbors and sequences with subtle relationships.

• Scheme
 - Perform regular BLAST and inspect results
 - If any interesting results, then iterate:
 • Align high-scoring matches and build profile
 • Perform BLAST using profile to find new hits
 • Show results with new hits highlighted
• **Pattern-Hit Initiated BLAST**: Search for patterns, for example,

\[[\text{LIVMF}]-G-E-x-[\text{GAS}]-[\text{LIVM}]-x(5,11)-R-[\text{STAQ}]-A-x-[\text{LIVMA}]-x-[\text{STACV}] \]
Protein Folding

- How to find minimum energy configuration?

Unfolded

\[\text{Rapid (< 1s)} \]

Molten Globule State

\[\text{Slow (1 - 1000 s)} \]

Folded Native State
Modular Nature of Protein Structures

Example: Diphtheria Toxin

- Myoglobin
- Cellulose-binding domain
- Receptor-binding domain
- Catalytic domain
- Transmembrane domain
- Exotoxin a
Protein Structures

- Most proteins have a hydrophobic core.
- Within the core, specific interactions take place between amino acid side chains.
- Can an amino acid be replaced by some other amino acid?
 - Limited by space and available contacts with nearby amino acids
- Outside the core, proteins are composed of loops and structural elements in contact with water, solvent, other proteins and other structures.
Viewing Protein Structures

- SPDBV
- RASMOL
- CHIME
Structural Classification of Proteins

- Over 1000 protein families known
 - Sequence alignment, motif finding, block finding, similarity search
- **SCOP** (Structural Classification of Proteins)
 - Based on structural & evolutionary relationships.
 - Contains ~ 40,000 domains
 - Classes (groups of folds), Folds (proteins sharing folds), Families (proteins related by function/evolution), Superfamilies (distantly related proteins)
SCOP Family View

Figure 2. A typical scop session is shown on a Unix workstation. A scop page of the Interleukin-8-like family is displayed by the WWW browser program (NCSA Mosaic) (Schwartz & Hase, 1994). Navigating through the tree structure is accomplished by selecting an underlined entry, by clicking on buttons (at the top of each page) and by keyword searching (at the bottom of each page). The static image comparing two proteins in this family was downloaded by clicking on the icons located and is displayed by Image viewer program xy. By clicking on one of the green icons, commands were sent to a molecular viewer program (RasMol) written by Roger Sayle (1994), instructing it to automatically display the relevant PDB file and colour the domain in question by secondary structure. Since sending large PDB files over the network can be slow, this feature of scop can be configured to use local copies of PDB files if they are available. Equivalent WWW browsers, image-display programs and molecular viewers are also available free for Windows PC and Macintosh platforms.
CATH: Protein Structure Classification

- Semi-automatic classification; ~36K domains
- 4 levels of classification:
 - Class (C), depends on sec. Str. Content
 - α class, β class, α/β class, α+β class
 - Architecture (A), orientation of sec. Str.
 - Topology (T), topological connections &
 - Homologous Superfamily (H), similar str and functions.
DALI/FSSP Database

- Completely automated; 3724 domains
- Criteria of compactness & recurrence
- Each domain is assigned a Domain Classification number DC_l_m_n_p representing fold space attractor region (l), globular folding topology (m), functional family (n) and sequence family (p).
Structural Alignment

• What is structural alignment of proteins?
 - 3-d superimposition of the atoms as “best as possible”, i.e., to minimize RMSD (root mean square deviation).
 - Can be done using **VAST** and **SARF**

• Structural similarity is common, even among proteins that do not share sequence similarity or evolutionary relationship.
Other databases & tools

- **MMDB** contains groups of structurally related proteins
- **SARF** structurally similar proteins using secondary structure elements
- **VAST** Structure Neighbors
- **SSAP** uses double dynamic programming to structurally align proteins
5 Fold Space classes

Attractor 1 can be characterized as alpha/beta, attractor 2 as all-beta, attractor 3 as all-alpha, attractor 5 as alpha-beta meander (1mli), and attractor 4 contains antiparallel beta-barrels e.g. OB-fold (1prtF).
Fold Types & Neighbors

Structural neighbours of 1urnA (top left). 1mli (bottom right) has the same topology even though there are shifts in the relative orientation of secondary structure elements.
Sequence Alignment of Fold Neighbors

B

1urnA --RPNHTIYINNLNEKI----KKDELKKSLHATFSRFG----QILDILV-SRS----LKM----
Z=10 * * *** * *** *
1ha1 ahLTVKKIFVGGIKEDT-------EEHHLRDYFEOYG----KIEVIEI-MTDrgsGKK----
Z=5 * *** *** *** *** *
2bopA ----sCFALIS-GTANQ-----vKYRFRVKKNHRHR------YENCiTtWFT------Vadnga
Z=2 *
1mli ---------mlFHVKMTVKLpvdmpakatg1kadeKELAQRlgregTWRHLWR-IAG-----------

1urnA ----RGQAFVIFKEV--SSATNALRSMQGFPPFYDKPMRIQYAKTDSDIIAKMK----------
Z=10 ** *** * *** *** ***
1ha1 ----RGFAFVTFDDH--DSVDKIVIQ-kYHTVNGHNCEVRKAL--------
Z=5 * *** *** *** *** *** *
2bopA erggQAQILITFGSP--SORQDFLKHVPLPP----GMNISGF----tASLdf----------
Z=2 * *** *** *** *** *** *
1mli ----HYANYSVFDVpsvEALHDTLMQLpLFPY----MDIEVD-----gLCRHpssihsddd
Frequent Fold Types

- 1hdcA:1, alpha/beta domain
- 1mfaA:3, immunoglobulin fold
- 1ceo:2, TIM barrel
- 1bcoA:1, helical bundle
- 1pi:2, alpha/beta-meander
- 1vdfA:1, single helix
- 1grj:2, coiled coil
- 1bbl2:1, beta-meander
- 1ro:2, EF-hand
- 1oetC:3, HTH-motif
- 1ptTf:1, OB-fold
- 3grs:2, FAD/NAD binding domain
- 1mbo:1, globin fold
- 1vin:3, cyclin fold
- 1aozA:15, blue copper protein
- 1hcf:17, periplasmic binding lectin fold protein
- 1celA:3, lipocalin fold
- 1epaA:1, beta-roll
- 2arccA:4, actin fold
Protein Structure Prediction

• **Holy Grail** of bioinformatics

• **Protein Structure Initiative** to determine a set of protein structures that span protein structure space sufficiently well. **WHY?**
 - Number of folds in natural proteins is limited. Thus a newly discovered proteins should be within modeling distance of some protein in set.

• **CASP**: Critical Assessment of techniques for structure prediction
 - To stimulate work in this difficult field
PSP Methods

• **homology**-based modeling
• **methods based on fold recognition**
 - Threading methods
• **ab initio** methods
 - From first principles
 - With the help of databases
• Best method for PSP

As proteins fold, a large number of partially folded, low-energy conformations are formed, and that local structures combine to form more global structures with minimum energy.

• Build a database of known structures (I-sites) of short sequences (3-15 residues).

• Monte Carlo simulation assembling possible substructures and computing energy
Threading Methods

• See p471, Mount
 - http://www.bioinformaticsonline.org/links/ch_10_t_7.html
FIGURE 10.30. A hidden Markov model (discrete state-space model) of protein three-dimensional structure. (B) HMM called HMMSTR based on 1 site, 3 to 15 amino acid patterns that are associated with three-dimensional structural frames. The two matrices with colored squares represent alignment of sets of patterns that are found to be associated with a structure, in this case the hairpin turns shown on the right. Each column in the table corresponds to the amino acid variation found for one structural position in one of the turns. (Blue side chains) Conserved nonpolar residues: (green) conserved polar residues; (red) conserved proline; and (orange) conserved glycine. The two hairpins are aligned structurally in the middle structure on the right and the observed variation in the corresponding amino acid positions is represented by the HMM between the matrices on the left. The HMM represents an alignment of the two hairpin structural motifs in three-dimensional space and an alignment of the sequences. A short mismatch in the turn is represented by splitting the model into two branches. The shaped icons represent states, each of which represents a structural and a sequence position. Each state contains probability distributions about the sequence and structural attributes of a single position in the motif, including the probability of observing a particular amino acid, secondary structure, \(\Phi, \Psi\) backbone angles, and structural context, e.g., location of \(\beta\) strand in a \(\beta\) sheet. Rectangles are predominantly \(\beta\)-strand states, and diamonds are predominantly turns. The color of the icon indicates a sequence preference as follows: (blue) hydrophobic; (green) polar; and (yellow) glycine. Numbers in icons are arbitrary identification numbers for the HMM states. There is a transition probability of moving from each state in the model to the next, as in HMMs that represent motifs. This model is a small component of the main HMMSTR model that represents a merging of the entire \(\beta\)-sites library. Three different models, designated \(\beta^p, \beta^e\), and \(\lambda^p\), are included in HMMSTR, which differ in details as to how the alignment of the \(\beta\)-sites was obtained to design the branching patterns (topology) of the model and which structural data were used to train the model. HMMSTR may be used for a variety of different predictions, including secondary structure prediction, structural contact prediction, and \(\Phi, \Psi\) dihedral angle prediction. Predictions are made by aligning the model with a sequence, finding if there is a high-scoring alignment, and deciphering the highest-scoring path through the model. The HMMSTR program may be downloaded or used on a server that can be readily located by a Web search. (Reprinted, with permission, from Bystroff et al. 2000 [©2000 Elsevier].)
Motif Detection (TFBMs)

• See evaluation by Tompa et al.
 - [bio.cs.washington.edu/assessment]

• **Gibbs Sampling Methods**: AlignACE, GLAM, SeSiMCMC, MotifSampler

• **Weight Matrix Methods**: ANN-Spec, Consensus,

• **EM**: Improbizer, MEME

• **Combinatorial & Misc.**: MITRA, oligo/dyad, QuickScore, Weeder, YMF