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Study effect of treatment over time
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How to compare 2 cell samples with Two-Color
Microarrays?

d mRNA from sample 1 is extracted and labeled with a red
fluorescent dye.

d mRNA from sample 2 is extracted and labeled with a green
fluorescent dye.

1 Mix the samples and apply it to every spot on the
microarray. Hybridize sample mixture to probes.

[ Use optical detector to measure the amount of green and
red fluorescence at each spot.
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Sources of Variations & Experimental Errors

O Variations in cells/individuals

[ Variations in mMRNA extraction, isolation, introduction of dye, variation
in dye incorporation, dye interference

[ Variations in probe concentration, probe amounts, substrate surface
characteristics

[ Variations in hybridization conditions and kinetics

[ Variations in optical measurements, spot misalignments, discretization
effects, noise due to scanner lens and laser irregularities

[ Cross-hybridization of sequences with high sequence identity
O Limit of factor 2 in precision of results

[ Variation changes with intensity: larger variation at low or high
expression levels

Need to Normalize data
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Clustering

dClustering is a general method to study patterns in
gene expressions.
1 Several known methods:
@ Hierarchical Clustering (Bottom-Up Approach)
@ K-means Clustering (Top-Down Approach)
@ Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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lierarchical Clustering [Johnson, SC, 1967]

Given n points in RY, compute the distance between
every pair of points

A While (not done)

@ Pick closest pair of points s; and s; and make them part of
the same cluster.

@ Replace the pair by an average of the two s;
Try the applet at:

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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Distance Metrics

A For clustering, define a distance function:

@ Euclidean distance metrics
d

1/k

(Xi —Yi)k] k=2: Euclidean Distance

De(X,Y) = [

@ Pearson correlation coefficient

_id Xi—= X \Yi=-Y . .
. dZ Ox Oy =Py =
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EXHIBIT 3.4 Joint Probability Model for the Ratings of Two People

@ pxy =10 (b) pxr = 4
y y
x 1 2 3 Total x 1 2 3 Total
3 1/9 1/9 1/9 1/3 3 1/18 1/18 4/18 1/3
2 1/9 1/9 1/9 1/3 2 1/18 4/18 1/18 1/3
1 1/9 1/9 1/9 1/3 1 4/18 1/18 1/18 1/3
Total | 13 13 173 1 Total | 13 13 133 1
() pxy = —4 (d) pxy = 8
y y
x 1 2 3 Total x 1 2 3 Total
3 4/18 1/18 1/18 1/3 3 127 227 627 1/3
2 1/18 4/18 1/18 1/3 2 2127 5127 2127 1/3
1 1/18 1/18  4/18 173 1 6/27 227 127 1/3
Total 1/3 1/3 13 1 Total 1/3 1/3 1/3 1
(e) pxy = —4 (f) pxy = %
y y
x 1 2 3 Total x 1 2 3 Total
3 6/27 227 127 1/3 3 1/36 2136 9/36 1/3
2 2127 5127 2727 173 2 2/36 8/36 2/36 1/3
1 1/27 2127  6/27 173 1 936 2/36 1/36 1/3
Total 1/3 1/3 1/3 1 Total 1/3 173 113 1
(8) pxyr = —3
y
x 1 2 3 Total
3 936 2/36 1/36 1/3
2 236  8/18 2/18 1/3
1 1/36  2/36 9/36 1/3
Total 173 13 13 1
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Clustering of gene expressions

Represent each gene as a vector or a point in d-
space where d is the number of arrays or
experiments being analyzed.
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Clustering Random vs. Biological
Data

start clustered randoml random2 random3
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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Start
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K-means
1. Ask user how many
dlusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

Copprght © 2001, Andrew . Mooes
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
duster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns...

5. ..and jumps there

6. ..Repeat untl
terminated!
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by

Dan Pelleg’s superduper

fast K-means system:
Dan Pelleg and Andrew
Moore. Accelerating Evact
k-means Algorithms wilth
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD93) (available an

wiww autoriah. or gipas Nterl)

Coprght © 2001, Andrew W, Moo
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K-means
continues
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K-means
continues

Coprght © 2001, Andrew W, Moo

K-maans 3nd Hiordrchical Clustanng: Shda 13

K-means
continues
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K-means
continues
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K-means
continues
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K-means
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3/3/08

2. Randomly guess k
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

cluster Center
locations

Copyright € 2000, Antrow W, Moo
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5) o

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns” | ™
a set of datapoints)
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K-means
continues

Copprght © 2001, Andww W, Moo

E-maans and Hierachical Clstenng: Skis 19

K-means
terminates
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K-Means Clustering [McQueen ’'67]

Repeat

@ Start with randomly chosen cluster centers

@ Assign points to give greatest increase In score
@ Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at:
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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Comparisons

dHierarchical clustering
@ Number of clusters not preset.
@ Complete hierarchy of clusters
@ Not very robust, not very efficient.

J K-Means

® Need definition of a mean. Categorical data?
@ More efficient and often finds optimum clustering.
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Functionally related
genes behave similarly
across experiments
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(a) Microarray experiment
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(b) Microarray experiment

Figure 1: Expression profiles of the cytoplasmic ribosomal proteins. Figure (a) shows the
expression profiles from the data in [Eisen et al., 1998] of 121 cytoplasmic ribosomal proteins, as
clagsified by MYGD [MYGD, 1999]. The logarithm of the expression ratio is plotted as a function
of DNA microarray experiment. Ticks along the X-axis represent the beginnings of experimental
series. They are, from left to right, cell division cycle after synchromzation with « factor arrest
(alpha), cell division eyele after synchronization by centrifugal elutriation (elu), cell division cycle
measured using a temperature sensitive cdel5 mutant (cde), sporulation (spo), heat shock (he),
reducing shock (re), cold shock (co), and diauxic shift (di). Sporulation is the generation of a yeast
gpore by meiosis. Diauxic shift is the shift from anaerobic (fermentation) to acrobic (respiration)
metabolism. The medium starts rich in glucose, and yeast cells ferment, producing ethanol. When
the glucose is used up, they switch to ethanol as a source for carbon. Heat, cold, and reducing
shock are various ways to stress the yeast cell. Figure (b) shows the average, plus or minus one
standard deviation, of the data in Figure (a).
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Self-Organizing Maps [Kohonen]

JKind of neural network.

dClusters data and find complex relationships
between clusters.

dHelps reduce the dimensionality of the data.
dMap of 1 or 2 dimensions produced.
dUnsupervised Clustering

dLike K-Means, except for visualization
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4 2-D 6rid
4 3-D 6rid
J Hexagonal Grid
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SOM Architectures
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SOM Algorithm

Select SOM architecture, and initialize weight
vectors and other parameters.

dWhile (stopping condition not satisfied) do for each
input point x
@ winning node g has weight vector closest to x.

@ Update weight vector of g and its neighbors.
® Reduce neighborhood size and learning rate.
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SOM Algorithm Details

O Distance between x and weight vector: [x = wil
d Winning node: q(x) = minfx — wi
dWeight update function (for neighbors):

wi(k +1) = wi(k) + (K, X, i)[x(k) = wi(k)]

Learning rate:

RSt
u(k, x,i) =no(k)exp[_r' Glzrq( ) ]
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World Bank Statistics

JData: World Bank statistics of countries in 1992.

139 indicators considered e.g., health, nutrition,
educational services, etc.

[ The complex joint effect of these factors can can
be visualized by organizing the countries using the
self-organizing map.
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World Poverty PCA
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes
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SOM Example [Xiao-rui He]
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Neural Networks
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Weights W
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Learning NN

Weights W

VYV V

Adaptive Algorithm

Desired Response
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Types of NNs

J Recurrent NN
- Feed-forward NN

[ Layered

Other issues

 Hidden layers possible
O Different activation functions possible
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Application: Secondary Structure Prediction
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A Identical for all positions in the window

A Identical for all positions in the window
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