CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS13.html

NGS Applications

Applications of NGS

- **RNA-Seq**
- ChIP-Seq
- SNP-Seq
- Metagenomics
- Alternative Splicing
- Copy Number Variations (CNV)

RNA-Seq

- Align reads to genes and count
- Assume uniform sampling
 - Count of number of reads mapped per gene is a measure of its expression level
 - Expression of Gene 2 is twice that of Gene 1
 - Expression of Gene 3 is twice that of Gene 2

Expression Level of Gene

- $\Box RPKM = Ng / (N X L)$
 - Ng = Number of reads mapped to gene
 - N = Total number of mapped reads (in millions)
 - L = Length of gene in KB
 - [Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B., Nat Methods. 2008 Jul;5(7):621-8. Mapping and quantifying mammalian transcriptomes by RNA-Seq.]

Complications

Repeat regions

- Paralogs and other homologous regions in genes
- Ambiguities in maps
- Introns and Exons
 - Aligning reads to genome is more complex
- □ Alternative Splicing
- Transcription start site is upstream of ORFs
- Unknown ORFs and Small RNAs
- Other transcripts

RNA-Seq Procedure

Mapping Reads to Reference

Alternative Splicing

microRNA

Chromatin Immunoprecipitation

- Useful for pinpointing location of TFBS for TF
 High-throughput method to find all binding sites for a specific TF under specific conditions
 Identify sites using

 ChIP-on-chip (Microarray technique)
 ChIP-Seq (Sequencing technique)
- Problems: TFs bind to specific TFBS only under specific conditions – hard to predict

ChIP-Seq

CAP 5510 / CGS 5166

SNP-Seq

Align reads and look for differences

- Differences to reference
 - > Align reads to reference sequence first
- Differences within reads
- Differences between samples or sets of reads

```
CTTTTTGCACTCATTCATAT<mark>A</mark>AAAAATATATTTCCCCACG
   TTTGCACTCATTCATATAAAAAATATATTTCCCCACG
CTTTTTGCACTCATTCATATAAATAAATATATTCCCCACC
     TGCACTCATTCATATCAAAAATATATTTC
   TTTGCACTCATTCATATAAAAAATATATTTCCCCACC
CTTTTTGCACTCATTCATATCAAAAATATATTTCCCCACC
     TGCACTCATTCATATAAAAAATATATTTC
     TGCACTCATTCATATCAAAAAATATATT
      GCACTCATTCATATAAAAAATAT
             A T T C A T A T A A A A A A T A T A
TTTTTGCACT
             ΑΤΤСΑΤΑΤСΑΑΑΑΑΤΑΤΑΤΤΤΤ
         CTCATTCATATAAAAAATATATT
                   ΙΑΤΑΑΑΑΑΤΑΤΑΤ
                                     CCCACG
```

Environmental Microbiology

Conventional methods

- Culture, then identify
 - > Slow, expensive, labor intensive, unculturable microbes
- PCR-based length heterogeneity studies
- Microarray-based methods
 - Unique probes for organisms (e.g., Virochip)
 - > Only works for sequenced regions of known organisms
- NGS-based methods

Metagenomics

Detect known pathogens

- Diversity
 - Identity of individual species not needed
- Functional profile of community

NGS-based method

- Map reads against appropriate database
- Identify closest hits for each read
- Generate contigs
- Generate abundance information
- Clustering of reads can be beneficial to estimate abundance

Genetics Software: STRUCTURE

Structure

Use multi-locus genotype data to investigate population structure

- Inferring presence of distinct populations
- Assigning individuals to populations
- Studying hybrid zones
- Identifying migrants and admixed invidividuals
- Estimating allele frequencies in populations
- Types of markers
 - Microsatellites, RFLPs, SNPs
- Papers
 - http://pritch.bsd.uchicago.edu/publications/structure.pdf
 - Pritchard, Stephens, and Donnelly, Genetics 155:945-959, June 2000
 - http://pritch.bsd.uchicago.edu/publications/FalushEtAl03_Genetics.pdf
 - > Falush, Stephens, Pritchard, *Genetics* 164:1567-1587, August 2003

Structure: Methods

- Model-based clustering method
- Assumptions
 - K populations (K may be unknown), each characterized by a set of allele frequencies at each locus
 - Within each population, loci are at Hardy-Weinberg equilibrium, and at linkage equilibrium
 - Objective is to assign individuals to populations to achieve the equilibria
 - Markers are not in LD within subpopulations (cannot handle markers extremely close together; weakly linked markers can be handled in Version 2.0)
 - Organisms may be diploid of non-diploid
- Do not assume a particular mutation process

Data

For diploid org	anisms, do	ita for e	ach indiv	vidual co	an be		
Stored in 2 s	successive	rows with	n each loc	us in one	e column		
> George	1	-9	145	66	0	92	
> George	1	-9	-9	64	0	94	
Or stored in	1 row with	each loci	us in 2 coi	nsecutiv	e columns	5	
> George	1	1	-9	-9	145	-9	66
64	0	0	92	94			

Phase/Haplotype Information

 Phase may be given or unavailable. Two representations: Maternal/paternal contributions are Phase info relative to previous allele 						Missing data; e.g., no info on second X chr able (MARKOV available (MARK			From one parent, hence phased 'P' SE = 0) PHASE = 1)	
	102 100 0.5	156 148 0.5	165 163 0.5	101 101 0.5	143 143 0.5	105 -9 1.0	104 -9 1.0	101 -9 1.0	5 au lo ch	unphased (e.g., atosomal microsatellite) ci and 3 phased (e.g., X ar) loci
										Perfectly in phase with previous allele
	102	156	165	101	143	105	104	101 🥣		
	100	148	163	101	143	-9	-9	-9		
	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0		

Ancestry Models

No admixture

- Pure discrete populations
- Output: Posterior probability that i is from population j
- Occasionally better than admixture model at detecting subtle structure

Admixture

- Individuals with mixed ancestry
- Output: Posterior mean estimates of fraction that i inherited from pop j
- Flexible, realistic model and good starting point
- Difficulty if there are very few representations of the parental populations

Linkage

Generalizes the Admixture model

Ancestry Models (Cont'd)

Linkage

- Generalizes the Admixture model
- Assumes an admixture event t generations in the past, at which time the chromosome inherited distinct chunks from ancestors
- LD arises because linked alleles are often on the same chunk, and therefore come from ancestral population
- Sizes of chunks are independent exponential random variables with mean length 1/t
- Recombination rate r dictates rate of switching from a chunk to a future chunk
- MCMC algorithm integrates over the possible chunk sizes and break points
- Needs location of markers (genetic map)
- Reports ancestry of each individual
- Slower computations, but practical for hundreds of loci & individuals

Variants

Can handle prior info on population

- Useful to test if an individual is an immigrant to that population or has recent immigrant ancestors
- Useful to incorporate training data and to classify individuals of unknown origin
- Parameter called MIGPRIOR to allow for limited misclassification
- Can handle 2 models for allele frequencies
 - $\bullet\,$ Allele frequency in each population are independently drawn from a distribution with parameter λ
 - Can be determined by fixing K = 1, and then estimating λ
 - Allele frequencies are correlated, i.e., different populations may have similar allele frequencies
- □ K has to be estimated carefully.

Miscellaneous

Missing data (as long as it is independent of the allele)
 Dominant Loci

Results

Applications

- Diversity and introgression in Scottish wildcats (Beaumont et al., Mol Ecol, 10:319-336)
- Study of 20 chicken breeds (Rosenberg et al., *Genetics*, 159:699-713)