COP 4516: Competitive Programming and Problem Solving

Giri Narasimhan \& Kip Irvine

 Phone: $\times 3748$ \& $\times 1528$ \{giri,irvinek\}@cs.fiu.edu
Evaluation

- Exam/Competition
- Solving Problems
- Attendance
- Class Participation

50\%
40\%
5\%
5\%

History of Algorithms

The great thinkers of our field:

- Euclid, 300 BC
- Bhaskara, $6^{\text {th }}$ century
- Al Khwarizmi, 9th century
- Fibonacci, $13^{\text {th }}$ century
- Babbage, 19 ${ }^{\text {th }}$ century
- Turing, $20^{\text {th }}$ century
- von Neumann, Knuth, Karp, Tarjan, ...

Al Khwarizmi's algorithm

- 43×17
- 4317
- 2134
- 1068 (ignore)
- 5136
- $2 \quad 272$ (ignore)
- $1 \quad 544$

731

Euclid's Algorithm

- $\operatorname{GCD}(12,8)=4 ; \operatorname{GCD}(49,35)=7$;
- $\operatorname{GCD}(210,588)=? ?$
- $\operatorname{GCD}(a, b)=? ?$
- Observation: [a and b are integers and $a \geq b$]
- GCD(a,b) = GCD(a-b,b)
- Euclid's Rule: [a and b are integers and $a \geq b$]
- GCD(a,b) = GCD (a mod b, b)
- Euclid's GCD Algorithm:
- GCD(a,b)

If $(b=0)$ then return a :
return GCD $(a \bmod b, b)$

If you like Algorithms, nothing to worry about!

(c) Original Artist

Reproduction rights obtainable from
WWw CartoonStock.com

"Calculus is my new Versace. I get a buzz from algorithms. What's going on with me, Raymond?
I'ncspopred."

Search

- You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?
- Use binary search; Number of guesses $=\log _{2}(B-A)$
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
- NOTE: No upper bound is known for the number.
- Algorithm:
- figure out B (by using Doubling Search)
- perform binary search in the range $B / 2$ through B.
- Number of guesses $=\log _{2} B+\log _{2}(B-B / 2)$
- Since X is between $B / 2$ and B, we have: $\log _{2}(B / 2)<\log _{2} X$,
- Number of guesses < $2 \log _{2} X-1$

Polynomial Evaluation

- Given a polynomial
$-p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$
compute the value of the polynomial for a given value of x.
- How many additions and multiplications are needed?
- Simple solution:
- Number of additions = n
- Number of multiplications $=1+2+\ldots+n=n(n+1) / 2$
- Reusing previous computations: n additions and $2 n$ multiplications!
- Improved solution using Horner's rule:
- $\left.p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-1}+x a_{n}\right)\right) \ldots\right)\right)$
- Number of additions $=n$
- Number of multiplications $=n$

Sorting

- Input is a list of n items that can be compared.
- Output is an ordered list of those n items.
- Fundamental problem that has received a lot of attention over the years.
- Used in many applications.
- Scores of different algorithms exist.
- Task: To compare algorithms
- On what bases?
- Time
- Space
- Other

Figure 2.1 Sorting a hånd ${ }^{\text {CoP }}{ }^{451}$ cards using insertion sort.

Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket \& Radix Sort
- Counting Sort

SelectionSort

$$
\begin{aligned}
& \text { SelectionSort(array A) } \\
& 1 \quad N \leftarrow \text { length }[A] \\
& 2 \text { for } p \leftarrow 1 \text { to } N \\
& 3 \\
& \text { do Compute } j \text {, the index of the } \\
& \text { smallest item in } A[p . . N] \\
& 4 \quad \text { Swap } A[p] \text { and } A[j]
\end{aligned}
$$

SelectionSort

```
SelectionSort(array A)
1 N}\leftarrowlength[A
2 for }p\leftarrow1\mathrm{ to }
    do }\triangleright Compute 
3
    j
    for }m\leftarrowp+1\mathrm{ to }
        do if (A[m]<A[j])
                        then }j\leftarrow
        \ Swap A[p] and A[j]
        temp}\leftarrowA[p
        A[p]\leftarrowA[j]
        A[j]}\leftarrowtem
```


SelectionSort

SElectionSort(array A)

```
1 N}\leftarrowlength[A
2 for }p\leftarrow1\mathrm{ to }
    do }\triangleright Compute 
3
    j
        for }m\leftarrowp+1\mathrm{ to }
        do if (A[m]<A[j])
        then }j\leftarrow
        \swap A[p] and A[j]
        temp}\leftarrowA[p
        A[p]\leftarrowA[j]
        A[j]}\leftarrowtem
```

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
$\mathrm{O}(1)$ space

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
$T(n)=T(n-1)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-1)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=T(n-c)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-c)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=2 T(n / 2)+O(n)$	$T(n)=O(n \log n)$
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n \log n)$
$a=b$	
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n)$
$a<b$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=O(n)$
$f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
$f(n)=O\left(n^{\log _{b} a}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Omega\left(n^{\log _{b} a} \log n\right)$
$f(n)=\Theta(f(n))$	
$a f(n / b) \leq c f(n)$	$\operatorname{cop} 4 \mathbf{1 6}$

Insertion-Sort (A)
1 for $j \leftarrow 2$ to length[A]
2 do $k e y \leftarrow A[j]$
$3 \triangleright$ Insert $A[j]$ into the sorted sequence $A[1 \ldots j-1]$.
$4 \quad i \leftarrow j-1$
$5 \quad$ while $i>0$ and $A[i]>$ key
6
7
8 do $A[i+1] \leftarrow A[i]$
$i \leftarrow i-1$
$A[i+1] \leftarrow k e y$

Loop invariants and the correctness of insertion sort

InSERTION-SORT(A)	cost	times
1 for $j \leftarrow 2$ to length $[A]$	c_{1}	n
2 do key $\leftarrow A[j]$	c_{2}	$n-1$
3 \triangleright Insert $A[j]$ into the sorted sequence $A[1 \ldots j-1]$.	0	$n-1$
$4 \quad i \leftarrow j-1$	c_{4}	$n-1$
$5 \quad$ while $i>0$ and $A[i]>k e y$	c_{5}	$\sum_{j=2}^{n} t_{j}$
6 do $A[i+1] \leftarrow A[i]$	c_{6}	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
$7 \quad i \leftarrow i-1$	c_{7}	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
$8 \quad A[i+1] \leftarrow$ key	c_{8}	$n-1$

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
 $\mathrm{O}(1)$ space

sorted sequence

Figure 2.4 The operation of merge sort on the array $A=\langle 5,2,4,7,1,3,2,6\rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


```
\(\operatorname{Merge}(A, p, q, r)\)
    \(n_{1} \leftarrow q-p+1\)
    \(n_{2} \leftarrow r-q\)
    create arrays \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
    for \(i \leftarrow 1\) to \(n_{1}\)
        do \(L[i] \leftarrow A[p+i-1]\)
        for \(j \leftarrow 1\) to \(n_{2}\)
        do \(R[j] \leftarrow A[q+j]\)
    \(L\left[n_{1}+1\right] \leftarrow \infty\)
    \(R\left[n_{2}+1\right] \leftarrow \infty\)
    \(i \leftarrow 1\)
    \(j \leftarrow 1\)
    for \(k \leftarrow p\) to \(r\)
\[
13 \text { do if } L[i] \leq R[j]
\]
        do if \(L[i] \leq R[j]\)
\[
14 \quad \text { then } A[k] \leftarrow L[i]
\]
        then \(A[k] \leftarrow L[i]\)
\[
\begin{equation*}
15 \quad i \leftarrow i+1 \tag{16}
\end{equation*}
\]
            \(i \leftarrow i+1\)
            else \(A[k] \leftarrow R[j]\)
                    \(j \underset{\text { COP } 4516}{\leftarrow} j+1\)
```

Assumption: Array A is sorted from positions p to q and also from positions $\mathrm{q}+1$ to r .

```
\[
-10
\]
17
```


Merge-Sort (A, p, r)

1 if $p<r$
2 then $q \leftarrow\lfloor(p+r) / 2\rfloor$
3
4
5
$\operatorname{Merge-Sort}(A, p, q)$
$\operatorname{Merge-Sort}(A, q+1, r)$
$\operatorname{Merge}(A, p, q, r)$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 2.5 The construction of a recursion tree for the recurrence $T(n)=2 T(n / 2)+c n$. Part (a) shows $T(n)$, which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n+1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of $c n$. The total CORPerd $6 c n \lg n+c n$, which is $\Theta(n \lg n)$.

