COP 4516: Competitive
Programming and Problem Solving

Giri Narasimhan & Kip Irvine
Phone: x3748 & x1528
{giri,irvinek}@cs.fiu.edu




Evaluation

+ Exam/Competition 50%
» Solving Problems 407
- Attendance 5%
» Class Participation 5%

9/1/11 COP 4516



Sorting

* Input is a list of n items that can be compared.
Output is an ordered list of those n items.

Fundamental problem that has received a lot of attention
over the years.

Used in many applications.
Scores of different algorithms exist.

Task: To compare algorithms
- On what bases?

- Time

- Space

+ Other

9/1/11 COP 4516



Sorting Algorithms

* Number of Comparisons
* Number of Data Movements
» Additional Space Requirements

9/1/11 COP 4516



Sorting Algorithms

+ SelectionSort

+ InsertionSort

+ BubbleSort

+ ShakerSort

* MergeSort

* HeapSort

+ QuickSort

+ Bucket & Radix Sort
- Counting Sort

9/1/11 COP 4516



SelectionSort

SELECTIONSORT(array A)

1 N « length|A

2 forp—1to N

3 do Compute 7, the index of the
smallest item in Alp..V|

4 Swap A|p| and Al[j]

9/1/11 COP 4516



SelectionSort

SELECTIONSORT (array A)

1 N « length|A]
2 forp—1to N
do > Compute j

3 J<D

4 form—p+1toN

5 do if (Am] < Alj])

§ then j — m
> Swap Alp|] and A[j]

7 temp «— Alp|

8 Alp] — Alj]

9 Alj] < temp

9/1/11 COP 4516



SelectionSort

SELECTIONSORT (array A)
1 N « length|A]

2 forp—1to N O(n?) time
do > Compute j
3 ?H B bl O(1) space
4 form—p+1toN
D do if (A/m| < Alj])
§ then j — m
> Swap Alp|] and A[j]
7 temp «— Alp|
8 Alp] — Alj]
9 Alj] < temp

9/1/11 COP 4516



9/1/11

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn—-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n) =T(n—c)+ 0(1) T(n) = O(n)
T(n)=T(n—-c)+ O(n) T(n) = O(n?)

T(n) = 21(n/2) + O(n)

T(n) = O(nlogn)

T(n) = al(n/b) + O(n);

T(n) = O(nlogn)

a=1~

UORTIODELION IIORIIO
a <

T'(n) =al(n/b) + f(n); T(n) = O(n)

f(n) = O(n'°% =€)

T'(n) = al'(n/b) + f(n);
f(n) = O(n'°%)

T(n) = ©(n'°%%|ogn)

T(n) = aT(n/b) + f(n),
f(n) = ©(f(n))
af (n/b) < cf(n)

COP 4

D

T(n) = Q(n'°%%|ogn)

p16




Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

for j < 2 to length[A]
do key < A[/]

> Insert A[j] into the sorted sequence A[l.. j — 1].

I «— j—1

while: > O and A[i] > key

do Ali + 1] «— A[i/]
| «<— 1 — |
Ali + 1] < key

o e B T S TN R S

Loop invariants and the correctness of insertion sort

9/1/11 COP 4516



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)
for j < 2 to length[A]

I
2
3

whn A

e~

9/1/11

do key < Al /]

> Insert A[ /] into the sorted

sequence A[l ..

| «— j— 1
while/ > 0 and A[/]

> key

do Ali + 1] « A[i]

I «<— 1 — |

Ali + 1] < key

COP 4516

i) = U}

times
n

n—1
n— |
n— 1

> ial]
Z':—o(’

ZJ:?_ (I} o

n— |

O(n?) time
O(1) space

1)
1)



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sorted sequence

1 2 2 3 4 5 6 7
/ merge \

2 4 5 Ji 1 2 3 6
merge \ / merge
2 5 4 7 1 3 2 6
merg& merge %nergtx merge
5 2 4 7 1 3 2 6

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5,2, 4,7, 1, 3, 2, 6). The lengths of the

sorted sequences being merged increase as the algorithm progresses from bottom to top.
9/1/11 COP 4516



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 11 12 13 14 15 16 |7 B9 10 1012 13 14 IS 1

§ 9 10 11 12 13 14 15 16 17 §. 9 10 10 12 13 14 15 16 I
e A - A Jiaals AT 2 3]+ T
k k i k
| 2345 123435 1 2345 i2345 0 1234y L1448 YRVE
Li2{415]7 e R[1[2(3]6] L12{415(7{] REM2|3(6|0 i34 - : T
; j : ; 1 DEOSE] [OEme  BHE R-gw
' ' i
0 0 ' / /
(0 ()
8 9 10 1112 13 14 15 16 17 8 9 10 10 12 13 14 15 16 17
Al A . J1]2]2 B9 1010 12 13 11516 17 N
" BIEEENE B dJIRRDEBE -
3 4S ii 148 | 23 45 :
MIRAL L iy 4 LI 316]e
,' .7 1234 ) 4§
L Tlo| R 6w
(c) (d) , :
! /
®) (h)
Figure 2.3 The operation of lines 10-17 in the call MERGE(A, 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1,2, 3, 6). After copying and inserting sentinels, the
array L contains (2,4, 5,7, o), and the amay R contains {1, 2, 3, 6, o0}, Lightly shaded positions §.9 10 1112 13 1415 16 17
in A contain heir final values, and lghtly shaded positions in L and R contan value that have yet A H21213141516171..
to be copied back into A. Taken together, the lightly shaded positions always comprise the values |

originally in A[9.. 16], along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)=(h) The arrays A, L, and R, and their respective indices £, 7, and |
prior (o each iteration of the loop of lines 12-17. (i) The arrays and indices at termination, At this
point, the subarray in A[9., 16] is sorted, and the two sentinels in L and R are the only two elements

in lhes§ il Tal have not been copied into A, COP 4516




9/1/11

Convriaht © The McGraw-Hill Combanies. Inc. Permission reauired for renroduction or disolav.

MERGE(A, p, q,r)

0 JdJ O\ B W =

N = O O

13
14
15
16
17

n<«<q—p-+1
ny < r —q
create arrays L[1..n; + 1] and R[1..ny + 1]
fori < 1 to n;
do L[i] < A[p+i —1]

for j < 1 to n,

do R[j] < Alg + j] Assumption: Array
Llny + 1] « o0 A is sorted from
Rlny + 1] < o0 positions p to g
Al and also from
J = positions gq+1 to .

fork < ptor
do if L[i] < R[]
then Alk] < L[i]
I «— 1+ 1
else Alk] < R[/]
J<j+1
COP 4516



MERGE-SORT(A, p, r)

1 ifp<r

2 theng < [(p +1r)/2]

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, g + 1, r)
S MERGE(A, p, q,r)

9/1/11 COP 4516



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

T(n) cn cn
T(nf2) T(nf2) cnf2 cnf2
T(n/4) T(n/4) T(n/4) T(n/4)
(a) (b) (©)
A cn e cn
cnf2 Cnf2 s ]
lgn / \ / \\
cnf4 cnf4 cnf4 cnfd wwesdine  en
V (. ( (I‘ (‘ (" " (‘ F' ------ {0 cn
H”__—___’_‘_/
n 0
(d) Total: cnlgn + cn
Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T (n/2) + cn.

Part (a) shows 7 (n), which is progressively expanded in (b)~(d) to form the recursion tree. The
fully expanded tree in part (d) has 1g n + 1 levels (i.c., it has height 1g 2, as indicated), and each level
o / 1 / 11 contributes a total cost of cn. The total GRS 6 cn lgn + cn, which is ©(n lg n).



Sorting Algorithms

+ SelectionSort

+ InsertionSort

+ BubbleSort

+ ShakerSort

* MergeSort

* HeapSort

+ QuickSort

+ Bucket & Radix Sort
- Counting Sort

9/1/11 COP 4516



Animations

http://cg.scs.carleton.ca/~morin/misc/sortalg/

http://home.westman.wave.ca/~rhenry/sort/
- time complexities on best, worst and average case

http://vision.bc.edu/~dmartin/teaching/sorting/anim-html/
quick3.html

- runs on almost sorted, reverse, random, and unique inputs; shows
code with invariants

http://www.brian-borowski.com/Sorting/
- comparisons, movements & stepwise animations with user data

http://maven.smith.edu/~thiebaut/java/sort/demo.html
- comparisons & data movements and step by step execution

9/25/08 COT 5407 18



Comparing O(n?) Sorting Algorithms

+ InsertionSort and SelectionSort (and ShakerSort) are
roughly twice as fast as BubbleSort for small files.

* InsertionSort is the best for very small files.

»  O(n?) sorting algorithms are NOT useful for large random
files.

+ If comparisons are very expensive, then among the O(n?)
sorting algorithms, insertionsort is best.

» If data movements are very expensive, then among the O
(n?) sorting algorithms, ?? is best.

9/4/08 COT 5407 19



Selection

Given a set of n items and a humber k, select the kth
smallest item from the set.

- k=1

- k=n

- k=n/2

- Arbitrary k

General Solution:

- Sort, then select

9/1/11 COP 4516



Problems to think about!

What is the least humber of comparisons you need to sort a
list of 3 elements? 4 elements? 5 elements?

How to arrange a tennis tournament in order to find the
tournament champion with the least number of matches?
How many tennis matches are needed?

How to randomize the order of a list?

9/4/08 COT 5407 21



Search

Given a set of n items, search for item x
- Unordered list
- Ordered list

- Array list

- Linked List
- ??

9/1/11 COP 4516



Binary Search Trees

9/1/11 COP 4516



