
COP 4516: Competitive
Programming and Problem Solving!

Giri Narasimhan & Kip Irvine
Phone: x3748 & x1528

{giri,irvinek}@cs.fiu.edu

9/8/11 COP 4516 2

Problems to think about!!
•  What is the least number of comparisons you need to sort a

list of 3 elements? 4 elements? 5 elements?
•  How to arrange a tennis tournament in order to find the

tournament champion with the least number of matches?
How many tennis matches are needed? How to arrange a
tennis tournament in order to find the runner up to the
champion with the least number of matches?

•  How to randomize the order of a list?

Sorting Algorithms!
•  SelectionSort
•  InsertionSort
•  BubbleSort
•  ShakerSort
•  MergeSort
•  HeapSort
•  QuickSort
•  Bucket & Radix Sort
•  Counting Sort

9/8/11 COP 4516 3

10/2/08 COT 5407 4

Data Structure Evolution!
•  Standard operations on data structures

–  Search
–  Insert
–  Delete

•  Linear Lists
–  Implementation: Arrays (Unsorted and Sorted)

•  Dynamic Linear Lists
–  Implementation: Linked Lists

•  Dynamic Trees
–  Implementation: Binary Search Trees

Data Structures Comparison!

Data Structure \ Operation Search Insert Delete
Unsorted Array
Sorted Array

Unsorted Linked List
Sorted Linked List

Binary Search Trees
Balanced Binary Search Trees

9/8/11 COP 4516 5

10/16/08 COT 5407 6

BST: Search!

Time Complexity: O(h)!
h = height of binary search tree!

Not O(log n) — Why?!

10/16/08 COT 5407 7

BST: Insert!
Time Complexity: O(h)!

h = height of binary search tree!

Search for x in T!

Insert x as leaf in T!

10/16/08 COT 5407 8

BST: Delete!
Time Complexity: O(h)!

h = height of binary search tree!

Set y as the node to be deleted.
It has at most one child, and let
that child be node x!

If y has one child, then y is deleted
and the parent pointer of x is fixed.!

The child pointers of the parent of x
is fixed.!

The contents of node z are fixed.!

Data Structures Comparison!

Data Structure \ Operation Search Insert Delete
Unsorted Array O(n) O(1) O(n)
Sorted Array O(log n) O(n) O(n)

Unsorted Linked List O(n) O(1) O(n)
Sorted Linked List O(n) O(n) O(n)

Binary Search Trees O(h) O(h) O(h)
Balanced Binary Search Trees O(log n) O(log n) O(log n)

9/8/11 COP 4516 9

10/16/08 COT 5407 10

Animations!
•  BST:

 http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html
•  Rotations:

 http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html
•  RB-Trees:

 http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html

10/23/08 COT 5407 11

Example!
•  [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11],

[8,12], [12,14]

•  Simple Greedy Selection
–  Sort by start time and pick in “greedy” fashion
–  Does not work. WHY?

•  [0,6], [6,10] is the solution you will end up with.
•  Other greedy strategies

–  Sort by length of interval
–  Does not work. WHY?

10/23/08 COT 5407 12

Example!
•  [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
•  [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] -- Sorted

by finish times
•  [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
•  [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
•  [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
•  [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
•  [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

10/23/08 COT 5407 13

Greedy Algorithms!
•  Given a set of activities (si, fi), we want to schedule the maximum

number of non-overlapping activities.
•  GREEDY-ACTIVITY-SELECTOR (s, f)

1.  n = length[s]
2.  S = {a1}
3.  i = 1
4.  for m = 2 to n do
5.  if sm is not before fi then
6.  S = S U {am}
7.  i = m
8.  return S

10/23/08 COT 5407 14

Why does it work?!
•  THEOREM

 Let A be a set of activities and let a1 be the activity with the earliest finish
time. Then activity a1 is in some maximum-sized subset of non-overlapping
activities.

•  PROOF
 Let S’ be a solution that does not contain a1. Let a’1 be the activity with the
earliest finish time in S’. Then replacing a’1 by a1 gives a solution S of the same
size.
 Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

10/23/08 COT 5407 15

Greedy Algorithms – Huffman Coding!

•  Huffman Coding Problem
 Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains 1,614,107
sequence entries, comprising 505,947,503 amino acids. There are 20 possible amino acids.
What is the minimum number of bits to store the compressed database?
 ~2.5 G bits or 300MB.

•  How to improve this?
•  Information: Frequencies are not the same.

Ala (A) 7.72 Gln (Q) 3.91 Leu (L) 9.56 Ser (S) 6.98
Arg (R) 5.24 Glu (E) 6.54 Lys (K) 5.96 Thr (T) 5.52
Asn (N) 4.28 Gly (G) 6.90 Met (M) 2.36 Trp (W) 1.18
Asp (D) 5.28 His (H) 2.26 Phe (F) 4.06 Tyr (Y) 3.13
Cys (C) 1.60 Ile (I) 5.88 Pro (P) 4.87 Val (V) 6.66

•  Idea: Use shorter codes for more frequent amino acids and longer codes for less
frequent ones.

10/23/08 COT 5407 16

IDEA 3: Use Variable Length
Codes

A 22
T 22
C 18

G 18
N 10
Y 5
R 4

S 4
M 3

Huffman Coding!

IDEA 1: Use ASCII Code
Each need at least 8 bits,
Total = 16 M bits = 2 MB

2 million characters in file.
 A, C, G, T, N, Y, R, S, M

IDEA 2: Use 4-bit Codes
Each need at least 4 bits,
Total = 8 M bits = 1 MB

110101101110010001100000000110

110101101110010001100000000110

How to Decode?
 Need Unique decoding!
 Easy for Ideas 1 & 2.
 What about Idea 3?

2 million characters in file.
 Length = ?
 Expected length = ?
 Sum up products of frequency times the code length, i.e.,
 (.22x2 + .22x2 + .18x3 + .18x3 + .10x3 + .05x5 + .04x5 + .04x5 + .03x5) x 2 M bits =
 3.24 M bits = .4 MB

Percentage
Frequencies

11
10

011
010
001

00011
00010
00001
00000

