Computational Geometry

Giri Narasimhan

Programming Team January 17, 2019

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to a?
- If we traverse from a to b and then to c, do we make a left turn at b?
- Do segments ab and cd intersect

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to a?
- If we traverse from a to b and then to c, do we make a left turn at b?
- Do segments ab and cd intersect

Cross Products

- Let a = origin (0,0)
- Let p1 = vector from a to b
- Let p2 = vector from a to c

- Cross product = signed area of parallelogram
- $p1 \times p2$ has magnitude = $|x1 \times y2 x2 \times y1|$
- p1 X p2 has direction normal to p1 and p2.
 Use right hand rule

Cross Products & "Clockwiseness"

Figure 33.1 (a) The cross product of vectors p₁ and p₂ is the signed area of the parallelogram.
 (b) The lightly shaded region contains vectors that are clockwise from p. The darkly shaded region contains vectors that are counterclockwise from p.

"Clockwiseness"

 $p_1 p_0/$, $p_2 p_0/D$, $x_1 x_0/y_2 y_0/$, $x_2 x_0/y_1 y_0/$: If this cross product is positive, then $p_0 p_1$ is clockwise from $p_0 p_2$; if negative, it is counterclockwise.

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to a?
- If we traverse from a to b and then to c, do we make a left turn at b?
- Do segments ab and cd intersect

Left-turn test using "clockwiseness"

 $p_1 p_0/ p_2 p_0/D x_1 x_0/y_2 y_0/ x_2 x_0/y_1 y_0/$:

If this cross product is positive, then $p_0 p_1$ is clockwise from $p_0 p_2$; if negative, it is counterclockwise.

DIRECTION.p_i;p_j;p_k/ 1 return.p_k p_i/ .p_j p_i/

If DIRECTION(p_i , p_j , p_k) is positive, then LEFT-TURN(p_i , p_j , p_k) is true

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to a?
- If we traverse from a to b and then to c, do we make a left turn at b?
- Do segments ab and cd intersect

Segment Intersection Test

- Standard method
 - Write down equations of two lines
 - Find intersection point
 - If one is found, then the segments intersect
 Else, they don't intersect
- How can we solve segment intersection using the LEFT-TURN test?

Segment Intersection

SEGMENTS-INTERSECT. p₁; p₂; p₃; p₄/

 d_1 D DIRECTION. p_3 ; p_4 ; $p_1/$ 2 d_2 D DIRECTION. p_3 ; p_4 ; $p_7/$ 3 d₃ D DIRECTION. p₁; p₂; p₃/ 4 d₄ D DIRECTION. p₁; p₂; p₄/ 5 if $..d_1 > 0$ and $d_2 < 0'$ or $.d_1 < 0$ and $d_2 > 0'$ and $\ldots d_3 > 0$ and $d_4 < 0$ or $\ldots d_3 < 0$ and $d_4 > 0/2$ return TRUE 6 7 elseif $d_1 == 0$ and ON-SEGMENT. p_3 ; p_4 ; $p_1/$ 8 return TRUE elseif d₂ == 0 and ON-SEGMENT. p₃; p₄; p₂/ 9 10 return TRUE elseif d₃ == 0 and ON-SEGMENT. p₁; p₂; p₃/ 11 12 return TRUE 13 elseif $d_4 == 0$ and ON-SEGMENT. p_1 ; p_2 ; $p_4/$ 14 return TRUE 15 eise return FALSE

Area of a Triangle

+ **p**,

х

- Area = Base X Height / 2
- Area = a X b X sin(C) / 2
 a, b are side lengths, C is internal angle
- Area = sqrt{s (s-a) (s-b) (s-c)},
 a,b,c are side lengths and s = half of perimeter
- Area = 1/2 (cross product magnitude)

- Area = $\frac{1}{2}$ |x1 y2 - x2 y1|

- Assumes one vertex is the origin

Area of a Triangle

• Area = R - C - D - E

1 1

•
$$\mathbf{R} = (x_3 - x_2)(y_1 - y_3) = (x_3y_1 + x_2y_3) - (x_3y_3 + x_2y_1)$$

- I

$$ullet \mathbf{A} = rac{1}{2} ((x_2 y_3 - x_3 y_2) - (x_1 y_3 - x_3 y_1) + (x_1 y_2 - x_2 y_1))$$

1

•
$$\mathbf{A} = rac{1}{2} egin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$$

• $\mathbf{A} = rac{1}{2} |x_1y_2 + x_2y_3 + x_3y_1 - x_2y_1 - x_3y_2 - x_1y_3|$

Area of Polygon: Shoelace Formula

$$\begin{aligned} \mathbf{A} &= \frac{1}{2} \Big| \sum_{i=1}^{n-1} x_i y_{i+1} + x_n y_1 - \sum_{i=1}^{n-1} x_{i+1} y_i - x_1 y_n \Big| \\ &= \frac{1}{2} |x_1 y_2 + x_2 y_3 + \dots + x_{n-1} y_n + x_n y_1 - x_2 y_1 - x_3 y_2 - \dots - x_n y_{n-1} - x_1 y_n | \\ &= \mathbf{X}_1 \quad \textbf{F} \quad \textbf{V}_1 \end{aligned}$$

https://en.wikipedia.org/wiki/Shoelace_formula

Sorting points by polar angle

struct Point {int x,y;}

int operator^(Point p1, Point p2) {return p1.x*p2.y - p1.y*p2.x;}

```
bool operator<(Point p1, Point p2)
{
    if (p1.y == 0 && p1.x > 0) return true; //angle of p1 is 0, thus p2>p1
    if (p2.y == 0 && p2.x > 0) return false; //angle of p2 is 0, thus
    p1>p2
    if (p1.y > 0 && p2.y < 0) return true; //p1 is in [0..180], p2 in
[180..360]
    if (p1.y < 0 && p2.y > 0) return false;
    return (p1^p2) > 0; //return true if p1 is clockwise from p2
}
```