# Computational Geometry 

Giri Narasimhan
Programming Team
January 17, 2019

## 3 important tests

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to $a$ ?
- If we traverse from $a$ to $b$ and then to $c$, do we make a left turn at b?
- Do segments ab and cd intersec $\dagger$
$(0,0)$


## 3 important tests

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to $a$ ?
- If we traverse from $a$ to $b$ and then to $c$, do we make a left turn at b?
- Do segments ab and cd intersect
$(0,0)$


## Cross Products

- Let $\mathrm{a}=\operatorname{origin}(0,0)$
- Let $\mathrm{p} 1=$ vector from a to b
- Let p2 = vector from a to c
- Cross product = signed area of parallelogram
- $\mathrm{p} 1 \times \mathrm{p} 2$ has magnitude $=|x 1 \mathrm{y} 2-\mathrm{x} 2 \mathrm{y} 1|$
- $\mathrm{p} 1 \times \mathrm{X} 2$ has direction normal to p 1 and p2. - Use right hand rule


## Cross Products \& "Clockwiseness"



(b)

Figure 33.1 (a) The cross product of vectors $p_{1}$ and $p_{2}$ is the signed area of the parallelogram. (b) The lightly shaded region contains vectors that are clockwise from p . The darkly shaded region contains vectors that are counterclockwise from $p$.

## "Clockwiseness"


(a)

(b)
. $\mathrm{p}_{1} \quad \mathrm{p}_{0} / \quad . \mathrm{p}_{2} \quad \mathrm{p}_{0} / \mathrm{D} . \mathrm{x}_{1} \quad \mathrm{x}_{0} / \cdot \mathrm{y}_{2} \quad \mathrm{y}_{0} / \quad . \mathrm{x}_{2} \quad \mathrm{x}_{0} / \cdot \mathrm{y}_{1} \quad \mathrm{y}_{0} /$ :
If this cross product is positive, then $p_{0} b_{1}$ is clockwise from $p_{0} b_{2}$; if negative, it is counterclockwise.

```
Direction.pi;p;p//
l return. plllll
```


## 3 important tests

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to $a$ ?
- If we traverse from $a$ to $b$ and then to $c$, do we make a left turn at b?
- Do segments ab and cd intersect


## Left-turn test using "clockwiseness"


$\begin{array}{llllllll}. \mathrm{p}_{1} & \mathrm{p}_{0} / & . \mathrm{p}_{2} & \mathrm{p}_{0} / \mathrm{D} . \mathrm{x}_{1} & \mathrm{x}_{0} / \cdot \mathrm{y}_{2} & \mathrm{y}_{0} / \quad . \mathrm{x}_{2} & \mathrm{x}_{0} / \cdot \mathrm{y}_{1} & \mathrm{y}_{0} /:\end{array}$
If this cross product is positive, then $p_{0} b_{1}$ is clockwise from $p_{0} b_{2}$; if negative, it is counterclockwise.

> DIRECTION. $p_{i} ; p ; p_{k} /$
> 1 return. $p_{k} \quad p_{i} /$.p $p_{i} /$

If $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$ is positive, then LEFT-TURN $\left(p_{i}, p_{j}, p_{k}\right)$ is true

## 3 important tests

- Given 2 vectors ab and ac, is ab clockwise from ac with respect to $a$ ?
- If we traverse from $a$ to $b$ and then to $c$, do we make a left turn at b?
- Do segments ab and cd intersect
$(0,0)$


## Segment Intersection Test

- Standard method
- Write down equations of two lines
- Find intersection point
- If one is found, then the segments intersect
- Else, they don't intersect
- How can we solve segment intersection using the LEFT-TURN test?


## Segment Intersection

```
Segments-Intersect. \(p_{1} ; p_{2} ; p_{3} ; p_{1} /\)
\(d_{1}\) D Direction. \(p_{3} ; p_{4} ; p_{1} /\)
\(d_{2}\) D Direction. \(p_{3} ; p_{4} ; p_{2} /\)
\(d_{3}\) D Direction. \(p_{1} ; p_{2} ; p_{3} /\)
\(4 d_{4}\) D Direction. \(p_{1} ; p_{2} ; p_{4} /\)
5 if .. \(d_{1}>0\) and \(d_{2}<\sigma\) or \(. d_{1}<0\) and \(d_{2}>0 /\) and
\(. . d_{3}>0\) and \(d_{4}<\sigma\) or. \(d_{3}<0\) and \(d_{4}>\sigma /\)
    return TRUE
    elseif \(d_{1}==0\) and On-Segment. \(p_{3} ; p_{4} ; p_{1} /\)
        return TRUE
    elseif \(d_{2}==0\) and On-SEGMENT. \(p_{3} ; p_{4} ; p_{2} /\)
        return TRUE
    elseif \(d_{3}==0\) and ON-SEGMEnt. \(p_{1} ; p_{2} ; p_{3} /\)
        return TRUE
    elseif \(d_{4}==0\) and \(O n-S E G M E n T . p_{1} ; p_{2} ; p_{1} /\)
        return TRUE
    else return FALSE
```


## Area of a Triangle

- Area = Base X Height / 2
- Area $=a \times b \times \sin (C) / 2$
- a, b are side lengths, $C$ is internal angle
- Area $=\operatorname{sqrt}\{s(s-a)(s-b)(s-c)\}$,
- a,b,c are side lengths and $s=$ half of perimeter
- Area $=1 / 2$ (cross product magnitude)
- Area $=1 / 2|x 1 y 2-x 2 y 1|$
- Assumes one vertex is the origin


## Area of a Triangle

- Area $=\mathrm{R}-\mathrm{C}-\mathrm{D}-\mathrm{E}$
- $\quad \mathbf{R}=\left(x_{3}-x_{2}\right)\left(y_{1}-y_{3}\right)=\left(x_{3} y_{1}+x_{2} y_{3}\right)-\left(x_{3} y_{3}+x_{2} y_{1}\right)$
- $\mathbf{A}=\frac{1}{2}\left(\left(x_{2} y_{3}-x_{3} y_{2}\right)-\left(x_{1} y_{3}-x_{3} y_{1}\right)+\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)$

$$
\mathbf{A}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|
$$

- $\mathbf{A}=\frac{1}{2}\left|x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}-x_{2} y_{1}-x_{3} y_{2}-x_{1} y_{3}\right|$



## Area of Polygon: Shoelace Formula

$$
\begin{aligned}
& \mathbf{A}=\frac{1}{2}\left|\sum_{i=1}^{n-1} x_{i} y_{i+1}+x_{n} y_{1}-\sum_{i=1}^{n-1} x_{i+1} y_{i}-x_{1} y_{n}\right| \\
&=\frac{1}{2}\left|x_{1} y_{2}+x_{2} y_{3}+\cdots+x_{n-1} y_{n}+x_{n} y_{1}-x_{2} y_{1}-x_{3} y_{2}-\cdots-x_{n} y_{n-1}-x_{1} y_{n}\right| \\
& \hdashline \mathrm{X}_{1}+ \mathrm{X}_{2}+\mathrm{Y}_{1} \\
& \hdashline \mathrm{X}_{3}+\mathrm{X}_{1}
\end{aligned}
$$

https://en.wikipedia.org/wiki/Shoelace_formula

## Sorting points by polar angle

struct Point $\{$ int $\mathrm{x}, \mathrm{y} ;\}$
int operator^(Point p1, Point p2) \{return p1.x*p2.y-p1.y*p2.x;\}
bool operator<(Point p1, Point p2)
\{
if ( $p 1 . y==0 \& \& p 1 . x>0$ ) return true; //angle of $p 1$ is 0 , thus $p 2>p 1$
if ( $p 2 . y==0 \& \& p 2 . x>0$ ) return false; //angle of $p 2$ is 0 , thus p1>p2
if ( $\mathrm{p} 1 . \mathrm{y}>0$ \&\& p2.y < 0) return true; //p1 is in [0..180], p2 in [180..360]
if ( $\mathrm{p} 1 . \mathrm{y}<0$ \&\& p2.y > 0) return false;
return ( $\mathrm{p} 1^{\wedge} \mathrm{p} 2$ ) > 0 ; //return true if p 1 is clockwise from p 2

