Tree Augmentation

Giri Narasimhan

Programming Team
Fall 2019

The Problem: CodeChef CHN15E

- Given tree T, the augmented tree G_{T} is defined as the graph obtained by joining every pair of vertices at distance 2 from each other.
- The problem is to construct T, given G_{T}.

Simple Properties

- Vertices of T and G_{T} are the same.
- Let neighbors of vertex v in T be the set $N(v)$
- The set $\{v\} \cup N(v)$ forms a clique in G_{T}.
- A subset of vertices in a graph forms a clique if all of them are connected by edges (i.e., no pair of vertices in this subset are missing an edge)
- A maximal clique is a set of vertices that forms a clique for which no superset is a clique.

More Properties

- For a tree T with n vertices, the augmented tree G_{T} has at most n maximal cliques
- Each maximal clique of G_{T} looks like this:
- \{v\} U N(v)
- There are no other maximal cliques in G_{T}.
- If tree T is just a star (one vertex connected to all others), then G_{T} is a simple clique
- If G_{T} is not a clique, then it has more than one maximal clique, and then T is not a star.

One more important property

- If (x, y) is an edge of T
- Then the vertices x and y appear together in exactly two maximal cliques, except if one of them is a leaf
- If one of them is a leaf, then they appear together in exactly one maximal clique

Properties of Cliques of G_{T}

- Vertex v is present in <= deg(v)+1 maximal cliques
- $\operatorname{Deg}(v)$ is degree of vertex v
- If v has $k>0$ leaves as neighbors in T, then v is present in exactly $\operatorname{deg}(\mathrm{v})-\mathrm{k}+1$ maximal cliques
- If v has m non-leaves as neighbors in T, then v is in
- Exactly $m+1$ maximal cliques, if v is not a leaf
- If v has no leaves as neighbors in T, then v is in
- exactly $\operatorname{deg}(\mathrm{v})+1$ maximal cliques, if v is not a leaf
- If v is a leaf, it is in exactly 1 maximal clique

Algorithmic Ideas

1. Identify all maximal cliques of G_{T}
2. For each vertex v, compute

- C $[v]=$ \# of maximal cliques of G_{T} containing v

3. Identify leaves of T : all vertices with $C[v]=1$
4. Figure out how many non-leaf neighbors each vertex has.
5. Figure out pairs of non-leaf vertices connected by an edge (present in exactly 2 max cliques)

More Properties of leaves of T

- If two leaves x and y are connected to the same non-leaf node, then they appear together in exactly one maximal clique and in no other clique
- If two leaves x and y are not connected to the same non-leaf node, then they never appear together in a maximal clique

Algorithmic Ideas

1. Figure out all leaves of T
2. Identify all edges of T connecting non-leaves (skeleton T^{\prime})
3. Figure out groups of leaves connected to same non-leaf
4. Figure out which leaf is connected to which non-leaf:
a) Construct skeleton T^{\prime}
b) Construct maximal cliques of T^{\prime} corresponding to non-leaf
c) Each maximal clique A^{\prime} of T^{\prime} corresponds to only one maximal clique A of G_{T} and to one non-leaf node v.
d) Connect all leaf nodes in A to non-leaf node v
