Max item & Frequency Counts

Giri Narasimhan
Programming Team

Fall 2019



Dynamic Queries: FindMax

FindMax(2,5) =
FindMax(1,3) = 21
FindMax(3,4) = 6
FindMax(5,3) = undefined

)

1 2 3 4 5 6 7
2119 | 36 141117



New Queries: FindMax

» Given dynamic list with standard
operations:

— Search, insert, delete

 Efficiently answer queries such as:
— FindMax (Startindex, Endindex)

* For e.g.: FindMax(2,5) = 14; FindMax(1,3)
= 21

1 2 3 4 5 6 7
2119 | 36 141117



Find Max in given range

[1,7
121

21

G
14

[[21 ([2] [?]-[Ejf [[71} NULL

ﬂ-ﬂlll-



Find Max in given range [i,j]

i

SBUICERL ICEN| EON| EEC ) L

1 2 3 4 5 6 7
2119 | 36 141117



Harder Problem: Find Most Frequent
item in range [i,j]

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1303033161999 15/24124]24]39



Find Most Frequent item in range [i,]j]

* Given a sorted array with repeats, answer
FindMF queries, which reports the most
frequent item in a given range of items
— FindMF(1,5) = 3
— FindMF(5,10) = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1303033161999 15/24124]24]39



Harder Problem: Find Most Frequent
item in range [i,j]

[1,15]
(3,4)

(3 4) (24 3)
, ﬂ ﬂ ’E
(3,4) 9,3 24,3 39,1
[1,2] ][ [3,6] ][ [7,7] [8 10] ][ [11, 11] [12 14] ][ [15,15] ][ NULL ]
) (3,4) (6,1) (15 1) (24,3) (39,1)

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1303033161999 15/24124]24]39



[1,15]
(3,4)

(3,4) (24,3)
(9,3) (24,3) (39,1)

7.7 8,101 | | (11,1111 1 112,141 | | 115,15
([6,1])} [(9,3)]] [(15,1)]} [(24,3)]} [(39,1”[NULL}

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1| 1]313][3[3[6]9[9[9 15(24]24)24]39




Organizing Data into Structures

» Data items stored and organized into Data
Structures for efficient querying

» Data item
— Primary Key
— Secondary Key & Additional information



Basic Data Structure Operations

* Search
e |nsert
 Delete



Unsorted Arrays vs Sorted Arrays

» Unsorted Arrays
— Easier to insert
— Harder to search and delete

* Sorted Arrays
— Easier to search
— Harder to insert and delete



Sorted Arrays vs BSTs

» Sorted Arrays
— Easier to search
— Harder to insert and delete

* BSTs
— Easier (average) to search, insert and delete

 Balanced BSTs

— Easier (worst-case) to search, insert and
delete



Advanced Queries

* Range Queries

— How many students between 19 and 21 years
old

* Queries on secondary keys
— Highest GPA of student between 19 and 21 yrs

« Complex Range Queries

— How many students between 19 and 21 yrs
with GPA between 3.25 and 3.75

Need Augmented Data Structures



Operations on Dynamic RB Trees

« K-Selection

— Select an item with a specified rank

— “Efficient” solution not possible without

preprocessing

— Preprocessing - store additional information at nodes
 Inverse of K-Selection

— Find rank of an item in the tree
* What information should be stored?

— Rank
— 77

10/23/08 COT 5407 15



OS-Rank

OS-RANK(x,y)

// Returns rank of x in subtree rooted at y
1. r = size[left]y]] + 1

2. if x =y then returnr

3. else if ( key[x] < key[y] ) then

4. return OS-RANK(x,left[y])

5. else return r + OS-RANK(x,right[y] )

Time Complexity O(log n)

10/23/08 COT 5407

16



0S-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i in subtree rooted
at x

1. r = size[left[x]]+1

2. if i =r then

3 return X Time Complexity O(log n)
4, elseif i <r then

d. return OS-SELECT (left[x], i)

6. else return OS-SELECT (right[x], i-r)

10/23/08 COT 5407 17



RB-Tree Augmentation

« Augment x with Size(x), where

— Size(x) = size of subtree rooted at x
— Size(NIL) =0



How to augment data structures

. choose an underlying data structure

. determine additional information to be
maintained in the underlying data
structure,

. develop new operations,

. verify that the additional information can
be maintained for the modifying
operations on the underlying data
structure.



Augmentations for RB-Trees

Parent
Height

Any associative function on all previous
values or all succeeding values.

Next
Previous



