
Max item & Frequency Counts

Giri Narasimhan
Programming Team

Fall 2019

Dynamic Queries: FindMax

• FindMax(2,5) = 14
• FindMax(1,3) = 21
• FindMax(3,4) = 6
• FindMax(5,3) = undefined

21 9 3 6 14 11 7

1 2 3 4 5 6 7

New Queries: FindMax

• Given dynamic list with standard
operations:
– Search, insert, delete

• Efficiently answer queries such as:
– FindMax (StartIndex, EndIndex)

• For e.g.: FindMax(2,5) = 14; FindMax(1,3)
= 21

21 9 3 6 14 11 7

1 2 3 4 5 6 7

[1,7
] 21

[1,4]
21

[1,2]
21

[1]
21

[2]
9

[3,4]
6

[3
]
3

[4]
6

[5,7]
14

[5,6]
14

[5
]

14

[6
]
1
1

[7,7]
7

[7]
7 NULL

Find Max in given range

21 9 3 6 14 11 7

1 2 3 4 5 6 7

[1,7] 21

[1,4] 21

[1,2]
21

[1]
21 [2] 9

[3,4] 6

[3] 3 [4] 6

[5,7] 14

[5,6] 14

[5] 14 [6] 11

[7,7] 7

[7] 7 NULL

Find Max in given range [i,j]

21 9 3 6 14 11 7

1 2 3 4 5 6 7

Harder Problem: Find Most Frequent
item in range [i,j]

1 1 3 3 3 3 6 9 9 9 15 24 24 24 39

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]

(1,2) (3,4) (6,1) (9,3) (15,1) (24,3) (39,1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Find Most Frequent item in range [i,j]

• Given a sorted array with repeats, answer
FindMF queries, which reports the most
frequent item in a given range of items
– FindMF(1,5) = 3
– FindMF(5,10) = 9

1 1 3 3 3 3 6 9 9 9 15 24 24 24 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[1,15]
(3,4)

[1,10]
(3,4)

[1,6]
(3,4)

[1,2]
(1,2)

[3,6]
(3,4)

[7,10]
(9,3)

[7,7]
(6,1)

[8,10]
(9,3)

[11,15]
(24,3)

[11,14]
(24,3)

[11,11]
(15,1)

[12,14]
(24,3)

[15,15]
(39,1)

[15,15]
(39,1) NULL

Harder Problem: Find Most Frequent
item in range [i,j]

1 1 3 3 3 3 6 9 9 9 15 24 24 24 39

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]

(1,2) (3,4) (6,1) (9,3) (15,1) (24,3) (39,1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[1,15]
(3,4)

[1,10]
(3,4)

[1,6
]

(3,4
)[1,2

]
(1,2

)

[3,6]
(3,4)

[7,10]
(9,3)

[7,7]
(6,1)

[8,10]
(9,3)

[11,15]
(24,3)

[11,14]
(24,3)

[11,11]
(15,1)

[12,14]
(24,3)

[15,15]
(39,1)

[15,15]
(39,1) NULL

1 1 3 3 3 3 6 9 9 9 15 24 24 24 39

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]

(1,2) (3,4) (6,1) (9,3) (15,1) (24,3) (39,1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Organizing Data into Structures

• Data items stored and organized into Data
Structures for efficient querying

• Data item
– Primary Key
– Secondary Key & Additional information

Basic Data Structure Operations

• Search
• Insert
• Delete
• …

Unsorted Arrays vs Sorted Arrays

• Unsorted Arrays
– Easier to insert
– Harder to search and delete

• Sorted Arrays
– Easier to search
– Harder to insert and delete

Sorted Arrays vs BSTs

• Sorted Arrays
– Easier to search
– Harder to insert and delete

• BSTs
– Easier (average) to search, insert and delete

• Balanced BSTs
– Easier (worst-case) to search, insert and

delete

Advanced Queries

• Range Queries
– How many students between 19 and 21 years

old

• Queries on secondary keys
– Highest GPA of student between 19 and 21 yrs

• Complex Range Queries
– How many students between 19 and 21 yrs

with GPA between 3.25 and 3.75

Need Augmented Data Structures

COT 540710/23/08 15

Operations on Dynamic RB Trees

• K-Selection
– Select an item with a specified rank
– “Efficient” solution not possible without

preprocessing
– Preprocessing - store additional information at nodes

• Inverse of K-Selection
– Find rank of an item in the tree

• What information should be stored?
– Rank
– ??

COT 540710/23/08 16

OS-Rank
OS-RANK(x,y)
// Returns rank of x in subtree rooted at y
1. r = size[left[y]] + 1
2. if x = y then return r
3. else if (key[x] < key[y]) then
4. return OS-RANK(x,left[y])
5. else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

COT 540710/23/08 17

OS-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i in subtree rooted

at x
1. r = size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)

Time Complexity O(log n)

COT 540710/23/08 18

RB-Tree Augmentation

• Augment x with Size(x), where
– Size(x) = size of subtree rooted at x
– Size(NIL) = 0

COT 540710/23/08 19

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be

maintained in the underlying data
structure,

3. develop new operations,
4. verify that the additional information can

be maintained for the modifying
operations on the underlying data
structure.

COT 540710/23/08 20

Augmentations for RB-Trees

• Parent
• Height
• Any associative function on all previous

values or all succeeding values.
• Next
• Previous

