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Dynamic Queries: FindMax

FindMax(2,5) =
FindMax(1,3) = 21
FindMax(3,4) = 6
FindMax(5,3) = undefined
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New Queries: FindMax

» Given dynamic list with standard
operations:

— Search, insert, delete

 Efficiently answer queries such as:
— FindMax (Startindex, Endindex)

* For e.g.: FindMax(2,5) = 14; FindMax(1,3)
= 21
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Find Max in given range
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Find Max in given range [i,j]
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Harder Problem: Find Most Frequent
item in range [i,j]

[1,2] [3,6] [7,7] [8,10] [11,11] [12,14] [15,15]
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Find Most Frequent item in range [i,]j]

* Given a sorted array with repeats, answer
FindMF queries, which reports the most
frequent item in a given range of items
— FindMF(1,5) = 3
— FindMF(5,10) = 9
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Harder Problem: Find Most Frequent
item in range [i,j]
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[1,15]
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Organizing Data into Structures

» Data items stored and organized into Data
Structures for efficient querying

» Data item
— Primary Key
— Secondary Key & Additional information



Basic Data Structure Operations

* Search
e |nsert
 Delete



Unsorted Arrays vs Sorted Arrays

» Unsorted Arrays
— Easier to insert
— Harder to search and delete

* Sorted Arrays
— Easier to search
— Harder to insert and delete



Sorted Arrays vs BSTs

» Sorted Arrays
— Easier to search
— Harder to insert and delete

* BSTs
— Easier (average) to search, insert and delete

 Balanced BSTs

— Easier (worst-case) to search, insert and
delete



Advanced Queries

* Range Queries

— How many students between 19 and 21 years
old

* Queries on secondary keys
— Highest GPA of student between 19 and 21 yrs

« Complex Range Queries

— How many students between 19 and 21 yrs
with GPA between 3.25 and 3.75

Need Augmented Data Structures



Operations on Dynamic RB Trees

« K-Selection

— Select an item with a specified rank

— “Efficient” solution not possible without

preprocessing

— Preprocessing - store additional information at nodes
 Inverse of K-Selection

— Find rank of an item in the tree
* What information should be stored?

— Rank
— 77
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OS-Rank

OS-RANK(x,y)

// Returns rank of x in subtree rooted at y
1. r = size[left]y]] + 1

2. if x =y then returnr

3. else if ( key[x] < key[y] ) then

4. return OS-RANK(x,left[y])

5. else return r + OS-RANK(x,right[y] )

Time Complexity O(log n)
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0S-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i in subtree rooted
at x

1. r = size[left[x]]+1

2. if i =r then

3 return X Time Complexity O(log n)
4, elseif i <r then

d. return OS-SELECT (left[x], i)

6. else return OS-SELECT (right[x], i-r)
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RB-Tree Augmentation

« Augment x with Size(x), where

— Size(x) = size of subtree rooted at x
— Size(NIL) =0



How to augment data structures

. choose an underlying data structure

. determine additional information to be
maintained in the underlying data
structure,

. develop new operations,

. verify that the additional information can
be maintained for the modifying
operations on the underlying data
structure.



Augmentations for RB-Trees

Parent
Height

Any associative function on all previous
values or all succeeding values.
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Previous



