Convex Hull

Giri Narasimhan

Programming Team Fall 2020

Convex Regions

- Convex region: A region in space is called convex if line joining any two points in the region is completely contained in the region.

Non-convex polygons

- Convex vs Non-convex

Convex Hulls and Polygons

- Convex hull of a set of points,
S, is the smallest convex region containing S.

Rubber Band Analogy for Convex Hulls

Tangents to Polygons

Tangents from a point
Tangents from a polygon

Graham Scan

Giri Narasimhan

Convex Hull: Graham Scan applet

- http://www.personal.kent.edu/
~rmuhamma/Compgeometry/MyCG/
ConvexHull/GrahamScan/grahamScan.htm
- Main cost: sorting
- O(n log n)

Package Wrapping: Jarvis March

Package Wrapping: Jarvis March

- Time complexity
- (Cost of iteration) X (\# iterations)
- Each iteration: O(n)
- Number of iterations = O(n)
- Cost $=0$ (nh)
- h = \# of points on convex hull

Complexity of Convex Hull

- Graham Scan: O(n log n)
- Jarvis March: O(nh) [output sensitive]
- Lower Bound $=\Omega(\mathrm{n} \log \mathrm{h})$

Other Methods

- Divide and Conquer
- Conquer and Divide
- Randomized algorithms

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m
- Use Graham scan on each one
- O((m log m) (n/m)) = O(n log m)
- Merge the n / m convex hulls using a Jarvis march algorithm by treating each group as a "big point"
- Tangent between a point and a convex polygon with m points can be computed in $\mathrm{O}(\log \mathrm{m})$ time
- O((n/m)(log m)(h)) = O((n/m)h log m)

Chan's Algorithm

- Time Complexity $=0(n \log m+(n / m) h \log m)$
- If $m=h$, then time $=0(n \log h)$
- How to guess h?
- Linear Search
- Time complexity $=0(n h \log h)$
- Binary Search
- Time complexity $=0\left(\mathrm{n} \log ^{2} \mathrm{~h}\right)$
- Doubling Search ($m=1,2,4,8, \ldots$)
- Time Complexity $=0\left(\mathrm{n} \log ^{2} \mathrm{~h}\right)$
- ???

Chan's Algorithm: More tricks

- What if $\mathrm{m}=\mathrm{h}^{2}$?
- Then $O(n \log m)=O(n \log h)$
- So try: $m=2,4,16,256, \ldots$

$$
\sum_{t=1}^{\lg \lg h} n 2^{t}=n \sum_{t=1}^{\lg \lg h} 2^{t} \leq n 2^{1+\lg \lg h}=2 n \lg h=O(n \log h),
$$

3D convex hulls

