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Patterns in DNA Sequences

1 Signals in DNA sequence control events
@® Start and end of genes
@ Start and end of infrons
@ Transcription factor binding sites (regulatory elements)
® Ribosome binding sites
Detection of these patterns are useful for
@® Understanding gene structure
@ Understanding gene regulation
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Motifs in DNA Sequences

[ Given a collection of DNA sequences of promoter regions, locate the
transcription factor binding sites (also called regulatory elements)

@ Example:

5_ 40 yeast TATA sites

s Tl
~1NIDAA

0=OO-N1-O1-NO°Q'

07/01/09 Q'BIC Bioinformatics 3

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html



07/01/09

12) CAP-DNA Complex

Helig Tur

- Helis
<
4
(i) CAP recognithon
site DNA Logo
2
2, |
E TGA C
2. JGIG +Caca T.
0 CORRPOTONrO~NOTNOrROO O -
5".- '—'—3,

Sebedianr s
Iecrectiors

T " ,'" _ -' .
ERCRREIREERRE 2RBL2E885
8 £ B L]
Halia Tur Helix
Q'BIC Bioinformatics

4
http://weblogo.berkeley.edu/examples.html



+++++++++

9876543210123456789

L N L e D I B I B L

o il

12 Lambda cI and cro binding sites

1 GTATCA AGTGGTAT
2 ATACCACT TGATA ——
3 TCAACA AGAGATAA
4 TTATCTCT TCTTGA
5 TTATCA AGCATGGTTA
6 TAACCATCT TGATAA
; " 7 CTATCA AR ATAA
MOt|fS 1N DNA 8 TTAT T TGATA
9 CTAACA T TGTTCA
S 10 TCAACA A TCTTA
equences 11 TTACCTCT TCATAA
12 TTATCA AGAGGTAA

Fig. 1. Some aligned sequences and their sequence logo. Atthe top of the figure are listed the
12 DNA sequences from the P|_and Pp control regions in bacteriophage lambda. These are bound by
both the ¢l and cro proteins [16]. Each even numbered sequence is the complement of the preceding
odd numbered sequence. The sequence logo, described in detail in the text, is at the bottom of the
figure. The cosine wave is positioned to indicate that a minor groove faces the center of each
07/01/09 symmetrical protein. Data which support this assignment are given in reference [17]. 5
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12 Lambda cI and cro binding sites 8 Lambda O protein binding sites

More Motifs In
E. Coli DNA
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Other Motifs in
DNA
Sequences:
Human Splice
Junctions

07/01/09
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This figure shows two “sequence logos * which rz&esentsequerce conservation at
the 5*{doncr) and 3’ (accepbr)ends of human intons, The regon between

hlack vertical bars is removed during m RMA, spiicing. The logas graphically
demaonstak thatmost of the patem for locating the infon encs resides on the

infron. Thisallows more codon choices in the proteincoding exons. The logos also
show a common pattern “CAG|GT *, which suggests hatthe mecharisms hatrecoonize
the two ends of the inron had a common ancestor. See R M. Stephersand T.D.
Schreider, ‘Features of spliceosome evolution and inctioninferred from an analysis
ofthe informaion at human splice sites”, J. Mal. Bidl, 225, 1124-1135, (1992)

mtTTTTTT"TTT

e e

=l el

acceptor

3 .~ exon

Q'BIC Bioinformatics 8

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html



Transcription Regulation

Basal TF
Binding Sites
CAT Box TATA Box

Gene-Specific TF
Binding Sites
coding region
upstream region >

A
\ 4
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Prokaryotic Gene Characteristics

DNA PATTERNS IN THE E. coli JexA GENE

GENE SEQUENCE

1 GRATTCGATAAATCTCTGGTTTATTGTGC AGTTTRATGGETT
b
41 CCRABRATCGCCTTTTGCTG TATATACTCACAGCATARCTG
CCRA -35 -10 TATACT >
81 TATATACACCOAGGGGGCGGAATGALAGCGTTARCGGCCA
+10 GGGGE Ribosomal binding site
121 GGCAACAMGAGETGTITTGATCTCATCCETGATCACATCAG
161 CCARGACAGGTATECCGCCGACGCEGTGCGGABATCGCGCAG
201 CGITTGGGGETTCCGTICCCCRARCGCGGCTGRAGRACATC
241 TGARGGCGCTGGCACGCARAGGCEGTTATTGARATTGTTTC
281 CGGCGECATCACGCGGGATTCEICTETTGCAGGAAGRGGRA
321 GRAGGGETIGCCGCTGGETAGETCATEIGGCTGCCGEIGAAC
361 CRCTTCTGGCGCALCAGCATATTGRAGGTCATTATCRAGGT
401 CGATCCTTCCTTATTCAAGCCGAATGCTGRTTTCCTGCTG
441 CGCGTCAGCGGGATGICGATGARAGATATCGGCATTATGG
481 ATGGTGACTTECTGGCAGTGCATARRACTCAGGATETACE
521 TAACGGEICAGGETCGTIGTCGCACGTATIGATGACGARGTT
UL SRR TGRS AR R R A RO RGRGCRATALRAGTOGREC
601 TEITTGCCRGARRATAGCGAGTITARLCCAATIGICGTTGA
641 CCTTCGTCAGCAGAGCTTC ACCATTGARGGGCTGGCGETT
681 GGGETTATTCGCRACGECGACTGGCTETAACATATCTCTG
721 AGRCCGCGATGCCGCCTGGCETCGCGETTTETTITTICATC
761 TCTCTTCATCAGGC TTGTCTGCATGGCATTCCTCACTICA
801 TCTGATABRAGCACTCTGGCATCTC GCCTTACCCATGRTTT
841 TCTCCAATATCACCGTTCCGTTGC TEGGACTSGTCGATAC
881 GGCGGETRATTGETCATCTTGATAGCCCGGTITATTIGGGC
921 GGCGTGEGCGETTIGEGCGCARCGGCGGRCCAGCT

PRTTERN

CTGNNNNNNNNNNC BG
TIGACA
CTGHNNNNNNNNNC AG
TATAAT, > mRMAR start
CTEHNNNNNNNNNC AG
GGRGG

ATG

OFEN READING FRAME

TAR

Shown are matches to approximate consensus binding sites for Lexi
repressor (CTGHNNNNNNNNNCAG), the -10 amd -35 promoter regions
relative to the start of the mRNA (TTGACE and TATALT), the ribosomal
binding site on the mRNA {GGAGG), and the open reading frame

{ATG...TAR}.
actually bind the repressor.

Only the second two of the predicted LexA binding sites

FIGURE 9.6. The promoter and open reading frame of the E. coli lexA gene.

Q'BIC Bioinformatics
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Motifs in DNA Sequences

receptor receptor C/EBP
AFl AF2 GR1 GR2 AF3 i
RARE1 RARE2 47 NF1l CRE TATA INR
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FIGURE 9.13. Regulatory elements of two promoters. (A) The rat pepCK gene. The relative positions of the TF-
binding sites are illustrated (Yamada et al. 1999). The glucocorticoid response unit (GRU) includes three accesso-
ry factor-binding sites (AF1, AF2, and AI3), two glucocorticoid response elements (GR1 and GR2), and a cAMP
response clement (CRE). A dimer of glucocorticoid receptors bound to each GR element is depicted. The retinoic
response unit (RAU) includes two retinoic acid response elements (RARE] and RARE2) that coincide with the AF1
and AF3, respectively (Sugivama ct al. 1998). The sequences of the two GR sites and the binding of the receptor to
these sites are shown. These sites deviate from the consensus sites and depend on their activity on accessory pro-
teins bound to other sites in the GRU. This dependence on accessory proteins is reduced if a more consensus-like
(canonical) GR element comprising the sequence TGTTCT is present. The CRE that binds factor C/EBP is also
shown. (B) The 2300-bp promoter of the developmentally regulated gene endol6 of the sea urchin (Bolouri and
Davidson 2002). Different colors indicate different binding sites for distinct proteins and proteins shown above the
line bind at unique locations, below the line at several locations. The regions A~G are functional modules that
determine the expression of the gene in a particular tissue at a particular time of development and may either serve
to induce transcription of the gene as a necessary developmental step (A, B, and G) or repress transcription (C-F)
in tissues when it is not appropriate. (Reprinted, with permission, from Bolouri and Davidson 2002 [©2002

CyCBCB

Elsevier].)

Q'BIC Bioinformatics
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Single Gene Activation

@ Transcription Factor
= TF binding site

I:> Gene
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Multiple Gene Activation

-

Co-regulated genes i

@ Transcription Factor

= TF binding site

- Gene
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Transcription Regulation

[ Goffart et al. Exp. Physiology (2003) ]

07/01/09 Q'BIC Bioinformatics 14



Motif-prediction: Whole genome

Problem: Given the upstream regions of all genes in the
genome, find all over-represented sequence signatures.

Basic Principle: If a TF co-regulates many genes, then all these
genes should have at least 1 binding site for it in their
upstream region.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Binding sites for TF

07/01/09 Q'BIC Bioinformatics 15



Motif Detection (TFBMSs)

1 See evaluation by Tompa et al.
® [bio.cs.washington.edu/assessment]

L Gibbs Sampling Methods: AlignACE, GLAM,
SeSiMCMC, Motif Sampler

dWeight Matrix Methods: ANN-Spec, Consensus,
JEM: Improbizer, MEME

dCombinatorial & Misc.: MITRA, oligo/dyad,
QuickScore, Weeder, YMF

07/01/09 Q'BIC Bioinformatics 16



EM Algorithm

Goal: Find 6, Z that maximize Pr (X, Z | 6)

Initialize: random profile

- =

for each m-window at position /in input
sequence .

E-step: Using profile, compute a likelihood value z;;

M-step: Build a new profile by using every m-
window, but weighting each one with value z;,.

. B
Stop if converged

[
8’16)&&6 MEME [Bailey, Elkan 1994]

BioInformatics Research Group
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Gibbs Sampling for Motif Detection

Q'BIC Bioinformatics
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Gene Expression

[ Process of transcription and/or translation of a gene is called gene
expression.

O Every cell of an organism has the same genetic material, but different
genes are expressed at different times.

[ Patterns of gene expression in a cell is indicative of its state.

07/01/09 Q'BIC Bioinformatics 19



Hybridization

d If two complementary strands of DNA or mRNA are brought together
under the right experimental conditions they will hybridize.
O A hybridizes to B =
® A is reverse complementary to B, or
@ A is reverse complementary to a subsequence of B.
[ Tt is possible to experimentally verify whether A hybridizes to B, by

labeling A or B with a radioactive or fluorescent tag, followed by
excitation by laser.

07/01/09 Q'BIC Bioinformatics 20



Measuring gene expression

[ Gene expression for a single gene can be measured by extracting mRNA
from the cell and doing a simple hybridization experiment.

[ Given a sample of cells, gene expression for every gene can be measured
using a single microarray experiment.

07/01/09 Q'BIC Bioinformatics 21



Microarray/DNA chip technology

[ High-throughput method to study gene expression of thousands of genes simultaneously.
d  Many applications:
@ Genetic disorders & Mutation/polymorphism detection
Study of disease subtypes
Drug discovery & toxicology studies
Pathogen analysis
Differing expressions over time, between tissues, between drugs, across disease states

07/01/09 Q'BIC Bioinformatics 22



Microarray Data

Gene Expression Level

Genel

Gene?2

Gene3
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Gene Chips

07/01/09 Q'BIC Bioinformatics 24



Gene g

Probe 1 Probe 2 Probe N
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Microarray/DNA chips (Simplified)

Construct probes corresponding to reverse complements of genes of interest.
Microscopic quantities of probes placed on solid surfaces at defined spots on the chip.
Extract mRNA from sample cells and label them.

Apply labeled sample (mMRNA extracted from cells) to every spot, and allow hybridization.
Wash off unhybridized material.

Use optical detector to measure amount of fluorescence from each spot.

07/01/09 Q'BIC Bioinformatics 26



Affymetrix DNA chip schematic
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What’s on the slide?

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

07/01/09 Q'BIC Bioinformatics 28



DNA Chips & Images

07/01/09 Q'BIC Bioinformatics 29
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Microarrays: competing technologies

d Affymetrix & Agilent

d Differ in:
® method to place DNA: Spotting vs. photolithography
@ Length of probe
@ Complete sequence vs. series of fragments

07/01/09 Q'BIC Bioinformatics
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Study effect of treatment over time

Sample ———

; (
Treated Sample(+1)===>'= — Expt 1

Treated Samp e(TZ)—’V:\/‘ — Expt 2
Treated Sample(+3)— \/ — Expt 3

Treated Sample(tn) Expt n
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2-color DNA
microarray

Normalization

T

Treated Control Data extraction
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How to compare 2 cell samples with Two-Color
Microarrays?

d mRNA from sample 1 is extracted and labeled with a red
fluorescent dye.

J mRNA from sample 2 is extracted and labeled with a green
fluorescent dye.

1 Mix the samples and apply it to every spot on the
microarray. Hybridize sample mixture to probes.

 Use optical detector to measure the amount of green and
red fluorescence at each spot.

07/01/09 Q'BIC Bioinformatics 34



Sources of Variations & Experimental Errors

cCo0D OO0 O OO0

Variations in cells/individuals

Variations in mRNA extraction, isolation, intfroduction of dye, variation
in dye incorporation, dye interference

Variations in probe concentration, probe amounts, substrate surface
characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot misalignments, discretization
effects, noise due to scanner lens and laser irregularities

Cross-hybridization of sequences with high sequence identity
Limit of factor 2 in precision of results

Variation changes with intensity: larger variation at low or high
expression levels

Need to Normalize data
07/01/09 Q'BIC Bioinformatics 35



Clustering

dClustering is a general method to study patterns in
gene expressions.

1 Several known methods:

@ Hierarchical Clustering (Bottom-Up Approach)
@ K-means Clustering (Top-Down Approach)
® Self-Organizing Maps (SOM)

07/01/09 Q'BIC Bioinformatics 36



Hierarchical Clustering: Example
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A Dendrogram




Hierarchical Clustering [Johnson, SC, 1967]

dGiven n points in R, compute the distance between
every pair of points

dWhile (not done)

® Pick closest pair of points s; and s; and make them part of
the same cluster.

® Replace the pair by an average of the two s;,

Try the Gppl@T at: http://home.dei.polimi.it/matteucc/Clustering/
tutorial_html/AppletH.html
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.

07/01/09 Q'BIC Bioinformatics
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Start

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

Coowght © 2001, Andew W. Moore

s Gty T

e 1

(X0

o

¥emeare and Herrcheal Clasrng: Sios 7

s Gty T

K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5) o 1

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Coowght © 2001, Andew W. Moore

¥ omeare and Miorrcheal Clstrng: S

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns"
a set of datapoints)

Copprght © J00L, Androw W Mocre

ey i Tty

=B

e 1

o 1

¥otmmare an Hierwrchical Claterng: She &
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K-means
1. Ask user how many
clusters they'd like.

(e.g. k=5) o 1

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns...

5. ..and jumps there

6. ...Repeat until
terminated!

Copprght © J00L, Androw W Mocre

-means #nd Heraical Clsterng: Skde 10
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s superduper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowrledge Discovery n
Databases 1999,
(KDD99) (available on

www autorisb o g/pap html)

Copyrght © 2001, Andow W. Mocrs

K-means and Hirarchical Custerng: Side 11

K-means
continues

WOrgh © 2001 Andrew W, Moore

L0

K-meant and Herarch€al Clusterng: Skde 12
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K-means
continues

Copyrght © 2001, Androw W. Mocrs

K-means and Hirarchical Clenng: Side 13

K-means
continues

WOwght © 2001, Andrew W, Moor

1401598 rt
1 FEREE
i 8
BN

K-mosnt and Herarchcal Custerng: Sikde 14
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K-means K-means
continues 3 continues
| e A

K-means
continues

K-means
continues

Crprrght © 001, Andrew W, Macre K-trmanrs ardd M archieal Chaterng: Side 16 Crprrght © 001, Andhew W, Macre K-trmans ardd i archieal Chaterng: Side 10
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Start

2. Randomly guess k

i

&

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5) o8

cluster Center
locations

Copyrght © 2001, Androw Wi, Mocre

K-moans and Hisrarchical Custrng: i 7

K-means
continues

Copyrght © 2001, Andrew W. Moo

K-moans and Hierachical Clustenng: Skde 19

2. Randomly guess k

3. Each datapoint finds

o'y (rwhics nin |

e

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

cluster Center
locations

out which Center it's
closest to, (Thus

each Center "owns” | ¢
a set of datapoints)

Copyrght © 2001, Andrew V4. Mocre

K-maars and Herarchical Curterng: Sioe B
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K-means
terminates

Copyrght © 2001, Andrew W, Mocre

K-means and Herathicsl Custerng: Siae 20
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K-Means Clustering [McQueen '67]

Repeat

@ Start with randomly chosen cluster centers

@ Assign points to give greatest increase In score
@ Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html
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Comparisons

dHierarchical clustering
@ Number of clusters not preset.
@ Complete hierarchy of clusters
@ Not very robust, not very efficient.

J K-Means

@ Need definition of a mean. Categorical data?
® More efficient and often finds optimum clustering.

07/01/09 Q'BIC Bioinformatics
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Reading

[ The following slides come from a series of talks by
Rafael Irizzary from Johns Hopkins

dMuch of the material can be found in detail in the

fO”OWing papers from [h‘r’rp://www.bios’ra‘r.jhsph.edu/~ririzar'r'/papers/]

@® Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf,
U, Speed, TP (2003) Exploration, Normalization, and Summaries of High

Density Oligonucleotide Array Probe Level Data. Biostatistics. Vol. 4,
Number 2: 249-264.

@ Bolstad, B.M., Irizarry RA, Astrand, M, and Speed, TP (2003), A Comparison
of Normalization Methods for High Density Oligonucleotide Array Data
Based on Bias and Variance. Bioinformatics. 19(2):185-193.
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Inference Process

Biological question
Differentially expressed genes
Sample class prediction etc.

Experimental design

Microarray experiment
Image analysis

Preprocessing (Normalization)

Biological verification
and interpretation From Talk by Irizzary
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Affymetrix Genechip Design

s

Reference sequence

. TGTGATGGTGCATGATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT..

GTACTACCCAGTCTTCCGGAGGCTA  Perfectmatch
GTACTACCCAGTCTTCCGGAGGCTA  Mismatch

07/01/09 Q'BIC Bioinformatics From Talk by Irizzary 49



Workflow: Analyzing Affy data

Raw data (.DAT files)

p C_ Image analysis

\4

Probe intensities (.CEL files)

-

(~  Pre-processing \/,
e normalizaton

v <

Expression measures (tables)

g

T - C Statisticaltest

Rank (list)

- _— Choose filter
. \.__Significance level _/

Candidate genes (short list)

From Talk by Irizzary
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Affy Files

ADAT file: image file, about 10 million pixels, 30-50
MB

CEL file: cell intensity file with probe level PM and
MM values

CDF file: chip description file describing which
probes go in which probe sets and the location of
probe-pair sets (genes, gene fragments, ESTs)

From Talk by Irizzary
07/01/09 Q'BIC Bioinformatics 51



Image analysis & Background Correction

Each probe cell: 10 X 10 pixels
d6Gridding estimates location of probe cell centers

1 Signal is computed by
@ Ignoring outer 36 pixels leaving a 8 X 8 pixel area
@ Taking the 75 percentile of the signal from the 8 X 8
pixel area
dBackground signal is computed as the average of
the lowest 2% probe cell values, which is then
subtracted from the individual signals

From Talk by Irizzary
07/01/09 Q'BIC Bioinformatics 52



Standard Normalization Procedure

dLog-transform the data

dEnsure that the average intensity and the standard
deviation are the same across all arrays.

[ This requires the choice of a baseline array, which
may or may hot be obvious.

07/01/09 Q'BIC Bioinformatics 53



Analyzing Affy data

dMAS 4.0
@ Works with PM-MM
@ Negative values result very often
@® Very noisy for low expressed genes
@ Averages without log-transformation

1 dChip [Li & Wong, PNAS 98(1):31-36]
@ Accounts for probe effect
@ Uses non-linear normalization
@ Multi-chip analysis reveals outliers

dMASDHO0
@® Improves on problems with MAS 4.0

From Talk by Irizzary
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Why you use log-transforms?

Original scale Log scale

ALHHN H B H A m " soaam

Average Intensity Average Intensity

From Talk by Irizzary
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Problem with using (transformed) PM-MM

.
S
=
(A0
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w_.
[ I l
8 10 12 14
log2 MW
Sometimes MM is larger than PM! From Talk by Irizzary
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Bimodality for large expression values
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From Talk by Irizzary
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MAS 5.0

dMAS 5.0 is Affymetrix software for microarray
data analysis.

J Ad hoc background procedure used

dFor summarization, they use:
® Signal = TukeyBiweight{log(PM;-MM *)}
@ Tukey Biweight: B(x) = (1 - (x/c)?)?, if x<c
= 0 otherwise
J Ad hoc scale normalization used

From Talk by Irizzary &
PhD thesis by Astrand

07/01/09 Q'BIC Bioinformatics

58



2 replicate arrays
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Expression from aray | Exp-eazicn from fimt half 21

Expression from corresponding Expression not correlated when
probes are highly correlated probes randomly partitioned

Correlation is higher than 0.99 Correlation drops to 0.55
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We have to deal with variations!

log,(expression 2)

log;(expression 1) From Talk by Irizzary
07/01/09 Q'BIC Bioinformatics 60
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M=

log,(expression 2 / expression 1)

-
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A= { log,(expression 2) + log2(expression 1) } /2
Q'BIC Bioinformatics From Talk by Irizzary
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Spike-in Experiment

dReplicate RNA samples were hybridized to various
arrays

Some probe sets were spiked in at different
concentrations across the different arrays

Goal was to see if these spiked probe sets "stood
out” as differentially expressed
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Analyzing Spike-in data with MAS 5.0
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Robust Multiarray normalization (RMA)

dBackground correction separately for each array
® Find E{Sig | Sig+Bgd = PM}
@ Bgd is normal and Sig is exponential

dUses quantile normalization to achieve “identical
empirical distributions of intensities” on all arrays

d Summarization: Performed separately for each
probe set by fitting probe level additive model

dUses median polish algorithm to robustly estimate
expression on a specific chip

dAlso see GCRMA [Wu, Irizzary et al., 2004]

07/01/09 QBIC Bioinformatics | From Talk by Irizzary & 64
PhD thesis by Astrand




MA

pi ey

Analyzing Spike-in data with R

Irizarry et al. (2003) NAR 31:e15
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MvVA and g-q plots

——— | | ./ MAS40

/—"/ MAS 5.0

From Talk by Irizzary
07/01/09 Q'BIC Bioinformatics 66




MvA and g-g Plots
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Before and after quantile normalization

Fig. 3. 10 pacrwase M oversus A plots asing Lver (sl concentralion
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L0 dalation series dats for unsdjusted dats.
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Bioconductor

[ Bioconductor is an open source and open
development software project for the analysis of
biomedical and genomic data.

JWorld-wide project started in 2001

R and the R package system are used to design
and distribute software

dCommercial version of Bioconductor software called
ArrayAnalyzer
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R: A Statistical Programming Language

u Tr'y the tutorial at: [http://www.cyclismo.org/tutorial /R/]
JAlso at: [http://www.math.ilstu.edu/dhkim/Rstuff/Rtutor.html ]
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