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Sources of Variations & Experimental Errors

Variations in cells/individuals

Variations in mRNA extraction, isolation, introduction of dye, variation
in dye incorporation, dye interference

Variations in probe concentration, probe amounts, substrate surface
characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot misalignments, discretization
effects, noise due to scanner lens and laser irregularities

Cross-hybridization of sequences with high sequence identity
Limit of factor 2 in precision of results

Variation changes with intensity: larger variation at low or high
expression levels

o000 OO0 O OO0

Need to Normalize data
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Early Molecular Biology Contributions

Prostate cancer: prostate-specific antigen
screening

Protein kinase inhibitors as cancer drugs
@ Gleevec: some forms of Leukemia

@ Monocloan antibody Herceptin: some forms of Breast
cancer
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Analyzing Microarray Data

Genetics: Perou et al. Proc. Natl. Acad. Sci. USA 96 (1999) 9213
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FiG. 1. (A) Cluster diagram of HMEC in vitro experiments. Each column represents a single experiment, and each row represents a single gene.
Ratios of gene expression relative to HMEC control samples grown under standard conditions are shown. Green squares represent lower than
control levels of gene expression in the experimental samples (ratios less than 1); black squares represent genes equally expressed (ratios near 1);
red squares represent higher than control levels of gene expression (ratios greater than 1); gray squares indicate insufficient or missing data. The
color saturation reflects the magnitude of the log/ratio [see scale at top right and Fig. 5 (see Supplemental data at www.pnas.org) for the full cluster
diagram with all gene names]. (B) Expanded view of the subset of genes whose expression was decreased in association with reduced HMEC
proliferation. (C) Expanded view of the IFN-regulated gene cluster. In many instances, multiple independent clones/cDNA representing the same
gene were spotted on different locations on these microarrays, and in most cases, these copies usually clustered together, either very near each other
or immediately adjacent to each other.
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Microarray Data Analysis: Subtyping

Fig. 1. Selection of tumor-specific genes for
cancer class prediction. A, schematic diagram de-
picting the idealized expression profile of tumor-
specific genes that the method selects as classifiers.
The shape of each profile represents genes that are
highly expressed in each cancer type relative to all
other tumors in the tramning set. B, 100 genes per
tumor class (total, 1100) with the most significant
scores 1n a Wilcoxon rank-sum test for equality
were selected as likely candidates for tumor clas-
sifiers. Pr, prostate; Bl, bladder/ureter; Br, breast;
Co, colorectal; Ga, gastroesophagus; Ki, kidney;
Li, liver; Ov, ovary; Pa, pancreas; LA, lung adeno-
carcinomas; LS, lung squamous cell carcinoma. C,
the final refined set of gene classifiers was gener-
ated after the genes imn B were ranked by SVM/
LOOCV accuracy. Annotations of the genes from
which 110 “predictor” genes were bootstrapped are
provided on our website.* For clarity, only 8 of 76
predictor genes for lung adenocarcinomas are de-
picted here. Levels of gene expression (depicted in
each row) across all samples (columns) were me-
dian-centered and normalized by “Cluster” and out-
put 1n “Treeview” (12). Red, increased gene ex-
pression; blue, decreased expression; black, median
level of gene expression. The color intensity is
proportional to the hybridization intensity of a gene
from its median level across all samples.
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Differential Analysis

dDetermine differentially expressed genes
@ Need for Replication and Normalization
@ Differential Analysis: test statistics
»Fold-change (Sample vs Control)
>t-test
»F-statistic
»Other Non-parametric rank-based statistics
@ Significance of observed statistic (Permutation test)
@ False Discovery Rate
»Multiple test corrections
@ Pattern Discovery
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Pattern Discovery

[ Dimensionality reduction
@ Principal Component Analysis
@ Multidimensional scaling
@ Singular-value decomposition

dVisualization methods
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Pattern Discovery
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Fig. 2 Two pattern-discovery tech-
niques. Data for both figures measure
expression for 11 genes characteriz-
ing sensitivity to compound cytocha-
lasin D in 60 cancer cell lines?’. a, The
first three principal components, plot-
ted using Matlab software (Math-
works). Apparent features include a
tight cluster of leukemia samples (red
dots, nearly superimposed) and the
more scattered outlying cluster of
CNS tumors (black dots). A single lung
cancer sample (NSCLC-NCIH226) also
appears as an outlier — the solitary
orange dot at the top. b, Hierarchical
clustering of the same data, using
Cluster/TreeView (http:/rana.lbl.gov/
EisenSoftware.htm). Names of sam-
ples extremely sensitive or resistant to
cytochalasin D (see Supplementary
information) are prefixed ‘S’ and 'R’
respectively. The samples fall into two
main clusters, roughly, but not per-
fectly, separating the sensitive and
resistant samples. As in a, fine struc-
ture shows a tight leukemia cluster
(underlined in green) and a tight CNS
cluster (underlined in red), but does
not suggest that the CNS cluster or
NSCLC-NCIH226 (underlined in blue)
are outliers. Apparentin botha and b
is the relative heterogeneity of the
breast cancer cell lines.

merging the two closest clus-
ters is repeated until a single
cluster remains. This arranges
the data into a tree structure
that can be broken into the
desired number of clusters by
cutting across the tree at a
particular height. Tree struc-
tures are easily viewed and
understood (Fig. 2b), and the
hierarchical structure provides
potentially useful informa-
tion about the relationships
between clusters. Trees are
known to reveal close relation-
ships very well. However, as



Clustering

dClustering is a general method to study patterns in
gene expressions.

1 Several known methods:

@ Hierarchical Clustering (Bottom-Up Approach)
@ K-means Clustering (Top-Down Approach)
@ Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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A Dendrogram




Hierarchical Clustering [Johnson, SC, 1967]

dGiven n points in RY, compute the distance between
every pair of points

dWhile (not done)

® Pick closest pair of points s; and s; and make them part of
the same cluster.

@ Replace the pair by an average of the two s;,

Try the applet at: http://home.dei polimi. l’r/ma’rTeucc/Clus’rer'mg/
tutorial_html/AppletH.html
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.

7/19/10 Q'BIC Bioinformatics
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Start
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 7

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide §

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)

Copyright © 2001, Andrew W, Moore
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K-means and Hierarchical Clusterng: Side 8

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the

points it owns...
5. ..and jumps there
6. ...Repeat until

terminated!

Copyright © 2001, Andrew W, Moore

8 |

K-means and Hierarchical Clustering: Side 10
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s super-duper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www autorlab.org/pap html)

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 11

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Siide 12
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K-means
continues

Copyright © 2001, Andrew W. Moore
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K-means
continues
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K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 15

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 16
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K-means
continues
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K-means
continues
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Start
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

Copyright © 2001, Andrew W. Moore
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K-means and Hierarchical Clustering: Slide 7

K-means
continues

Copyright © 2001, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 19

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

cluster Center
locations

3. Each datapoint finds

out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)

Copyright © 2001, Andrew W. Moore
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K-means and Hierarchical Clustering: Siide 8

K-means
terminates

Copyright © 2001, Andrew W, Moore

K-means and Hierarchical Clustering: Slide 20

Q'BIC Bioinformatics

End

10

17



K-Means Clustering [McQueen ’67]

Repeat

® Start with randomly chosen cluster centers

@ Assign points to give greatest increase in score
® Recompute cluster centers

@ Reassign points

until (no changes)

Try the applet at: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html

7/19/10 Q'BIC Bioinformatics 18



Comparisons

dHierarchical clustering
@ Number of clusters not preset.
@ Complete hierarchy of clusters
@ Not very robust, not very efficient.

J K-Means

@ Need definition of a mean. Categorical data?
® More efficient and often finds optimum clustering.

7/19/10 Q'BIC Bioinformatics
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Class Prediction

Start with n genes
measured in m
samples whose
classes ¢ are known

Randomly divide
samples into training
and test sets

Choose prediction
method

Is explicit gene selection
appropriate?

Learn model 51

Choose final model
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Fig. 3 An overview of the process for building a prediction model to classify
samples. The partition into training and test data is ideally chosen at random
across the entire set of samples, Many prediction methods require tuning some
parameter (such as the number of genes, the number of nearest-neighbors to
consider, or the number of decision trees built). This choice is often evaluated
by cross-validation — the process of repeatedly removing smaller test sets from
the training set, building new models (starting with the gene selection
process) with the remaining data, and evaluating performance across all the
different models built, For example, “leave-one-out cross validation” (also
called "n-way") builds n models, each using n-1training examples and evalu-
ated on the remaining one; the accuracy for predicting all n samples is
reported. Observing that predictors may succeed by chance even in cross-
validation, Radmacher et al. suggest using permutation testing to determine
the significance of the observed results™, Ultimately the final model, perhaps
chosen during the cross-validation process, is then tested on entirely new data
not used in the model generation process. The model itself, as well as the pre-
diction results and the influential genes, may yield new biological insights,

informatics 20



Class Prediction Methods

A Decision Trees

1 Support Vector Machines (SVM)
dk-NN or k-nearest neighbor method
dFisher's linear discriminant method
A Neural Networks

1 Self-Organizing Maps

JEnsemble methods

@ Boosting
@ Bagging

7/19/10 Q'BIC Bioinformatics
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Functional Biases, Pathways & Networks

dOver/Under-representation of functional groups of
genes

[ Over/Under-representation of genes involved in
functional pathways

dInferring of regulatory relationships
dInferring of protein-protein interactions

7/19/10 Q'BIC Bioinformatics 22



Reading

dThe following slides come from a series of talks by
Rafael Irizzary from Johns Hopkins

dMuch of the material can be found in detail in the

fO”OWing papers from [hTTp://www.biosTaT.jhsph.edu/~r'irizar'r'/paper's/]

® Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf,
U, Speed, TP (2003) Exploration, Normalization, and Summaries of High

Density Oligonucleotide Array Probe Level Data. Biostatistics. Vol. 4,
Number 2: 249-264.

@ Bolstad, B.M., Irizarry RA, Astrand, M, and Speed, TP (2003), A Comparison
of Normalization Methods for High Density Oligonucleotide Array Data
Based on Bias and Variance. Bioinformatics. 19(2):185-193.
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Inference Process

Biological question
Differentially expressed genes
Sample class prediction etc.

Experimental design

Microarray experiment

Image analysis

Preprocessing (Normalization)

Biological verification
and interpretation From Talk by Irizzary
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Affymetrix Genechip Design

AN

. TGTGATGGTGCATGATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT..

GTACTACCCAGTCTTCCGGAGGCTA Perfectmatch
GTACTACCCAGTCTTCCGGAGGCTA  Mismatch

7/19/10 Q'BIC Bioinformatics From Talk by |rizzary 25
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Workflow: Analyzing Affy data

Raw data (.DAT files)

“ (_ Image analysis >

\4

Probe intensities (.CEL files)

| < a Pre-prooessing »
\ __normalization

a

Expression measures (tables)

.  Statistical test

v

Rank (list)

hoose filter \

v

< / C
50

ignificance Ievel/

Candidate genes (short list)
From Talk by Irizzary
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Affy Files

DAT file: image file, about 10 million pixels, 30-50
MB

ACEL file: cell intensity file with probe level PM and
MM values

CDF file: chip description file describing which
probes go in which probe sets and the location of
probe-pair sets (genes, gene fragments, ESTs)

From Talk by Irizzary
7/19/10 Q'BIC Bioinformatics 27



Image analysis & Background Correction

L Each probe cell: 10 X 10 pixels
d6Gridding estimates location of probe cell centers

[ Signal is computed by
@ Ignoring outer 36 pixels leaving a 8 X 8 pixel area
@ Taking the 75 percentile of the signal from the 8 X 8
pixel area
[ Background signal is computed as the average of
the lowest 2% probe cell values, which is then
subtracted from the individual signals

From Talk by Irizzary
7/19/10 Q'BIC Bioinformatics 28



Standard Normalization Procedure

dLog-transform the data

L Ensure that the average intensity and the standard
deviation are the same across all arrays.

[ This requires the choice of a baseline array, which
may or may hot be obvious.

7/19/10 Q'BIC Bioinformatics 29



Analyzing Affy data

dMAS 40
® Works with PM-MM
@ Negative values result very often
@ Very noisy for low expressed genes
@ Averages without log-transformation

0 dChip [Li & Wong, PNAS 98(1):31-36]
@ Accounts for probe effect
@ Uses non-linear normalization
@ Multi-chip analysis reveals outliers

dMASDHO
@® Improves on problems with MAS 4.0

From Talk by Irizzary
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Why you use log-transforms?

Original scale Log scale

SD

LRLH ‘e ALHE

Average Intensity Average Intensity

From Talk by Irizzary
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Problem with using (transformed) PM-MM

12 14

log2 PM
10

10 12 14

Sometimes MM 1is larger than PM! From Talk by Irizzary
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Bimodality for large expression values

Frequency
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log2{PM/MM)

From Talk by Irizzary
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MAS 5.0

dMAS 5.0 is Affymetrix software for microarray
data analysis.

1 Ad hoc background procedure used
d Summarization: Averaging over multiple probes

dFor summarization, MAS 5.0 uses:
® Signal = TukeyBiweight{log(PM,-MM *)}
® Tukey Biweight: B(x) = (1 - (x/c)?)?, if x<c
= 0 otherwise
J Ad hoc scale normalization used

From Talk by Irizzary &
PhD thesis by Astrand
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2 replicate arrays
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Expression from corresponding Expression not correlated when
probes are highly correlated probes randomly partitioned

Correlation is higher than 0.99 Correlation drops to 0.55
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We have to deal with variations!
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G_

.
|

]

MvVA Plots

2

-

| |
< L 1u

A= { log,(expression 2) + log2(expression 1) } /2

Q'BIC Bioinformatics From Talk by Irizzary
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Spike-in Experiment

dReplicate RNA samples were hybridized to various
arrays

dSome probe sets were spiked in at different
concentrations across the different arrays

Goal was to see if these spiked probe sets "stood
out” as differentially expressed

From Talk by Irizzary
7/19/10 Q'BIC Bioinformatics 38



Analyzing Spike-in data with MAS 5.0

* (Genes called PIM
4 Genes called A
L * spike—in genes called P/M
* spike-in genes called A
2.
F °
E O SR o
-2
-4
0 5 10 15
A
7/19/10 Q'BIC Bioinformatics
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Robust Multiarray normalization (RMA)

1 Background correction separately for each array
® Find E{Sig | Sig+Bgd = PM}
@ Bgd is normal and Sig is exponential

dUses quantile normalization to achieve “identical
empirical distributions of intensities” on all arrays

d Summarization: Performed separately for each
probe set by fitting probe level additive model

dUses median polish algorithm to robustly estimate
expression on a specific chip

dAlso see GCRMA [Wu, Irizzary et al., 2004]

7/19/10 Q'BIC Bioinformatics | From Talk by Irizzary & 40
PhD thesis by Astrand




Analyzing Spike-in data with RMA

Irizarry et al. (2003) NAR 31:e15
7/19/10 Q'BIC Bioinformatics
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MvA and g-q plots

an; ./ MAS40

1 /,,,__,/f“” MAS 5.0

refesance guardles

From Talk by Irizzary
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MvA and g-q Plots

=i MBEI

§
T4 P
llllllllll w3
o) RMA MVA glot h) RMA QQ-plet
i 5
: o
13 e
: o 4
o
.
o
asance s

From Talk by Irizzary
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Before and after quantile normalization
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From Talk by Irizzary
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Bioconductor

L Bioconductor is an open source and open
development software project for the analysis of
biomedical and genomic data.

JWorld-wide project started in 2001

R and the R package system are used to design
and distribute software

dCommercial version of Bioconductor software called
ArrayAnalyzer

From Talk by Irizzary
7/19/10 Q'BIC Bioinformatics 45



R: A Statistical Programming Language

EITr'y the tutorial at: [http://www.cyclismo.org/tutorial/R/ ]
dAlso at: [http://www.math.ilstu.edu/dhkim/Rstuff/Rtutor.html |
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DNA Structure - 1953
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DNA Controversy

1. Double Helix by Jim Watson - Personal Account
(1968)

2. Rosalind Franklin by Ann Sayre (1975)

3. The Path to the Double Helix by Robert Olby
(1974)

4. Rerelease of Double Helix by Jim Watson with
Franklin's paper

5. Rosalind Franklin: The Dark Lady of DNA by
Brenda Maddox (2003)

6. Secret of Photo 51 - 2003 NOVA Series

7/19/10 Q'BIC Bioinformatics
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What are the next big Qs?

1. What is order of DNA sequence in a chromosome?
2. How does the DNA replicate?

3. How does the mRNA transcribe?

4. How is the protein gets translated?

Etc

One of the tool that made a difference
Polymerase Chain Reaction

7/19/10 Q'BIC Bioinformatics
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Polymerase Chain Reaction

1983 - technique was developed by Kary Mullis &
others (1944-)

1993 Nobel prize for Chemistry

Controversy: Kjell Kleppe, a Norwegian
scientist in 1971, published paper
describing the principles of PCR

Stuart Linn, professor at University of
California, Berkeley, used Kleppe's
papers in his own classes, in which Kary
Mullis was a student at the time
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DNA Replication & Polymerase
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Polymerase Chain Reaction (PCR)

O PCR is a technique to amplify the number of copies of
a specific region of DNA.

1 Useful when exact DNA sequence is unknown
[ Need to know “flanking” sequences
O Primers designed from “flanking” sequences

O If no info known, one can add adapters (short known
sequence) then use a primer that recognizes the
adaptor
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Taq polymerase

[ Thermostable DNA polymerase
named after the thermophilic
bacterium Thermus aquaticus

U Originally isolated by Thomas
D. Brock in 1965

 Molecule of the 80s

[ Many versions of these
polymerases are available

[ Modified for increased fidelity
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Schematic outline of a typical PCR cycle
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PCR
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Gel Electrophoresis

0 Used to measure the size of DNA fragments.

0 When voltage is applied to DNA, different size
fragments migrate to different distances (smaller ones
travel farther).
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Gel Electrophoresis for DNA

[ DNA is negatively charged - WHY?
1 DNA can be separated according to its size
1 Use a molecular sieve - Gel

d Varying concentration of agarose makes different pore
sizes & results

- Boil agarose to cool and solidify/polymerize
 Add DNA sample to wells at the top of a gel

1 Add DNA loading dye (color to assess the speed and
make it denser than running buffer)

- Apply voltage
d Larger fragments migrate through the pores slower
 S1ain the DNA - EtBr, SyberSafe, etc
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Gel Electrophoresis
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Gel Electrophoresis
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Sequencing
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Why sequencing?

dUseful for further study:

@ Locate gene sequences, regulatory elements
@ Compare sequences to find similarities

@ Identify mutations - genetic disorders

@ Use it as a basis for further experiments
@ Better understand the organism

® Forensics

Next 4 slides contains material prepared by Dr. Stan Metzenberg. Also see:
http://stat-www.berkeley.edu/users/terry/Classes/s260.1998 /Week8b/week8b/node9.html
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Human Hereditary Diseases

® DNA test Muscular Dystrophye Adrenoleukodystrophy (ALD)e®
currently

available Hemophilia A e Azoospermia
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Those inherited conditions that can be diagnosed using DNA analysis
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History

1 Two methods independently developed in 1974
@® Maxam & Gilbert method

@® Sanger method: became the standard
(1 Nobel Prize in 1980
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Original Sanger Method

d (Labeled) Primer is annealed to template strand of denatured DNA.
This primer is specifically constructed so that its 3' end is located
next to the DNA sequence of interest. Once the primer is attached
to the DNA, the solution is divided into four tubes labeled "G", "A",
"T" and "C". Then reagents are added to these samples as follows:

@ "G" tube: ddGTP, DNA polymerase, and all 4 dNTPs
@ "A” tube: ddATP, DNA polymerase, and all 4 dNTPs
@ "T" tube: ddTTP, DNA polymerase, and all 4 dNTPs
@ "C" tube: ddCTP, DNA polymerase, and all 4 dNTPs

[ DNA is synthesized, & nucleotides are added to growing chain by
the DNA polymerase. Occasionally, a ddNTP is incorporated in place
of a ANTP, and the chain is terminated. Then run a gel.

 All sequences in a tube have same prefix and same last nucleotide.
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Modified Sanger

[ Reactions performed in a single tube containing all four ddNTP's,
each labeled with a different color fluorescent dye

dye label
’ chain te rmination with ddGTF

5'- TCCTCCG
3 ' -GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5

Q chain te roanation with ddATFE

S'- TCCTCCGGA
3 ' -GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5

’ chain te rmination with ddTTP
5° TCCT
3 —GGAGP;C'I'I'ACAGGMGAGA'ITCAGGATICAGGAGGCCTACCP;’I’GMGATCAAG 5

chain te rmination with ddCTP

9'- TCC
3 ' -GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5"
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Sequencing Gels: Separate vs Single
Lanes

GCCAGGTGAGCCTTTGCA

A C G T
Automated

Sequencing
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Sequencing

O Flourescence sequencer

[ Computer detects specific dye
O Peak is formed

1 Base is detected
 Computerized

CATCRAACRACCOGCT RTIGTYIRTTTCOTARACATTACTOCCROGCCACCRTO AR
S0 100 110 120 130

F\ |
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Maxam-Gilbert Sequencing

 Not popular

[ Involves putting copies of the nucleic acid into separate test
tubes

O Each of which contains a chemical that will cleave the molecule
at a different base (either adenine, guanine, cytosine, or
thymine)

 Each of the test tubes contains fragments of the nucleic acid
that all end at the same base, but at different points on the
molecule where the base occurs.

 The contents of the test tubes are then separated by size
with gel electrophoresis (one gel well per test tube, four total
wells), the smallest fragments will travel the farthest and the
largest will travel the least far from the well.

1 The sequence can then be determined from the picture of the
finished gel by noting the sequence of the marks on the gel

snoqnd from which well they,came from., -



Human Genome Project

Play the Sequencing Video:

* Download Windows file from
http://www.cs.fiu.edu/~giri/teach/6936/Papers/

Sequence.exe
* Then run it on your PC.
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Human Genome Project

1980 The sequencing methods were sufficiently developed

International collaboration was formed: International Human Genome

C;:n;c:;"tium of 20 groups - a Public Effort (James Watson as the
chair!

Estimated expense: $3 billion dollars and 15 years

Part of this project is to sequence: E. coli, Sacchromyces cerevisiae,
Drosophila melanogaster, Arabidopsis thaliana, Caenorhabdidtis
elegans

- Allow development of the sequencing methods
Got underway in October 1990
Automated sequencing and computerized analysis

Public effort: 150,000 bp fragments into artificial chromosomes
(unstable - but progressed)

In three years large scale physical maps were available
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Venter vs Collins

Venter's lab in NIH (joined NIH in 19842 is the first test site for ABI automated
sequences; he developed strategies (Expressed Sequence Tags - ESTs)

1992 - decided to patent the genes expressed in brain - “"Outcry”
Resistance to his idea

Watson publicly made the comment that Venter's technique during senate hearing -
"wasn't science - it could be run by monkeys"

In April 1992 Watson resigned from the HGP
Craig Venter and his wife Claire Fraser left the NIH to set up two companies
- the not-for-profit TIGR The Institute for Genomic Research, Rockville, Md

- A sister company FOR-profit with William Hazeltine - HGSI - Human Genome
Sciences Inc., which would commercialize the work of TIGR

- Financed by Smith-Kline Beecham ($125 million) and venture capitalist Wallace

Steinberg. - :
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Venter vs Collins

HGST promised to fund TIGR with $70 million over ten years in

exchange for marketing rights TIGR's discoveries

PE developed the automated sequencer & Venter - Whole-genome
short-gun approach

"While the NIH is not very good at funding new ideas, once an idea
is established they are extremely good,” Venter

In May 1998, Venter, in collaboration with Michael Hunkapiller at PE
Biosystems (aka Perkin Elmer / Applied Biosystems / Applera),
formed Celera Genomics

Goal: sequence the entire human genome by December 31, 2001 - 2
years before the completion by the HGP, and for a mere $300
million

April 6, 2000 - Celera announces the completion "Cracks the human
code”

Agrees to wait for HGP
715{mmer 2000 - both groupsCdihoifited“tke rough draft is ready 73



Human Genome Sequence

6 months later it was published - 5 years ahead of schedule with $ 3
billion dollars

50 years after the discovery of DNA structure
Human Genome Project was completed - 3.1 billion basepairs
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Pros: No guessing of where the genes are
Study individual genes and their contribution
Understand molecular evolution
Risk prediction and diagnosis

Con: Future Health Diary --> physical and mental

Who should be entrusted? Fu&ure Partners, Agencies, Government
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