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Modular Nature of Proteins

dProteins are collections of “"modular”
domains. For example,

Coagulation Factor XII

—FB-B-HE— - Catlytic Domain -
—-—.— K =— K = C(atalytic Domain =

PLAT
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Modular Nature of Protein Structures

Example: Diphtheria Toxin

transmembrane domam

exotoxin a

myoglobin

receptor-bindin
F omain 8
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Domain Architecture Tools

ACDART

@Protein ;

@It's

@ Multiple for 2"d domain
ASMART
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Active Sites

Active sites 1n proteins are usually hydrophobic pockets/
crevices/troughs that involve sidechain atoms.

Figure 4.13 (a) The active site in open twisted
a/B domains is in a crevice outside the carboxy
ends of the B strands. This crevice is formed by
two adjacent loop regions that connect the
two strands with « helices on opposite sides

of the B sheet. This is illustrated by the curled
fingers of two hands (b), where the top halves
of the fingers represent loop regions and the
bottom halves represent the B strands. The rod
represents a bound molecule in the binding
crevice.

b
(@) — crevice ) \

B
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Active Sites

Left PDB 3RTD (streptavidin) and the first site located by the
MOE Site Finder. Middle 3RTD with complexed ligand (biotin).

Right Biotin ligand overlaid with calculated alpha spheres of the
first site.
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Secondary Structure Prediction Software
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PDB: Protein Data Bank

Database of protein tertiary and quaternary
structures and protein complexes. http://
www.rcsb.org/pdb/

dOver 29,000 structures as of Feb 1, 2005.

[ Structures determined by

® NMR Spectroscopy

@ X-ray crystallography

@ Computational prediction methods
dSample PDB file: Click here [ -]
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Protein Folding

Unfolded
@ Rapid (< 1s)
Molten Globule State

@ Slow (1 - 1000 s)

Folded Native State

d How to find minimum energy configuration?
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Protein Structures

dMost proteins have a hydrophobic core.

Wi ithin the core, specific interactions take place
between amino acid side chains.

[ Can an amino acid be replaced by some other amino
acid?

@ Limited by space and available contacts with nearby
amino acids

Outside the core, proteins are composed of loops
and structural elements in contact with water,
solvent, other proteins and other structures.
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Viewing Protein Structures

Q SPDBV
0 RASMOL
d CHIME
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Secondary Structure Prediction Software
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Figure 11.3 Comparison of secondary structure predictions by various methods. The sequence of flavodoxin, an o/ protein, was used as the query and is shown on the
first line of the alignment. For each prediction, H denotes an a helix, E a B strand, T a B turn; all other positions are assumed to be random coil. Correctly assigned residues
are shown in inverse type. The methods used are listed along the left side of the alignment and are described in the text. At the bottom of the figure is the secondary struc-
ture assignment given in the PDB file for lavodoxin (10FYV, Smith et al., 1983).
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Chou & Fasman Propensities

(i

AmMmino
Acid Designation P Designation P
Ala F 1.42 b 0.83
Cys 1 0.70 h 1.19
Asp 1 1.01 B 0.54
Glu F 1.51 B 0.37
Phe | 1.13 i 7 1.38
Gly B 0.61 b 0.75
His | 1.00 | 0.87
e | 1.08 F 1.60
Lys f 1.16 b 0.74
Leu F 1.21 ik 1.30
Net F 1.45 L 1.05
Asn b 0.67 b 0.89
Pro B 0.57 B 0.55
Gin | 1.11 h 1.10
Arg 1 0.98 1 0.93
Ser 1 0.77 b 0.75
Thr 1 0.83 L 1.19
Val L 1.06 F 1.70
Trp F 1.08 L 1.37
Tyr b 0.69 F 1.4
1.8
1.6
1.4
M2
=
= 1.0
D
S o.s
=
0.6
0.4
0.2
o

Glu Met Ala Leu Lys Phe GIn

IHHe Trp YVal

B helix Bl strand

Asp His Arg Thr Ser Cys Tyr Asn Gly Pro
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GOR 1V prediction for 1bbc

AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAII
CCCCCCCHHHHHHHHHHHHHHCCCCCHHHHEEECCCCCCHHHHHHHHHHA
AQDKSGFIEEDELKLFLQNFKADARALTDGETKTFLKAGDSDGDGKIGVD
JHHC cccCHHHHHHHAHHAHAHAAHAACCCCCEEEEEECCCCCCCCEEECC
DVTALVKA
CEEEEEEC

sequence length: 108

GOR IV:

alpha helix (Hh) : 50 is 46.30%
beta sheet (Ee) :18is 16.67%
random coil (Cc) :40is 37.04%

100
1.0
0.9
0.8
0.7
0.6
0.5 /\
0.4
0.3
0.2 J
01 \W
0 20 40 60 80 100
— helix
— sheet
coil



PDB: Protein Data Bank

Database of protein tertiary and quaternary
structures and protein complexes. http://
www.rcsb.org/pdb/

dOver 29,000 structures as of Feb 1, 2005.

[ Structures determined by

® NMR Spectroscopy

@ X-ray crystallography

@ Computational prediction methods
dSample PDB file: Click here [ -]
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PDB Search Results

a memeer of THE @ IPIDB
An Information Portal to Biological Macromolecular Structures

PDB Statistics @

(o s
PROTEIN DATA BANK

© sutnor [N €TTYTT) © | Advanced Sesrch

Contact Us | Help | Print Page

| Home| Search[ Results] Queries| ( 91 Structure Hits] 127 Web Page Hits| 1 Unreleased Structure)

~ W Results (1-10 of 91) 12345. 10

B Results ID List

“ M Refine this Search = . s . .

"W Stracturss Awaiting|Ralonse 1X62 @ gggltlgignlstructure of the LIM domain of carboxyl terminal LIM domain

© B Select All

B Deselect All

~ ® Download Selected
» Tabulate

Characteristics Release Date: 17-Nov-2005 Exp. Method: NMR 20 Structures
Classification  Structural Protein

Compound Mol. Id: 1 Molecule: C Terminal Lim Domain Protein 1 Fragment: Lim Domain

Authors Qin, X.R., Nagashima, T., Hayashi, F., Yokoyama, S.

=)

> Narrow Query

» Sort Results - ; 2 o
1X4K @ Solution structure of LIM domain in LIM-protein 3

P> Results per Page
Characteristics Release Date: 14-Nov-2005 Exp. Method: NMR 20 Structures

- m E
Show Query Details Classification Metal Binding Protein

~ @ Results Help

Compound Mol. Id: 1 Molecule: Skeletal Muscle Lim Protein 3 Fragment: Lim Domain

Authors He, F., Muto, Y., Inoue, M., Kigawa, T., Shirouzu, M., Terada, T., Yokoyama,

[ ——

1X4L @ Solution structure of LIM domain in Four and a half LIM domains protein 2
Characteristics Release Date: 14-Nov-2005 Exp. Method: NMR 20 Structures

Classification Metal Binding Protein

Compound Mol. Id: 1 Molecule: Skeletal Muscle Lim Protein 2 Fragment: Lim Domain

Authors He, F., Muto, Y., Inoue, M., Kigawa, T., Shirouzu, M., Terada, T., Yokoyama,
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Protein Folding

Unfolded

II Rapid (< 1s)

Molten Globule State

@ Slow (1 - 1000 s)

Folded Native State

d How to find minimum energy configuration?
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Protein Folding

amino acid
side chains

unfolded protein

1FOLDING

binding site

/e

folded protein
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Energy Landscape

® 1
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Protein Structures

dMost proteins have a hydrophobic core.

Wi ithin the core, specific interactions take place
between amino acid side chains.

[ Can an amino acid be replaced by some other amino
acid?

@ Limited by space and available contacts with nearby
amino acids

Outside the core, proteins are composed of loops
and structural elements in contact with water,
solvent, other proteins and other structures.
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Viewing Protein Structures

Q SPDBV
0 RASMOL
d CHIME
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Structural Alignment

dWhat is structural alignment of proteins?

@ 3-d superimposition of the atoms as "best as possible”,
i.e., to minimize RMSD (root mean square deviation).

@ Can be done using VAST and SARF

d Structural similarity is common, even among
proteins that do not share sequence similarity or
evolutionary relationship.

7/21/10



Other databases & tools

d MMDB contains groups of structurally related proteins
d SARF structurally similar proteins using secondary structure elements
d VAST Structure Neighbors

 SSAP uses double dynamic programming to structurally align proteins

7/21/10



Protein Structure Prediction

d Holy Grail of bicinformatics

d Protein Structure Initiative to determine a set of protein
structures that span protein structure space sufficiently
well. WHY?

@ Number of folds in natural proteins is limited. Thus a newly
discovered proteins should be within modeling distance of some
protein in set.

 CASP: Critical Assessment of techniques for structure
prediction

® To stimulate work in this difficult field

7/21/10



PSP Methods

dhomology-based modeling

dmethods based on fold recognition
@ Threading methods

Jdab initio methods

@ From first principles
@ With the help of databases

7/21/10



ROSETTA

 Best method for PSP

d As proteins fold, a large number of partially folded, low-
energy conformations are formed, and that local structures
combine to form more global structures with minimum
energy.

3 Build a database of known structures (I-sites) of short
sequences (3-15 residues).

[ Monte Carlo simulation assembling possible substructures
and computing energy

7/21/10



Modeling Servers

3 SwissMODEL
O 3DJigsaw
d CPHModel
1 ESyPred3D
d Geno3D

d sSDSC1
 Rosetta

O MolIDE

d SCWRL

d PSIPred

d MODELLER
d LOOPY

7/21/10



Gel Electrophoresis for Protein

Protein is also charged
dHas to be denatured - WHY

BEFORE SDS

Gel: SDS-Polyacrylamide gels + A{/}m e
JAdd sample to well @%7}“”1’“””
JApply voltage <

1Size determines speed AFTER $DS

JAdd dye to assess the speed e

1Stain to see the protein bands

7/21/10



Protein Gel

L

Protein Add SDS
i SDS binds to amino acid residues
and gives uniform negative charge
to protein with heat the proteinis
linearized MolecularStation.com
NEGATIVE ELECTRODE
[— Add Protein Sample onto SDS-PAGE
E Electric Gel Lane #2
rrent (Protein Ladder is in Lane #1)
Protein Bands
are separated
By
Size

Copyright 2008 MolecularStation.com

o Wl POSITIVE ELECTRODE

29
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{a)

Separation
in first
dimension
(by charge)

Separation
in second
dimension
(by size)

2D-Gels

Protein
mixture
:
™
)
Apply first gel
to top of second
pH 4.0 pH 10.0
[ N —
e bl

pH 4.0

Isoelectric
focusing (IEF)

pH 10.0

SDS
electrophoresis



2D Gel Electrophoresis

Two-D Gels

First f A
dimension | [)ecrmi\smg

p

hed
=
N
~—
=
Isoelectric |\
focusing |,
=
|
—

D)D) N

$os

-

Isoelectric focusing
gel is placed on SDS
polyacrylamide gel.

Second — A - v
dimension Ap A Decreasing 4 -y
SDS polyacrylamide =N = i M
gel electrophoresis - b - . . a
- — =9
= A .~
Decreasing >
pl
(a)
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Mass Spectrometry

0 Mass measurements By Time-of -Flight
Pulses of light from laser ionizes protein that is absorbed on metal target.
Electric field accelerates molecules in sample towards detector. The time to
the detector is inversely proportional to the mass of the molecule. Simple
conversion to mass gives the molecular weights of proteins and peptides.

O Using Peptide Masses to Identify Proteins:
One powerful use of mass spectrometers is to identify a protein from its
peptide mass fingerprint. A peptide mass fingerprint is a compilation of the
molecular weights of peptides generated by a specific protease. The
molecular weights of the parent protein prior to protease treatment and the
subsequent proteolytic fragments are used to search genome databases for
any similarly sized protein with identical or similar peptide mass maps. The
increasing availability of genome sequences combined with this approach has
almost eliminated the need to chemically sequence a protein to determine its
amino acid sequence.
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Mass Spectrometry

Target Laser

..Gly Ser Asp..| =t

Laser desorption .
o ® Detection JLleulle Phe...| sege

@ lonization ..Na Arg Gin...

Computer
‘ Comparison

:

il

~.Lys Trp His...

Intensity

W Semence ictea s ws
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Protein Sequence

120 amino acids

dHow is it ordered?

Basis: Edman Degradation (Pehr Edman)
dLimited ~30 residues
JReact with Phenylisothiocyanate
Cleave and chromatography

First separate the proteins - Use 2D gels

1 Then digest to get pieces

1 Then sequence the smaller pieces

dTedious

dMass spectrometry

7/21/10



Machine Learning

JHuman Endeavor
@ Data Information Knowledge

dMachine Learning
® Automatically extracting information from data

[ Types of Machine Learning

@ Unsupervised
»Clustering
»>Pattern Discovery

@ Supervised
»>Learning
»>Classification

3/29/11 CAP 5510/ CGS 5166
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Support Vector Machines

[ Supervised Statistical Learning Method for:
@ Classification
® Regression

dSimplest Version:

@ Training: Present series of labeled examples (e.g., gene
expressions of fumor vs. normal cells)

@ Prediction: Predict labels of new examples.

3/29/11 CAP 5510/ CGS 5166 36



Learning Problems



Learning Problems

UBinary Classification
UMulti-class classification
JRegression

3/29/11 CAP 5510/ CGS 5166
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SVM — Binary Classification

dPartition feature space with a surface.

dSurface is implied by a subset of the training
points (vectors) near it. These vectors are
referred to as Support Vectors.

dEfficient with high-dimensional data.
Solid statistical theory
1 Subsume several other methods.

3/29/11 CAP 5510/ CGS 5166 39



Classification of 2-D

(Separable) data

3/29/11 CAP 5510/ CGS 5166 40



Classification of
(Separable) 2-D data

3/29/11

CAP 5510/ CGS 5166
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Classification of (Separable) 2-D data

+] %

-1 e

3/29/11

* Margin of a point

* Margin of a point set
CAP 5510/ CGS 5166
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Classification using the Separator

3/29/11 CAP 5510/ CGS 5166 43



Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
ﬂ@ — Q; // WelghT

b, =0; //Bias

k=0;R=max |x | B

repeat W =2 ayX
for i=11to N

ify; (W ex; + D) =0 then
Wi = W T myX
Oy = by + myR?
k=k+ 1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
3/29/11 CAP 5510/ CGS 5166
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Performance for Separable Data

Theorem:
If margin m of S is positive, then

k < (2R/m)>2
i.e., the algorithm will always converge,

and will converge quickly.

3/29/11 CAP 5510/ CGS 5166
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3/29/11

Non-linear Separators

CAP 5510/ CGS 5166
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3/29/11

Main idea: Map into feature space

§ Input space § Feature space
a *

3 \

L -—

Figuee 2, The wea of SY machines: map the trarwrg data
noninearly nte a higher-dmensional feature space via
&, and constnt a separating hyperplane with maamum
mergn e, Ts yiekds a nonlnear decision beundary m
nput pace, By the use of a kemel funchion, it s possible
lo eomgite the separating nyperplane without explicithy
camyng eut the map into the feature pace.

CAP 5510/ CGS 5166
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Non-linear Separators

3/29/11

CAP 5510/ CGS 5166
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Useful URLSs

d http://www.support-vector.net

3/29/11 CAP 5510/ CGS 5166
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Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
ﬂ@ — Q; // WelghT

b, =0; //Bias

k=0;R=max |x | B

repeat W =2 ayX
for i=11to N

ify; (W ex; + D) =0 then
Wi = W T myX
Oy = by + myR?
k=k+ 1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
3/29/11 CAP 5510/ CGS 5166
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Perceptron Algorithm (Dual)

Given a separable training set S
a=0;b,=0;
R =max | x |
repeat
for i=11toN
if y, (2a,y; x;*x + b) <0 then
a,=q + 1
b=b +yR?
endif
Until no mistakes made within loop
Return (q, b)

3/29/11 CAP 5510/ CGS 5166
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Perceptron Algorithm (Dual)

Given a separable training set S
a=0;b,=0;

R =max | x |

repeat

for i=11to N

if y, (Za;y; [4](x.x) + b) <0then
a,=q + 1
b=b+yR?
Until no mistakes made within loop
Return (a, D)

W] (X %) = @(X)* P(X)

3/29/11 CAP 5510/ CGS 5166 52



Different Kernel Functions

[ Polynomial kernel

K(X,Y)=(X°*Y)’

K(X,Y)= exp[ -|x -1 ]

O Radial Basis Kernel

Q Sigmoid Kernel 20°

K(X,Y)=tanh(w(X *Y)+0)

3/29/11 CAP 5510/ CGS 5166 53



SVM Ingredients

d Support Vectors

dMapping from Input Space to Feature Space
Dot Product - Kernel function

dWeights

3/29/11 CAP 5510/ CGS 5166
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Generalizations

dHow to deal with more than 2 classes?
Idea: Associate weight and bias for each class.

dHow to deal with non-linear separator?
Idea: Support Vector Machines.

dHow to deal with linear regression?
dHow to deal with non-separable data?

3/29/11 CAP 5510/ CGS 5166
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Applications

1 Text Categorization & Information Filtering
@ 12,902 Reuters Stories, 118 categories (91% )

dTImage Recognition

@ Face Detection, tumor anomalies, defective parts in
assembly line, etc.

L Gene Expression Analysis
Protein Homology Detection

3/29/11 CAP 5510/ CGS 5166 56



Learned threshold Optimized threshold
Class Method FP FN TP TN Cost|FP FN TP TN Cost
Tricatboxylic acid Radial SVM 8 8 9 2442 24 4 7 10 2446 18
Dot-product-1 SVM | 11 9 8 2439 29| 3 6 11 2447 15
Dotproduct:2 SVM | 5 10 7 2445 25| 4 6 11 2446 16 Leamned threshold Optimized threshold
Dot—product—3 SVYM 4 12 5 2446 28 4 6 11 2446 16 Class Method FP FN TP TN Cost | FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 17 4 5 30 2428 14
FLD 9 10 7 2441 2 7 8 0 2443 23 Dotproduct-1 SVM | 14 11 24 2418 36| 2 7 28 2430 16
4.5 7 17 0 2443 41 _ _ _ _ _ Dotproduct-2 SVM | 4 13 22 2428 30 4 6 29 2428 16
MOC1 3 16 1 2446 35 _ _ _ _ _ Dot-product-3 SVM [ 3 18 17 2429 39 2 7 28 2430 16
Respiration Radial SVM 9 6 24 2428 21| 8 4 26 2429 16 Parzen 215 30 2411 31} 3 9 26 2429 21
Dotproduct-1 SVM [ 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012 23 2425 3112 7 28 2420 26
Dotproduct:2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37| - - - - -
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOC1 10 17 18 2422 #4| - - - = =
Parzen 22 10 20 2415 21 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 10 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM | 0 4 7 2456 8 0O 2 9 2456 4
4.5 18 17 13 2419 52 _ _ _ _ Dot-product-2 SVM [ 0 5 6 2456 0] 0 2 9 245 4
MOC1 12 26 4 2425 64 - - - - - Dot-product-3 SVM 0 8 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 44 31 1 3 8 2455 7
Dotproduct-1 SVM [ 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 246 6| 2 1 10 2454 4
Dotproduct2 SVM [ 7 10 111 2339 27| 9 1 120 2337 11 C45 2.2 9 HM 6 - - = = -
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MoC1 2 5 6 244 L) - - - - -
Parzen 6 8 113 2340 2| 5 8§ 113 2341 21 Helix-tumn-helix ~ Radial SVM 1 16 0 2450 31 0 16 0 2451 32
FLD 15 5 116 2331 25 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52 0 16 0 2451 32
4.5 31 21 100 2315 73| - = _ _ _ Dotproduct-2 SVM | 4 16 0 2447 361 0 16 0 2451 32
MOC1 26 26 95 2320 781 = = - = = Dotproduct-3 SVM | 1 16 0 2450 3] 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46| 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c45 2 16 0 2449 4| - - = _ -
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot product MOC1 6 16 0 2445 B - - - - -

kernel raised to the first, second and third power, Parzen windows, Fisher’s linear discriminant, and
the two decision tree learners, C4.5 and MOCI. The next five columns are the false positive, false
negative, true positive and true negative rates summed over three cross-validation splits, followed
by the cost, which is the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, since they do not produce ranked results.

for Table 2.

3/29/11 CAP 5510/ CGS 5166
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Table 3: Comparison of error rates for various classification methods (continued). See caption
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Class Kernel Cost for each split ~ Total
Tricarboxylic acid Radial 18 21 15 22 21 97
Dot-product-1 | 15 22 18 23 22| 100
Dot-product-2 | 16 22 17 22 22 99
Dot-product-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23| 127
Dot-product-2 | 19 19 26 24 23| 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosome Radial 8 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-product-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3 | 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD

classifications, SVMs were trained using four different kemel functions on five different random

three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the

number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column is the total cost across all five splits.
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Family Gene Locus Error Description
TCA  YPROOIW CIT3 FN  mitochondnal citrate synthase
YORI142W LSC1 FN  « subunit of succinyl-CoA ligase
YNROOIC CIT1 FN  mitochondrial citrate synthase
YLR174W IDP2 FN isocitrate dehydrogenase
YILI25W  KGD1 FN  a-ketoglutarate dehydrogenase
YDR143C KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondria
YDLO66W IDP1 FN  mitochondrial form of isocitrate dehydrogenase
YBLO15W ACHI FP acetyl CoA hydrolase
Resp  YPRI9IW QCR2 FN  ubiquinol cytochrome-c reductase core protein 2
YPL271W ATP15 FN  ATP synthase epsilon subunit
YPL262W FUMI FP fumarase
YML120C NDI1 FP mitochondrial NADH ubiquinone 6 oxidoreductase
YKLO85W MDH1 FP mitochondrial malate dehydrogenase
YDLO67C COX9 FN subunit VIIa of cytochrome ¢ oxidase
Ribo YPL0O37C EGDI FP /3 subunit of the nascent-polypeptide-associated
complex (NAC)
YLR406C RPL31B FN  ribosomal protein L31B (L34B) (YL28)
YLRO75W RPL10 FP ribosomal protein L10
YALOO3W EFBI FP translation elongation factor EF-143
Prot YHR027C RPNI1 FN subunit of 26S proteasome (PA700 subunit)
YGR270W YTA7 FN member of CDC48/PAS1/SECI18 family of ATPases
YGR048W UFDI1 FP ubiquitin fusion degradation protein
YDRO69C DOA4 FN ubiquitin isopeptidase
YDL020C RPN4 FN  involved in ubiquitin degradation pathway
Hist YOL012C HTA3 FN  histone-related protein
YKL049C CSE4 FN required for proper kinetochore function

Table 6: Consistently misclassified genes. The table lists all 25 genes that are consistently mis-

classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false positive (FP) occurs when the SVM includes the gene in the given class but
the MYGD classification does not; a false negative (FN) occurs when the SVM does not include
the gene in the given class but the MYGD classification does.
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SVM [ SVM
Dataset Features | FP | FN | FP FN

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues classified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SYM calculates a margin
which is the distance of an example from the decision boundary it has learned. In this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a correct classification, and a
negative value indicates an incorrect classification. The most negative point corresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.
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