BSC 4934: Q'BIC Capstone Workshop

Giri Narasimhan

ECS 254A; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/BSC4934_Su11.html July 2011 **Modular Nature of Proteins**

Proteins are collections of "modular" domains. For example,

Modular Nature of Protein Structures

Domain Architecture Tools

- Protein <u>AAH24495;</u> <u>Domain Architecture;</u>
- It's <u>domain relatives</u>;
- Multiple <u>alignment</u> for 2nd domain
- SMART

Active Sites

Active sites in proteins are usually hydrophobic pockets/ crevices/troughs that involve sidechain atoms.

Figure 4.13 (a) The active site in open twisted α/β domains is in a crevice outside the carboxy ends of the β strands. This crevice is formed by two adjacent loop regions that connect the two strands with α helices on opposite sides of the β sheet. This is illustrated by the curled fingers of two hands (b), where the top halves of the fingers represent loop regions and the bottom halves represent the β strands. The rod represents a bound molecule in the binding crevice.

Left PDB 3RTD (streptavidin) and the first site located by the MOE Site Finder. Middle 3RTD with complexed ligand (biotin). Right Biotin ligand overlaid with calculated alpha spheres of the first site.

Secondary Structure Prediction Software

Figure 11.3 Comparison of secondary structure predictions by various methods. The sequence of flavodoxin, an α/β protein, was used as the query and is shown on the first line of the alignment. For each prediction, H denotes an α helix, E a β strand, T a β turn; all other positions are assumed to be random coil. Correctly assigned residues ture assignment given in the PDB file for flavodoxin (10FV, Smith et al., 1983).

PDB: Protein Data Bank

- Database of protein tertiary and quaternary structures and protein complexes. http:// www.rcsb.org/pdb/
- Over 29,000 structures as of Feb 1, 2005.
- Structures determined by
 - NMR Spectroscopy
 - X-ray crystallography
 - Computational prediction methods
- Sample PDB file: Click here [-]

How to find minimum energy configuration?

Protein Structures

- □ Most proteins have a hydrophobic core.
- Within the core, specific interactions take place between amino acid side chains.
- Can an amino acid be replaced by some other amino acid?
 - Limited by space and available contacts with nearby amino acids
- Outside the core, proteins are composed of loops and structural elements in contact with water, solvent, other proteins and other structures.

Viewing Protein Structures

SPDBVRASMOLCHIME

Secondary Structure Prediction Software

Recent Ones: GOR V PREDATOR Zpred PROF NNSSP PHD PHD PSIPRED Jnet

Figure 11.3 Comparison of secondary structure predictions by various methods. The sequence of flavodoxin, an α/β protein, was used as the query and is shown on the first line of the alignment. For each prediction, H denotes an α helix, E a β strand, T a β turn; all other positions are assumed to be random coil. Correctly assigned residues ture assignment given in the PDB file for flavodoxin (10FV, Smith et al., 1983).

7/21/10

R

Chou & Fasman Propensities

Amino Acid	helix			
	Designation	Р	Designation	Р
Ala	F	1.42	b	0.83
Cys	I	0.70	f	1.19
Asp	I	1.01	В	0.54
Glu	F	1.51	В	0.37
Phe	f	1.13	f	1.38
Gly	В	0.61	b	0.75
His	f	1.00	f	0.87
lle	f	1.08	F	1.60
Lys	f	1.16	b	0.74
Leu	F	1.21	f	1.30
Met	F	1.45	f	1.05
Asn	b	0.67	b	0.89
Pro	В	0.57	В	0.55
GIn	f	1.11	h	1.10
Arg	I	0.98	I	0.93
Ser	I	0.77	b	0.75
Thr	I	0.83	f	1.19
Val	f	1.06	F	1.70
Trp	f	1.08	f	1.37
Tyr	b	0.69	F	1.4

GOR IV prediction for 1bbc

PDB: Protein Data Bank

- Database of protein tertiary and quaternary structures and protein complexes. http:// www.rcsb.org/pdb/
- Over 29,000 structures as of Feb 1, 2005.
- Structures determined by
 - NMR Spectroscopy
 - X-ray crystallography
 - Computational prediction methods
- Sample PDB file: Click here [-]

PDB Search Results

A MEMBER OF THE PDB An Information Portal to Biological Macromolecular Structures PROTEIN DATA BANK							
Contact Us Help Print Page O PDB ID or keyword Author SEARCH ? Advanced Search							
Home Search Results Queries Results (1-10 of 91) Results ID List Refine this Search	91 Structure H	ts 127 Web Pag	e Hits 1 Unreleased Structure 1 2 3 4 5 10 ♀				
		🖻 🖹 💽	Solution structure of the LIM domain of carboxyl terminal LIM domain protein 1				
 Select All Deselect All Download Selected Tabulate Narrow Query Sort Results Results per Page Show Query Details Results Help 	 УК № 1х4к УК 	Characteristics Classification Compound Authors	Release Date: 17-Nov-2005 Exp. Method: NMR 20 Structures Structural Protein Mol. Id: 1 Molecule: C Terminal Lim Domain Protein 1 Fragment: Lim Domain Qin, X.R., Nagashima, T., Hayashi, F., Yokoyama, S. Solution structure of LIM domain in LIM-protein 3 Release Date: 14-Nov-2005 Exp. Method: NMR 20 Structures Metal Binding Protein Mol. Id: 1 Molecule: Skeletal Muscle Lim Protein 3 Fragment: Lim Domain He, F., Muto, Y., Inoue, M., Kigawa, T., Shirouzu, M., Terada, T., Yokoyama,				
	☑ 1X4L	Characteristics Classification Compound Authors	Solution structure of LIM domain in Four and a half LIM domains protein 2 Release Date: 14-Nov-2005 Exp. Method: NMR 20 Structures Metal Binding Protein Mol. Id: 1 Molecule: Skeletal Muscle Lim Protein 3 Fragment: Lim Domain He, F., Muto, Y., Inoue, M., Kigawa, T., Shirouzu, M., Terada, T., Yokoyama,				

Protein Folding

How to find minimum energy configuration?

Protein Structures

- □ Most proteins have a hydrophobic core.
- Within the core, specific interactions take place between amino acid side chains.
- Can an amino acid be replaced by some other amino acid?
 - Limited by space and available contacts with nearby amino acids
- Outside the core, proteins are composed of loops and structural elements in contact with water, solvent, other proteins and other structures.

Viewing Protein Structures

SPDBVRASMOLCHIME

Structural Alignment

What is structural alignment of proteins?

- 3-d superimposition of the atoms as "best as possible", i.e., to minimize RMSD (root mean square deviation).
- Can be done using VAST and SARF
- Structural similarity is common, even among proteins that do not share sequence similarity or evolutionary relationship.

Other databases & tools

- MMDB contains groups of structurally related proteins
- SARF structurally similar proteins using secondary structure elements
- □ VAST Structure Neighbors
- **SSAP** uses double dynamic programming to structurally align proteins

Protein Structure Prediction

Holy Grail of bioinformatics

Protein Structure Initiative to determine a set of protein structures that span protein structure space sufficiently well. WHY?

- Number of folds in natural proteins is limited. Thus a newly discovered proteins should be within modeling distance of some protein in set.
- CASP: Critical Assessment of techniques for structure prediction
 - To stimulate work in this difficult field

PSP Methods

homology-based modeling

- methods based on fold recognition
 - Threading methods
- ab initio methods
 - From first principles
 - With the help of databases

ROSETTA

- Best method for PSP
- As proteins fold, a large number of partially folded, lowenergy conformations are formed, and that local structures combine to form more global structures with minimum energy.
- Build a database of known structures (I-sites) of short sequences (3-15 residues).
- Monte Carlo simulation assembling possible substructures and computing energy

Modeling Servers

- SwissMODEL
- 3DJigsaw
- CPHModel
- ESyPred3D
- 🛛 Geno3D
- SDSC1
- 🗆 Rosetta
- MolIDE
- SCWRL
- PSIPred
- MODELLER
- LOOPY

Gel Electrophoresis for Protein

- Protein is also charged
- □Has to be denatured WHY
- Gel: SDS-Polyacrylamide gels
- □ Add sample to well
- □ Apply voltage
- Size determines speed
- Add dye to assess the speed
- Stain to see the protein bands

Protein Gel

2D-Gels

2D Gel Electrophoresis

Mass Spectrometry

Mass measurements By Time-of-Flight

Pulses of light from laser ionizes protein that is absorbed on metal target. Electric field accelerates molecules in sample towards detector. The time to the detector is inversely proportional to the mass of the molecule. Simple conversion to mass gives the molecular weights of proteins and peptides.

Using Peptide Masses to Identify Proteins:

One powerful use of mass spectrometers is to identify a protein from its peptide mass fingerprint. A peptide mass fingerprint is a compilation of the molecular weights of peptides generated by a specific protease. The molecular weights of the parent protein prior to protease treatment and the subsequent proteolytic fragments are used to search genome databases for any similarly sized protein with identical or similar peptide mass maps. The increasing availability of genome sequences combined with this approach has almost eliminated the need to chemically sequence a protein to determine its amino acid sequence.

Mass Spectrometry

Protein Sequence

□20 amino acids □ How is it ordered? Basis: Edman Degradation (Pehr Edman) Limited ~30 residues React with Phenylisothiocyanate Cleave and chromatography First separate the proteins - Use 2D gels Then digest to get pieces Then sequence the smaller pieces **Tedious** Mass spectrometry

Machine Learning

Human Endeavor

Data Information Knowledge

Machine Learning

Automatically extracting information from data

Types of Machine Learning

- Unsupervised
 - ➤Clustering
 - >Pattern Discovery
- Supervised
 - ≻Learning
 - Classification

Support Vector Machines

- Supervised Statistical Learning Method for:
 - Classification
 - Regression
- Simplest Version:
 - Training: Present series of <u>labeled</u> examples (e.g., gene expressions of tumor vs. normal cells)
 - Prediction: Predict labels of new examples.
Learning Problems

Learning Problems

Binary Classification
 Multi-class classification
 Regression

SVM – Binary Classification

Partition feature space with a surface.

- Surface is implied by a subset of the training points (vectors) near it. These vectors are referred to as Support Vectors.
- Efficient with high-dimensional data.
- Solid statistical theory

Subsume several other methods.

Classification of 2-D (Separable) data

3/29/11

CAP 5510 / CGS 5166

Classification of (Separable) 2-D data

Classification of (Separable) 2-D data

Margin of a pointMargin of a point set

CAP 5510 / CGS 5166

Classification using the Separator

Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate $\eta>0$ <u>**w**</u>₀ = <u>0</u>; // Weight $b_0 = 0; // Bias$ $k = 0; R = max |x_i|$ $\mathbf{w} = \sum \mathbf{a}_i \mathbf{y}_i \mathbf{x}_i$ repeat for i = 1 to N if $y_i (\underline{\mathbf{w}}_k \bullet \underline{x}_i + b_k) \le 0$ then $\mathbf{W}_{k+1} = \mathbf{W}_k + \eta \mathbf{y}_i \mathbf{X}_i$ $b_{k+1} = b_k + \eta y_i R^2$ k = k + 1**Until** no mistakes made within loop **Return** k, and (\underline{w}_k, b_k) where k = # of mistakes 3/29/11 CAP 5510 / CGS 5166

Performance for Separable Data

Theorem:

If margin m of S is positive, then

 $k \le (2R/m)^2$ i.e., the algorithm will always converge, and will converge quickly.

Non-linear Separators

Main idea: Map into feature space

Figure 2. The idea of SV machines: map the training data nonlinearly into a higher-dimensional feature space via Φ , and construct a separating hyperplane with maximum margin there. This yields a nonlinear decision boundary in input space. By the use of a kernel function, it is possible to compute the separating hyperplane without explicitly carrying out the map into the feature space.

Non-linear Separators

http://www.support-vector.net

Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate $\eta>0$ <u>**w**</u>₀ = <u>0</u>; // Weight $b_0 = 0; // Bias$ $k = 0; R = max |x_i|$ $\mathbf{w} = \sum \mathbf{a}_i \mathbf{y}_i \mathbf{x}_i$ repeat for i = 1 to N if $y_i (\underline{\mathbf{w}}_k \bullet \underline{x}_i + b_k) \le 0$ then $\mathbf{W}_{k+1} = \mathbf{W}_k + \eta \mathbf{y}_i \mathbf{X}_i$ $b_{k+1} = b_k + \eta y_i R^2$ k = k + 1**Until** no mistakes made within loop **Return** k, and (\underline{w}_k, b_k) where k = # of mistakes 3/29/11 CAP 5510 / CGS 5166

Perceptron Algorithm (Dual)

```
Given a separable training set S
<u>a</u> = <u>0</u>; b<sub>0</sub> = 0;
R = max |x_i|
repeat
     for i = 1 to N
    if y_i (\Sigma a_i y_i \underline{x}_i \bullet \underline{x}_i + b) \le 0 then
          a_i = a_i + 1
          b = b + y_i R^2
    endif
Until no mistakes made within loop
Return (<u>a</u>, b)
```

Perceptron Algorithm (Dual)

Given a separable training set S <u>**a**</u> = <u>0</u>; b₀ = 0; $R = max |x_i|$ repeat for i = 1 to N if $y_i (\Sigma a_i y_i \times (x_i, x_i) + b) \le 0$ then $a_i = a_i + 1$ $b = b + y_i R^2$ Until no mistakes made within loop **Return** (a, b)

$$\mathbb{W}(\underline{x}_{i},\underline{x}_{j}) = \Phi(\underline{x}_{i}) \bullet \Phi(\underline{x}_{j})$$

Different Kernel Functions

Polynomial kernel

$$\kappa(X,Y) = (X \bullet Y)^d$$

Radial Basis Kernel

$$\kappa(X,Y) = \exp\left(\frac{-\|X-Y\|^2}{2\sigma^2}\right)$$

Sigmoid Kernel

 $\kappa(X, Y) = \tanh(\omega(X \bullet Y) + \theta)$

SVM Ingredients

Support Vectors Mapping from Input Space to Feature Space Dot Product - Kernel function Weights

Generalizations

How to deal with more than 2 classes?

 Idea: Associate weight and bias for each class.
 How to deal with non-linear separator?
 Idea: Support Vector Machines.
 How to deal with linear regression?
 How to deal with non-separable data?

Applications

Text Categorization & Information Filtering

- 12,902 Reuters Stories, 118 categories (91% !!)
- □Image Recognition
 - Face Detection, tumor anomalies, defective parts in assembly line, etc.

Gene Expression Analysis

Protein Homology Detection

		8	Lea	rned th	reshold			Optir	nized	threshol	N Cost 46 18 47 15 46 16 46 16 50 24				
Class	Method	FP	FN	TP	TN	Cost	FP	FN	ΤP	TN	Cost				
Tricarboxylic acid	Radial SVM	8	8	9	2442	24	4	7	10	2446	18				
	Dot-product-1 SVM	11	9	8	2439	29	3	6	11	2447	15				
	Dot-product-2 SVM	5	10	7	2445	25	4	6	11	2446	16				
	Dot-product-3 SVM	4	12	5	2446	28	4	6	11	2446	16				
	Parzen	4	12	5	2446	28	0	12	5	2450	24				
	FLD	9	10	7	2441	29	7	8	9	2443	23				
	C4.5	7	17	0	2443	41	-	-	2						
	MOC1	3	16	1	2446	35	-		-		-				
Respiration	Radial SVM	9	6	24	2428	21	8	4	26	2429	16				
	Dot-product-1 SVM	21	10	20	2416	41	6	9	21	2431	24				
	Dot-product-2 SVM	7	14	16	2430	35	7	6	24	2430	19				
	Dot-product-3 SVM	3	15	15	2434	33	7	6	24	2430	19				
	Parzen	22	10	20	2415	42	7	12	18	2430	31				
	FLD	10	10	20	2427	30	14	4	26	2423	22				
	C4.5	18	17	13	2419	52	-	-			-				
	MOC1	12	26	4	2425	64	-	-	-	-	-				
Ribosome	Radial SVM	9	4	117	2337	17	6	1	120	2340	8				
	Dot-product-1 SVM	13	6	115	2333	25	11	1	120	2335	13				
	Dot-product-2 SVM	7	10	111	2339	27	9	1	120	2337	11				
	Dot-product-3 SVM	3	18	103	2343	39	7	1	120	2339	9				
	Parzen	6	8	113	2340	22	5	8	113	2341	21				
	FLD	15	5	116	2331	25	8	3	118	2338	14				
	C4.5	31	21	100	2315	73	-	$\sim - 1$	-	-	-				
	MOC1	26	26	95	2320	78	-	-	31 <u>-</u> 11		-				

Table 2: Comparison of error rates for various classification methods. Classes are as described in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot product kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false negative, true positive and true negative rates summed over three cross-validation splits, followed by the cost, which is the number of false positives plus twice the number of false negatives. These five columns are repeated twice, first using the threshold learned from the training set, and then using the threshold that minimizes the cost on the test set. The threshold optimization is not possible for the decision tree methods, since they do not produce ranked results.

		Learned threshold					Optimized threshold				
Class	Method	FP	FN	ΤP	TN	Cost	FP	FN	TP	TN	Cost
Proteasome	Radial SVM	3	7	28	2429	17	4	5	30	2428	14
	Dot-product-1 SVM	14	11	24	2418	36	2	7	28	2430	16
	Dot-product-2 SVM	4	13	22	2428	30	4	6	29	2428	16
	Dot-product-3 SVM	3	18	17	2429	39	2	7	28	2430	16
	Parzen	21	5	30	2411	31	3	9	26	2429	21
	FLD	7	12	23	2425	31	12	7	28	2420	26
	C4.5	17	10	25	2415	37	5 <u>-</u>	<u></u>	<u></u>	5 <u>-</u>	5 <u>-</u>
	MOC1	10	17	18	2422	44	-	-	-	-	-
Histone	Radial SVM	0	2	9	2456	4	0	2	9	2456	4
	Dot-product-1 SVM	0	4	7	2456	8	0	2	9	2456	4
	Dot-product-2 SVM	0	5	6	2456	10	0	2	9	2456	4
	Dot-product-3 SVM	0	8	3	2456	16	0	2	9	2456	4
	Parzen	2	3	8	2454	8	1	3	8	2455	7
	FLD	0	3	8	2456	6	2	1	10	2454	4
	C4.5	2	2	9	2454	6	- 100			-	-
	MOC1	2	5	6	2454	12	-		-	-	-
Helix-turn-helix	Radial SVM	1	16	0	2450	33	0	16	0	2451	32
	Dot-product-1 SVM	20	16	0	2431	52	0	16	0	2451	32
	Dot-product-2 SVM	4	16	0	2447	36	0	16	0	2451	32
	Dot-product-3 SVM	1	16	0	2450	33	0	16	0	2451	32
	Parzen	14	16	0	2437	46	0	16	0	2451	32
	FLD	14	16	0	2437	46	0	16	0	2451	32
	C4.5	2	16	0	2449	34	-		_	-	-
	MOC1	6	16	0	2445	38					

Table 3: Comparison of error rates for various classification methods (continued). See caption for Table 2.

16

CAP 5510 / CGS 5166

Class	Kernel	C	lit	Total			
Tricarboxylic acid	Radial	18	21	15	22	21	97
	Dot-product-1	15	22	18	23	22	100
	Dot-product-2	16	22	17	22	22	99
	Dot-product-3	16	22	17	23	22	100
Respiration	Radial	16	18	23	20	16	93
	Dot-product-1	24	24	29	27	23	127
	Dot-product-2	19	19	26	24	23	111
	Dot-product-3	19	19	26	22	21	107
Ribosome	Radial	8	12	15	11	13	59
	Dot-product-1	13	18	14	16	16	77
	Dot-product-2	11	16	14	16	15	72
	Dot-product-3	9	15	11	15	15	65
Proteasome	Radial	14	10	9	11	11	55
	Dot-product-1	16	12	12	17	19	76
	Dot-product-2	16	13	15	17	17	78
	Dot-product-3	16	13	16	16	17	79
Histone	Radial	4	4	4	4	4	20
	Dot-product-1	4	4	4	4	4	20
	Dot-product-2	4	4	4	4	4	20
	Dot-product-3	4	4	4	4	4	20

Table 4: **Comparison of SVM performance using various kernels.** For each of the MYGD classifications, SVMs were trained using four different kernel functions on five different random three-fold splits of the data, training on two-thirds and testing on the remaining third. The first column contains the class, as described in Table 1. The second column contains the kernel function, as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the number of false positives plus twice the number of false negatives) for each of the five random three-fold splits. The final column is the total cost across all five splits.

Family	Gene	Locus	Error	Description
TCA	YPR001W	CIT3	FN	mitochondrial citrate synthase
	YOR142W	LSC1	FN	lpha subunit of succinyl-CoA ligase
	YNR001C	CIT1	FN	mitochondrial citrate synthase
	YLR174W	IDP2	FN	isocitrate dehydrogenase
	YIL125W	KGD1	FN	lpha-ketoglutarate dehydrogenase
	YDR148C	KGD2	FN	component of α -ketoglutarate dehydrogenase
				complex in mitochondria
	YDL066W	IDP1	FN	mitochondrial form of isocitrate dehydrogenase
	YBL015W	ACH1	FP	acetyl CoA hydrolase
Resp	YPR191W	QCR2	FN	ubiquinol cytochrome-c reductase core protein 2
	YPL271W	ATP15	FN	ATP synthase epsilon subunit
	YPL262W	FUM1	FP	fumarase
	YML120C	NDI1	FP	mitochondrial NADH ubiquinone 6 oxidoreductase
	YKL085W	MDH1	\mathbf{FP}	mitochondrial malate dehydrogenase
	YDL067C	COX9	FN	subunit VIIa of cytochrome c oxidase
Ribo	YPL037C	EGD1	FP	β subunit of the nascent-polypeptide-associated
				complex (NAC)
	YLR406C	RPL31B	FN	ribosomal protein L31B (L34B) (YL28)
	YLR075W	RPL10	\mathbf{FP}	ribosomal protein L10
	YAL003W	EFB1	FP	translation elongation factor EF-1 β
Prot	YHR027C	RPN1	FN	subunit of 26S proteasome (PA700 subunit)
	YGR270W	YTA7	FN	member of CDC48/PAS1/SEC18 family of ATPases
	YGR048W	UFD1	FP	ubiquitin fusion degradation protein
	YDR069C	DOA4	FN	ubiquitin isopeptidase
	YDL020C	RPN4	FN	involved in ubiquitin degradation pathway
Hist	YOL012C	HTA3	FN	histone-related protein
	YKL049C	CSE4	FN	required for proper kinetochore function

-

.

Table 6: **Consistently misclassified genes.** The table lists all 25 genes that are consistently misclassified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors are included: a false positive (FP) occurs when the SVM includes the gene in the given class but the MYGD classification does not; a false negative (FN) occurs when the SVM does not include the gene in the given class but the MYGD classification does.

20

CAP 5510 / CGS 5166

Kernel D	F Feature	FP	$_{\rm FN}$	TP	TN
dot-product () 25	5	4	10	12
dot-product 2	25	5	2	12	12
dot-product 5	5 25	4	2	12	13
dot-product 1	0 25	4	2	12	13
dot-product () 50	4	2	12	13
dot-product 2	2 50	3	2	12	14
dot-product 5	50	3	2	12	14
dot-product 1	.0 50	3	2	12	14
dot-product () 100	4	3	11	13
dot-product 2	100	5	3	11	12
dot-product 3	5 100	5	3	11	12
dot-product 1	.0 100	5	3	11	12
dot-product () 500	5	3	11	12
dot-product 2	500	4	3	11	13
dot-product 5	500	4	3	11	13
dot-product 1	.0 500	4	3	11	13
dot-product () 1000	7	3	11	10
dot-product 2	1000	5	3	11	12
dot-product 5	5 1000	5	3	11	12
dot-product 1	.0 1000	5	3	11	12
dot-product (97802	17	0	14	0
dot-product 2	97802	9	2	12	8
dot-product 5	97802	7	3	11	10
dot-product 1	0 97802	5	3	11	12

Dataset	Features	FP	FN	SVM FP	SVM FN
Ovarian(original)	97802	4.6	4.8	5	3
Ovarian(modified)	97802	4.4	3.4	0	0
AML/ALL train	7129	0.6	2.8	0	0
AML treatment	7129	4.8	3.5	3	2
Colon	2000	3.8	3.7	3	3

Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset used and the second is number of features in the dataset. For the ovarian and colon datasets, the number of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients misclassified (FN) is reported. For the AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients misclassified (FP) and the number of successfully treated patients misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two columns report the best score obtained by the SVM on that dataset.

Table 1: Error rates for ovarian cancer tissue experiments.

For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column 2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues classified correctly (TN).

Figure 1: SVM classification margins for ovarian tissues. When classifying, the SVM calculates a margin which is the distance of an example from the decision boundary it has learned. In this graph, the margin for each tissue sample calculated using (10) is shown. A positive value indicates a correct classification, and a negative value indicates an incorrect classification. The most negative point corresponds to tissue HWBC3.

8