
[9] A. Pnueli, The temporal logic of programs, Proceedings of the 18th IEEE Symposiumon Foundation of Computer Science, 1977, 46-57.[10] A. P. Sistla, E. M. Clarke, The Complexity of propositional linear temporal logics,Journal of the ACM, 32(1985), 733{749.[11] W. Thomas, Automata on in�nite objects, Handbook of theoretical computer science,1990, 165{191.[12] M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program ver-i�cation, Proceedings of the 1st Symposium on Logic in Computer Science, 1986,Cambridge, England, 322{331.[13] M.Y. Vardi, P. Wolper, Reasoning about in�nite computations, Information andComputation, 115(1994), 1{37.[14] P. Wolper, Temporal logic can be more expressive, Information and Control,56(1983), 72{99.[15] P. Wolper, The tableau method for temporal logic: an overview, Logique et Analyse,110{111(1985), 119{136.[16] P. Wolper, M.Y. Vardi, A.P. Sistla, Reasoning about in�nite computation paths,Proceedings of 24th IEEE symposium on foundation of computer science, Tuscan,1983, 185{194.

It is evident from the table that the exponential blowup occurs much faster usingthe global construction. This will not only be reected in the memory and time that ittakes to complete the construction, but also during the emptiness check, which takes time(linearly) proportional to the size of the constructed automaton.In model-checking the size of the constructed property automaton is more critical,since one has to take the product of this automaton with the one representing the statespace. Given that the size of the state space is itself also often a problem, it is all themore important that the property automaton be as small as possible.For the same reason, the fact that the algorithm is on-the-y is important. It meansthat the algorithm can often given an answer before the full state space and propertyautomaton have been constructed.Thus, we feel that the algorithm in this paper is a promising and potentially practicalapproach to both model-checking and validity checking: it is simple, it appears to producereasonable sized automata and it operates on-the-y.Acknowledgment. The second author likes to thank Elsa Gunter for helping him withdebugging the ML program.References[1] Y. Choueka, Theories of automata on !-Tapes: a simpli�ed approach, Journal ofComputer and System Science 8 (1974), 117-141.[2] G. Bhat, R. Cleaveland, O. Grumberg, E�cient on-the-y model checking for CTL*,Proceedings of the 10th Symposium on Logic in Computer Science, 1995, San Diego,CA, To appear.[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, J. Hwang, Symbolic model check-ing: 1020 states and beyond, Information and Computation, 98(1992), 142{170.[4] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, Memory-e�cient algorithmsfor the veri�cation of temporal properties, Formal methods in system design 1 (1992)275{288.[5] O. Coudert, C. Berthet, J.C. Madre, Veri�cation of synchronous sequential machinesbased on symbolic execution, Automatic Veri�cation Methods for Finite State Sys-tems, Grenoble, France, LNCS 407, Springer{Verlag, 1989, 365{373.[6] G.J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1992.[7] Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full proposi-tional temporal logic, CAV'93, Elounda, Greece, LNCS 697, Springer{Verlag, 97-109.[8] O. Lichtenstein, A. Pnueli, Checking that �nite-state concurrent programs satisfytheir linear speci�cation, 11th ACM POPL, 1984, 97{107.

and edges only \when needed". This construction globally checks pairs of adjacent nodesin the graph. If they do not satisfy the tableau consistency conditions, one of these nodesis re�ned: it is replaced by a set of nodes that satisfy the consistency conditions. Thealgorithm continues to re�ne nodes until all the edges satisfy the consistency conditions.This involves replacing old nodes by new ones, and adding and removing edges accordingly.With this algorithm, the construction of the automaton needs to be �nished before it canbe used for model-checking.Our construction starts with the checked formula ', constructs a node for it andcontinue to generate the graph in a depth-�rst-search order. The only cases where a nodeis discarded are where it is already found in the list of existing nodes, or when it containsa propositional contradiction. Moreover, it can be used on-the-y. Thus, avoiding theneed to construct the entire automaton if a violation of the checked property was foundduring its intersection with the protocol.6 Experimental Results and ConclusionsThe following table compares the global construction described in [13] and the algorithmdescribed in Section 3. Both were implemented in Standard ML of New Jersey. Here, Fpabbreviates T U p and Gp abbreviates :F:p.Global Construction New ConstructionNum. Formula Nodes Transitions Nodes Transitions Accepts1 p1 U p2 8 34 3 4 12 p1 U (p2 U p3) 26 240 4 6 23 :(p1 U (p2 U p3)) 26 240 7 15 04 GFp1! GFp2 114 763 9 15 25 Fp1 U Gp2 56 337 8 15 26 Gp1 U p2 13 63 5 6 17 :(FFp1 $ Fp1) - - 22 41 2The rightmost column represents the number of pairs in the acceptance table of theconstructed automaton. Notice that for the safety property 3, there are no U subformulassatisfy. Yet, for the automaton to be nonempty, it has to contain a reachable cycle.The formulas that were used in the experiments are the following.GFp1 �! GFp2 This formula can describe a fairness condition: p1 expresses the enabled-ness of some element (e.g., a process, a transition), and p2 the execution of thatelement. Such a formula can be exploited when one wants to check some propertyunder a fairness condition which is not already implemented in the model-checker.p1 U (p2 U p3) and :(p1 U (p2 U p3)) The purpose of these examples is to show that theconstruction does not impose an exponential blowup when negating a formula.:(FFp1 $ Fp1) This can be used to verify that (FFp1 $ Fp1) is a tautology. Unfortu-nately there was insu�cient memory for the ML program for the global constructionto complete.

(i.e., does not appear in the set of formulas of the next state). When all the goals areachieved, one starts with a new set of goals accumulated in the labels of the edge (whichwill later be linked to the goals accumulated in the state of the local automaton). Theeventuality automaton accepts a word whenever all the goals are achieved in�nitely often.The combination of the two automata is done by taking the Cartesian product of thenode sets, and coordinating the edges. The acceptance condition of the product is �xedby the eventuality automaton: any node that has (in its second component) an empty setof goals is accepting.This construction was meant �rst of all to show the theoretical connection between LTLand B�uchi automata and establish its correctness. It was also designed to be applicable totemporal logic extended with operators de�ned by �nite automata [14]. Applied blindly, itsystematically leads to an automaton with a state set of exponential size for the followingreasons.1. Each node in the local automaton of this construction is maximal. Namely, it con-tains each subformula either negated or non-negated. Thus the number of nodes isexponential in the size of the formula (or equivalently in the number of its subfor-mulas, cl(')). This is unnecessary since many of theses nodes are often unreachable.Furthermore, this approach does not allow nodes that only di�er on locally irrelevantmembers of cl(') to be merged.2. The eventuality automaton has states that consist of sets of U subformulas. Thus,it is exponential in the number of U subformulas. This is needed to handle extendedtemporal logics, but is not necessary for the logic we consider here. Indeed, since Uformulas propagate unmodi�ed until their righthand side argument is satis�ed, onecan, as we did here, directly write the requirement that U subformulas are satis�ed asa generalized B�uchi acceptance condition. Furthermore, converting this generalizedB�uchi acceptance condition to a simple one can de done with an increase in thesize of the automaton that is linear in the number of U subformulas, rather thanexponential in this number as in the eventuality automaton approach. (A similarobservation is independently and implicitly made in [2].)3. The nodes are generated in a \global" manner: �rst, all possible nodes are generatedfor both automata. Then, edges are constructed between pairs of nodes if theysatisfy some consistency conditions. Finally, the product automaton is taken. Onlyat the end it is possible to check which nodes are really reachable from the initialstates. This requires an additional search.An improved tableau construction for temporal logic was given in [7]. It constructs agraph (the goal of that paper was checking satis�ability rather than using the translationfor model-checking), but can similarly create the B�uchi automaton that corresponds to atemporal property. This construction indeed uses the above observations to reduce thenumber of states and edges. It is also claimed that it operates \on-the-y", as it startswith the property that needs to be translated, creating an initial graph, and then re�ningthis graph until it corresponds to the appropriate translation. Thus, it constructs nodes

Proof. By induction on the size of the formulas. The base case is for formulas of theform P; :P , where P 2 P. We will show only the case of �U � 2 �(q0). Then, accordingto Lemma 4.1 there are two cases:1. 8i � 0 : �; � U � 2 �(qi) and � 62 �(qi).2. 9j � 08i 0 � i < j : �; � U � 2 �(qi) and � 2 �(qj).Since � satis�es the acceptance conditions of A, only case 2 is possible. But then, bythe induction hypothesis, �j j= � and for each 0 � i < j, �i j= �. Thus, by the semanticde�nition of LTL, � j= � U �. The other cases are treated similarly.Lemma 4.8 Let � be an execution of the automaton A, constructed for ', that acceptsthe propositional sequence �. Then � j= '.Proof. The node q0 is now an initial state, i.e., in I. From Lemma 4.7 it follows that� j= V�(q0). By Lemma 4.5, if q0 2 I then ' 2 �(q0). Thus, � j= '.Lemma 4.9 Let � j= '. Then there exists an execution � of A that accepts �.Proof. First, by Lemma 4.6, there exists a node q0 2 I such that � j= V�(q0) ^XVNext (q0). Now, one can construct the propositional sequence � by repeatedly usingLemma 4.4. Namely, if �i j= V�(qi)^XVNext (qi), then choose qi+1 to be a successor of qithat satis�es �i+1 j= V�(qi+1)^XVNext(qi+1). Furthermore, Lemma 4.4 also guaranteesthat we can choose qi+1 such that if for an U subformula �U� in �(qi), � holds in �i+1, then� 2 �(qi+1). We also know from Lemma 4.1 that �U� will propagate to the successors ofqi unless � holds. Since �i j= � U �, there must be some minimal j � i such that �j j= �.hence by the above, � 2 �(qj).5 Comparison with Previous WorkThe �rst translation from an LTL formula ' to a B�uchi automaton was by Wolper, Vardiand Sistla [16, 13]. It is based on constructing the intersection of two automata. The �rstautomaton takes care of the state-to-state consistency of the runs, and is called the localautomaton. The other automaton, called the eventuality automaton, takes care that theeventualities i.e., subformulas of the type �U , will be satis�ed. The set of formulas cl(')are the subsets of '. Then, each state A of the local automaton consists of the formulasfrom cl('), either negated, or non-negated. The transitions of the local automaton reectconsistency conditions. E.g., if p�!q, i.e., q is a possible successor of p, and XP belongs tonode p, then P must belong to node q. The edges of this automaton are labeled identicallyto the nodes from which they emanate. The initial states of the local automaton are theones that contain the formula ' itself.The second automaton's states consists of a subset of U subformulas of ' . Theseare the set of goals that need to be satis�ed along the execution sequence. The edgesare labeled as in the local automaton. Once the righthand subformula of a U formula(i.e., in ' U) appears on an edge, the U formula is removed from the set of goals

Proof. Directly from the algorithm and the de�nition of LTL.Using the �eld Father we can link each node to the one from which it was split. Thisde�nes an ancestor relation R, where (p; q) 2 R i� Father(q) = Name(p). Let R� be thetransitive closure of R. Nodes q such that Father(q) = Name(q), i.e., (p; p) 2 R are calledrooted. A rooted node p can be one of the following two:1. p is the initial node with which the search started at lines 34{35. Thus, it hasNew (p) = f'g.2. p is obtained at lines 8{9 from some node q whose construction is �nished. Thus,we have New (p) set to Next (q).Let �rst(q) be the node p such that (p; q) 2 R�, and (p; p) 2 R.Lemma 4.3 Let p be a rooted node, and q1; q2; : : : qn be all its same-time descendantnodes, i.e. the nodes qi such that (p; qi) 2 R�. Let � be the set of formulas that are inNew(p), when it is created. Let Next(qi) be the values of the �elds Next for qi at the endof the construction. Then, the following holds:^� ! _1�i�n(^�(qi) ^ X^Next(qi))Moreover, if � j= W1�i�n(V�(qi) ^ XVNext(qi)), then there exists some 1 � i � n suchthat � j= V�(qi) ^ XVNext(qi) such that for each � U � 2 �(qi) with � j= �, � is also in�(qi).Proof. By induction on the construction, using Lemma 4.2.Lemma 4.4 Let � be a propositional sequence such that � j= V�(q)^XVNext(q). Then,there exists a transition q �! q0 in A such that �1 j= V�(q0) ^ XVNext(q0). Moreover,let � = f� j � U � 2 �(q) and � 62 �(q) and �1 j= �g, then in particular there exists atransition q �! q0 such that q0 satis�es also that � � �(q0).Proof. When the construction of node q was �nished, a node r with New (r) = Next (q) =� was generated. Then, Lemma 4.3 guarantees that a successor as required exists.Lemma 4.5 For every initial state q 2 I of an automaton A generated from the formula', we have ' 2 �(q).Proof. Immediately from the construction.Lemma 4.6 Let A be an automaton constructed for the LTL property '. Then'$ _q2I(^�(q) ^ X^Next(q)) :Proof. From Lemma 4.3, since � in that Lemma is initially f'g.Lemma 4.7 Let � = q0q1q2 : : : be a run of A that accepts the propositional sequence �when q0 is taken to be an initial state. Then � j= V�(q0).

however that, if �1 ^ �2 is the righthand argument of an Until subformula � U ,it must still be stored, since it is used to de�ne the acceptance conditions. Similarobservations apply to disjunctions, U and V formulas, but care must be also takento retain the information needed for identifying the acceptance conditions, i.e. therighthand arguments of U formulas. As a consequence, the generated automata maybecome smaller, since nodes that di�ered previously might become identical.� In the case of treating at line 20 a subformula of the type �U , if already appearsin New (q) [Old (q), then there is no need to split the node q into two. It is thensu�cient to move the subformula � U from New (q) to Old (q). The same holdswhen treating a formula of the type �V , and both and � are in New (q)[Old (q).4 Proof of CorrectnessIn this section, the proof of correctness will be sketched. The main theorem is the follow-ing:Theorem 4.1 The automaton A constructed for a property ' accepts exactly the se-quences over (2P)! that satisfy '.Proof. The two directions are proved in Lemma 4.8 and Lemma 4.9 below.Let �(q) denote the value of Old (q) at the point where the construction of the node qis �nished, i.e. when it is added to Nodes Set, at line 10 of the algorithm., Let V� denotethe conjunction of a set of formulas �, the conjunction of the empty set being taken equalto T.Let � = x0x1x2 : : : be a propositional sequence, i.e., a sequence over (2P)!, and let� = q0q1q2 : : : be a sequence of states of A such that for each i � 0, qi �! qi+1. Recallthat �i denotes the su�x of the sequence �, i.e., xixi+1xi+2 : : :.Lemma 4.1 Let � be an execution of A, and let �U� 2 �(q0). Then one of the followingholds:1. 8i � 0 : �; � U � 2 �(qi) and � 62 �(qi).2. 9j � 08i 0 � i < j : �; � U � 2 �(qi) and � 2 �(qj).Proof. Follows directly from the construction.Lemma 4.2 When a node q is split during the construction in lines 21{26 into two nodesq1 and q2, the following holds:(VOld(q) ^ VNew(q) ^ XVNext(q)) !((VOld(q1) ^ VNew(q1) ^ XVNext(q1)) _ (VOld(q2) ^ VNew(q2) ^ XVNext(q2)))Similarly, when a node q is updated to become a new node q0, as in lines 28{31, thefollowing holds:(^Old(q) ^^New(q) ^ X^Next(q)) ! (^Old(q0) ^^New(q0) ^ X^Next(q0))

3.4 Improvements to the Basic AlgorithmAdding Nextime Formulas All that is needed to be able to handle formulas involvingthe Nextime operator (X) is to add an extra case to the algorithm.� = X� =>return(expand([Name(Name(Node), Father(Father(Node),Incoming(Incoming(Node), New(New(Node), Old(Old(Node)[f�g,Next(Next(Node)[f�g], Nodes Set))Pure \On-the-y" Construction. The algorithm presented here generates an LGBAthat can be used for model-checking or checking the validity of a temporal formula. How-ever, one does not have to complete the construction of this automaton in order to dothe model-checking. Construction of nodes can be done \on-demand", while intersectingthem with the protocol automaton. Then, when the successors of a node in the propertyautomaton are constructed, one does not immediately continue to construct their ownsuccessors, and so forth. Instead, one chooses the successors that can match the currentstate of the protocol. Thus, it is possible that a violation of the checked property will bediscovered before generating the entire property automaton.Improving the E�ciency. The algorithm as presented here was written in such a waythat its proof of correctness will be simpli�ed. Therefore, it contains some redundancies.The following improvements can be made:� The �eld Father is not needed, except for the proof of correctness.� When splitting a node (lines 21{26), there is no need to generate two new nodes;instead one can update one of them with additional information, and after gener-ating all its descendents, create the other one. This is also true when adding theconjuncts to a node (lines 28{30).� An eventuality of the form �UT does not generate a set F 2 F . Indeed, such aformula is equivalent to T.� Inconsistencies are only detected at the level of atomic propositions so that nodesthat are semantically inconsistent may still appear in the automaton. Certain incon-sistencies can be detected earlier using syntactic means. For instance, before addinga formula � to a node one can `compute' :� (by pushing the negation inside) andcheck whether it already occurs. If it occurs, the current node is abandoned.� Every processed formula is currently stored in the Old �eld. This is not alwaysnecessary. For instance, after a conjunction �1 ^ �2 has been analyzed, it need notbe added to the Old �eld because both �1 and �2 will be added, and the presenceof these formula tells us that the conjunction will also be true in this node. Note

Father: Node1Father: Node1
Father: Node1Name: Node1

Name: Node3Name: Node2 splitCurrent Old: ;
Next:;

Next:;Current New: f� U gIncoming: init
Incoming: initCurrent Old: f� U gNext:f� U gCurrent New: f�g Incoming: initCurrent New: f gCurrent Old: f� U gFigure 2: Splitting a nodeLet us show that, with these acceptance conditions, one can no longer accept a se-quence in which � U appears from some node qi onwards without occurring later.First, notice that from the construction, if � U 2 Old(qi) and 62 Old (qi+1), then� U 2 qi and 62 qi+1, then � U 2 Old (qi+1). Thus, in the above scenario, � U propagates from qi onwards, since never occurs. Let F 2 F be the accepting subsetthat is associated with � U . Then, none of the states with index greater or equal toi can be in F . But then the sequence � does not contain in�nitely many occurrences ofany state from F , and is not accepting.As explained in the introduction, a protocol is veri�ed w.r.t. a property by construct-ing an automaton for the negation of the property, and by exploring the synchronousproduct of the protocol and the property automaton for emptiness. Since the automa-ton representing the protocol has an empty acceptance condition (F = ;), the productautomaton simply inherits the accepting sets of the property automaton.Checking for emptiness can be done on-the-y, i.e., during the generation of the prod-uct. For a simple B�uchi automaton (one for which F is a singleton), one only needsto �nd a reachable accepting state that is also reachable from itself. An algorithm fordoing this is described in [4]. Furthermore, that paper also shows how generalized B�uchiconditions can also be handled. The idea is to transform a generalized B�uchi automatoninto a simple one. This is done by using a counter: each state becomes a pair hq; ii wherei is a counter. The counter is initialized to 0 and counts modulo n, where n = jFj. It isupdated from i to i+1 whenever one reaches an element of the ith set Fi 2 F . One thenonly needs one set of accepting states, for instance F0 � f0g.

1 record graph node = [Name:string, Father:string, Incoming:set of string,2 New:set of formula, Old:set of formula, Next:set of formula];3 function expand (Node, Nodes Set)4 if New(Node)=; then5 if 9ND 2Nodes Set with Old(ND)=Old(Node) and Next(ND)=Next(Node)6 then Incoming(ND) = Incoming(ND)[Incoming(Node);7 return(Nodes Set);8 else return(expand([Name(Father (new name(),9 Incoming(fName(Node)g, New(Next(Node),10 Old(;, Next(;], fNodeg[Nodes Set))11 else12 let � 2New;13 New(Node) := New(Node)nf�g;14 case � of15 � = Pn, or :Pn or � =T or � =F=>16 if � =F or Neg(�) 2Old(Node) (* Current node contains a contradiction *)17 then return(Nodes Set) (* Discard current node *)18 else Old(Node):=Old(Node)[f�g;19 return(expand(Node, Nodes Set));20 � = � U , or �V , or � _ =>21 Node1:=[Name(new name(), Father(Name(Node), Incoming(Incoming(Node),22 New(New(Node)[(fNew1(�)gnOld(Node)),23 Old(Old(Node)[f�g, Next=Next(Node)[fNext1(�)g];24 Node2:=[Name(new name(), Father(Name(Node), Incoming(Incoming(Node),25 New(New(Node)[(fNew2(�)gnOld(Node)),26 Old(Old(Node)[f�g, Next(Next(Node)];27 return(expand(Node2, expand(Node1, Nodes Set)));28 � = � ^ =>29 return(expand([Name(Name(Node), Father(Father(Node),30 Incoming(Incoming(Node), New(New(Node)[(f�; gnOld(Node)),31 Old(Old(Node)[f�g, Next=Next(Node)], Nodes Set))32 end expand;33 function create graph (')34 return(expand([Name(Father(new name(), Incoming(finitg,35 New(f'g, Old(;, Next(;], ;))36 end create graph; Figure 1: The algorithm

� = � _ Then, the node is split, adding � to New of one copy, and to the other.These nodes correspond to the two ways in which � can be made to hold.� = �U Again, the node is split: for the �rst copy, � is added to New and �U to Next.For the other copy, is added to New. This splitting is explained by observing that� U is equivalent to _ (� ^ X(� U)). This is depicted in Figure 2.� = �V Then, the node is split: is added to New of both copies, � is added to Newof one copy, and �V is added to Next of the other. This splitting is explained byobserving that �V is equivalent to ^ (� _ X(�V)).The copies are processed in DFS order, i.e., when expansion of the current node andits successors are �nished, the expansion of the second copy and its successors is started.The algorithm is listed in Figure 1 in a pseudo-code language. The function new name()generates a new string for each successive call. The function Neg, is de�ned as follows:Neg(Pn)=:Pn, Neg(:Pn)=Pn, and similarly for the boolean constants T and F. Thefunctions New1(�), New2(�) and Next1(�) are de�ned in the following table:� New1(�) Next1(�) New2(�)� U f�g f� U g f g�V f g f�V g f�; g� _ f�g ; f g3.3 Using the Automaton for Automatic Protocol Veri�cationThe graph constructed by the algorithm in Section 3.2 can now be used to de�ne anLGBA accepting the in�nite words satisfying the formula. The set of states Q will bethe nodes returned by the algorithm. Notice that only nodes for which New is empty areplaced in this set. In other words, only fully expanded nodes are returned. The initialstates I are those nodes q such that init 2 Incoming(q). The transitions p �! q areexactly those satisfying that p 2 Incoming(q).The domain D is 2P and the label of a node q is all sets in 2P that are compatiblewith Old (q). Indeed, a node of the graph does not necessarily assign truth values to allatomic propositions, and the label of a node can be any element of 2P that agrees with theliterals that appear in Old (q). Precisely, let Pos(q) be Old (q)\P and Neg(q) be f� j :� 2Old (q)^ � 2 Pg, i.e., Pos(q) and Neg(q) are the positive and negative occurrences of thepropositions in q, respectively. Then, L(q) = fXjX � P^X � Pos(q)^X\Neg(q) = ;g.Finally, we have to impose accepting conditions. Indeed, observe that not every max-imal path � = q0 q1 � � � in the graph determines models of the formula: the constructionallows some node to contain � U while none of the successor nodes contain . This issolved by imposing the generalized B�uchi acceptance conditions. For each subformula of' of the type � U , there will be a set F 2 F which includes the nodes q 2 Q such thateither � U 62 Old (q), or 2 Old (q).

3.2 The algorithmTo simplify the representation of the algorithm, we assume �rst that the given formula' for which the automaton should be built does not contain the Nextime operator `X'.We will show later how to lift this restriction. Without loss of generality, we may furtherassume that the formula does not contain the operators `F' and `G', and that all thenegations are pushed inside until they only precede propositional variables. That is, theformula is �rst transformed to contain only the operators U and V. In fact, the operatorV, which is the dual of the operator `U', was speci�cally introduced in order to allowpushing the negations without causing an exponential blowup in the size of the translatedformula.The line numbers in the following description refer to the algorithm that appears inFigure 1. The algorithm for translating the formula ' starts with a single node (lines 34{35). This node has a single (dummy) incoming edge, labeled init, to mark the fact thatit is an initial node. Thus, by the end of the construction, a node will be initial i� itcontains this label in its list of incoming nodes. It has initially one new obligation in New,namely, ', and the sets Old and Next are initially empty. For example, the upper nodein Figure 2 is the one with which the algorithm starts for constructing the automaton forp U q.With the current node N, the algorithm checks if there are unprocessed obligationsleft in New (line 4). If not, the current node is fully processed and ready to be added toNodes Set. If there already is a node in Nodes Set with the same obligations in both itsOld and Next �elds (line 5), the copy that already exists needs only to be updated w.r.t.its set of incoming edges; the set of edges incoming to the new copy are added to the onesof the old copy in Nodes Set (line 6).If no such node exists in Nodes Set, then the current node is added to this list, and anew current node is formed for its successor as follows (lines 8{10):� There is initially one edge from N to the new current node.� The set New is set initially to the Next �eld of N .� The sets Old and Next of the new current node are initially empty.When processing the current node, a formula � in New is removed from this list. Inthe case that � is a proposition or the negation of a proposition (a literal), then, if :� is inOld (we identify ::� with �), the current node is discarded, as it contains a contradiction(lines 16{17). Otherwise, � is added to Old (if it is not already there).When � is not a literal, the current node can be split into two (lines 21{26) or notsplit (lines 29{31), and new formulas can be added to the �elds New and Next (lines 22{23,25{26,30{31). The exact actions depend on the form of � and are the following:� = � ^ Then, both � and are added to New as the truth of both formula is neededto make � hold.

states. A labeled generalized B�uchi automaton, or LGBA for short, is a triple hA; D; Li,where A is a generalized B�uchi automaton, D is some �nite domain, and L : Q ! 2Dis a labeling function from the states of A to subsets of the domain D (a state has a setof labels from D). An LGBA accepts a word � = x0 x1 x2 : : : from D! i� there exists anaccepting execution � = q0 q1 q2 : : : of A such that for each i � 0, xi 2 L(qi). We also saythat the execution � accepts �.The central part of the automaton construction algorithm is a tableau-like procedurerelated to the ones described in [14, 15]. The tableau procedure builds a graph, which willde�ne the states and transitions of the automaton. The nodes of the graph are labeledby sets of formulas and are obtained by decomposing formulas according to their Booleanstructure, and by expanding the temporal operators in order to separate what has tobe true immediately from what has to be true from the next state on. The fundamentalidentity used to this is �U � _(�^X(�U)). Before describing the graph constructionalgorithm, we introduce the data structured used to represent the graph nodes.3.1 The Data StructureThe data structure we use for representing graph nodes contains su�cient informationfor the graph construction algorithm to be able to operate in a DFS order. A graph nodecontains the following �elds:Name A string that is the name of the node.Incoming The incoming edges represented by the names of the nodes with an outgoingedge leading to the current node. A special name, init is used to mark initial nodes.init is not the name of any node, hence does not represent a real edge.New A set of temporal properties (formulas) that must hold at the current state andhave not yet been processed.Old The properties that must hold in the node and have already been processed. Even-tually, New will become empty, leaving all the obligations in Old.Next Temporal properties that must hold in all states that are immediate successors ofstates satisfying the properties in Old.FatherDuring the construction, nodes will be split. This �eld will contain the name of thenode fromwhich the current one has been split. This �eld is used for reasoning aboutthe correctness of the algorithm only, and is not important for the construction.We keep a list of nodes Nodes Set whose construction was completed, each having thesame �elds as above. We denote the �eld New of the node q by New (q), etc..

cisely, given a �nite set of propositions P, formulas are de�ned inductively as follows:� every member of P is a formula,� if ' and are formulas, then so are :', ' ^ , ' _ , X' and ' U .An interpretation for a linear-time temporal logic formula is an in�nite word � =x0x1 � � � over the alphabet 2P, i.e. a mapping from the naturals to 2P . As made precisebelow, the elements of 2P are interpreted as assigning truth values to the elements of P:elements in the set are assigned true, elements not in the set are assigned false. We write�i for the su�x of � starting at xi. The semantics of LTL is then the following.� � j= q i� q 2 x0, for q 2 P,� � j= :' i� not � j= ',� � j= ' ^ i� � j= ' and � j= ,� � j= ' _ i� � j= ' or � j= ,� � j= X' i� �1 j= ',� � j= ' U i� there is an i � 0 such that �i j= and �j j= ' for all 0 � j < i.We introduce T as an abbreviation for p _ :p, and F as an abbreviation for :T. Wealso introduce additional temporal operators as abbreviations: F' = T U ', G' = :F:'.Finally, we also use the temporal operator V which is de�ned as the dual of U: 'V =:(:' U :).3 A Tableau ConstructionOur goal is to build an automaton (transition system) that generates all in�nite sequencessatisfying a given temporal logic formula '. The automata we build are generalized B�uchiautomata, namely B�uchi automata with multiple sets of accepting states, as opposed tosimple B�uchi automata that have only one set of accepting states [11].A generalized B�uchi automaton [4] is a quadruple A = hQ; I; �!; Fi, where Q is a�nite set of states, I � Q is the set of initial states, �!� Q�Q is the transition relation,and F � 22Q is a set of sets of accepting states F = fF1; F2; : : : Fng. Notice that F canbe empty.An execution of A is an in�nite sequence � = q0 q1 q2 : : : such that q0 2 I and, for eachi � 0, qi �! qi+1. An accepting execution � is an execution such that, for each acceptanceset Fi 2 F , there exists at least one state q 2 Fi that appears in�nitely often in �.The automata we have de�ned so far have no input, and hence do not de�ne anysequences. We thus need to add labels to our automata. The most common approachis to add labels to transitions. Here, we proceed slightly di�erently and add labels to

The automaton corresponding to the property can have as many as 2O(n) nodes where nis the number of subformulas in the property formula [13]. Thus, the size of the productautomaton, which determines the overall complexity of the method is proportional toN � 2O(n), where N is the number of (reachable) protocol states. It is clearly desirableto keep property automata small and to avoid the exponential blowup that can occur intheir construction whenever possible.The standard automaton construction for a temporal logic property [13] (see also [16,8]) is a global one and starts by generating a node for each (maximally consistent) set ofsubformulas of the property. While this is a simple way to describe the construction, itis clearly not a reasonable way to implement it, since it immediately realizes the worstcase exponential complexity. A subsequent construction, proposed as a basis for an im-plementation [7], starts with a two state automaton that is repeatedly `re�ned' until allmodels of the property are realized. Although the worst case remains exponential, thisconstruction often achieves a substantial reduction in the number of generated nodes. Onthe other hand, the algorithm cannot be used on-the-y during a depth-�rst search, asit repeatedly inspects the whole graph and \corrects" it by removing and adding edgesand nodes. Moreover, the emptiness check proceeds by determining and inspecting thestrongly connected components of the automaton and is thus less easily applicable toverifying whether a protocol satis�es a property. It should be said that the authors of [7]were not so much interested in protocol veri�cation as in checking validity of a formulathat include past operators.In this paper we present, and describe experiments with, a pragmatic algorithm forconstructing an automaton from a temporal logic formula. Though having its roots in theconstruction of [13], our algorithm is designed to yield small automata whenever possibleand to be simple to implement. Furthermore, it proceeds on-the-y in the sense that theautomaton is only generated as needed during the veri�cation process. Technically, thealgorithm translates a propositional linear temporal logic formula into a Generalized B�uchiautomaton [4] using a very simple depth-�rst search. The interesting point is that, eventhough the algorithm produces a Generalized B�uchi automaton, a simple transformationof this automaton yields a classical B�uchi automaton for which the emptiness check canbe done using a simple cycle detection scheme as in [4]. The result is that we obtaina protocol veri�cation algorithm in which both the protocol and the property automata(and, hence, the product automaton) are constructed on-the-y during a depth-�rst searchthat checks for emptiness.The rest of the paper starts with some preliminaries de�ning temporal logic and itsinterpretations. Section 3 presents the basic algorithm, discusses optimizations and itsapplication to model checking. The correctness proof occupies Section 4. In Section 5we make some more detailed comparisons with existing constructions. The paper �nisheswith some experimental results and conclusions in Sections 6.2 PreliminariesThe set of well-formed linear temporal logic (LTL) are constructed from a set of atomicpropositions, the standard Boolean operators, and the temporal operators X and U. Pre-

The main dichotomy between approaches to automated protocol veri�cation can be char-acterized as logic-based versus state-space based methods. The former type of methodsproceed by translating both the protocol and its speci�cation into formulas in some formallogic and by showing logical implication of the speci�cation by the protocol formula. Incontrast, state-space based methods proceed by analyzing the possible con�gurations theprotocol can be in, i.e. its state space, and how the protocol evolves from one con�gura-tion to another. None of these methods o�er a uniform advantage; both have strengthsand weaknesses when compared to the other.This paper concentrates on a class of state-space based methods, often called \modelchecking". The idea of model checking is to view veri�cation as checking whether thegraph representing the state space of the protocol satis�es (is a model of) the property tobe checked. Speci�cally, we focus on model checking for linear-time temporal logic formu-las [9]. In this context, what one actually checks is that all in�nite execution sequencesthat can be extracted from the state-space graph satisfy (are models of) the temporallogic formula, or equivalently, that none of these sequences falsi�es the formula.A classical approach to solving this problem [12] is to proceed as follows. One �rstconstructs the state spaces for both the protocol to be veri�ed and for the negation ofthe property, the latter state space thus comprises all execution sequences (models) onwhich the property is violated. The two state spaces are then analyzed for the existenceof a common execution sequence; �nding one means that the property can be violated bythe protocol. Given that one is interested in the in�nite sequences that can be generatedby the two state spaces, these can be interpreted as automata over in�nite words, i.e.,as !-automata [11]. The analysis to be done thus amounts to the standard problem ofchecking if the language accepted by the (synchronous) product of the automata is emptyor not. A general approach for solving this problem proceeds by checking for stronglyconnected components as is done in [8], but one can also reduce the problem to a simplercycle detection for which simpler algorithms can be used [6, 4].The model-checking problem as well as the validity problem for linear temporal logicare PSPACE-complete [10]. In practice, applications of model-checking methods face twocomplexity related limits:1. The size of the automata, both for the protocol and for the property, since the exe-cution time is proportional to the product of the number of nodes in the automata;2. The size of that part of the product automaton that has to be kept in memory inorder to check for emptiness, since available memory sets a �rm bound on the sizeof the problems that can be treated.As to the latter problem, the cycle detection approach of [6, 4] uses a simple depth-�rst-search (DFS) strategy and, in contrast with [8], only needs a small part of the productautomaton to be in main memory at any one time: the part corresponding to the com-putation that the depth-�rst-search is currently exploring. It implies that the protocolautomaton may be constructed on-the-y, i.e. as is needed, while checking for its empti-ness. This means that, if the property does not hold, the algorithm can detect so afterconstructing and visiting only a small part of the state space

Simple On-the-y Automatic Veri�-cation of Linear Temporal LogicR. GerthTechnical University EindhovenDen Dolech 2, Eindhoven, The NetherlandsD. PeledAT&T Bell Laboratories600 Mountain Avenue, Murray Hill, NJ 07974, USAM. Y. VardiRice UniversityDepartment of Computer Science, Houston TX 77251, USAP. Wolper1Universit�e de Li�egeInstitut Monte�ore, B28, 4000 Li�ege, BelgiumAbstractWe present a tableau-based algorithm for obtaining an automaton from a temporal logicformula. The algorithm is geared towards being used in model checking in an \on-the-y"fashion, that is the automaton can be constructed simultaneously with, and guided by,the generation of the model. In particular, it is possible to detect that a property doesnot hold by only constructing part of the model and of the automaton. The algorithmcan also be used to check the validity of a temporal logic assertion. Although the generalproblem is PSPACE-complete, experiments show that our algorithm performs quite wellon the temporal formulas typically encountered in veri�cation. While basing linear-timetemporal logic model-checking upon a transformation to automata is not new, the detailsof how to do this e�ciently, and in \on-the-y" fashion have never been given.KeywordsAutomatic Veri�cation, Linear Temporal Logic, B�uchi Automata, Concurrency, Speci�-cation.1 IntroductionChecking automatically that a protocol, especially a concurrent one with many parallelactivities, satis�es its speci�cation has gained a lot of attention during the last 15 years.1The work of this author was supported by the Esprit BRA action REACT and by the BelgianIncentive Program \Information Technology" - Computer Science of the future, initiated by the BelgianState - Prime Minister's O�ce - Science Policy O�ce. The scienti�c responsibility is assumed by itsauthors.

