Coloured Petri Nets

TOOLS

* editing

* simulation
THEORY « verification
* models
* basic concepts
* analysis methods

PRACTICAL USE

© Kurt Jensen « specification

Department of Computer Science

University of Aarhus, Denmark ’ vall_d_atlo_n
« verification
kjensen@daimi.au.dk * implementation

www.daimi.au.dk/~kjensen/

This slide set can be downloaded from:

Coloured Petri Nets http://www.daimi.au.dk/CPnets/slides/ 1
27/05/2005

What is a Coloured Petri Net?

¢ Modelling language for systems where synchronisation,
communication, and resource sharing are important.

¢ Combination of Petri Nets and Programming Language.

m Control structures, synchronisation, communication,
and resource sharing are described by Petri Nets.

m Data and data manipulations are described by
functional programming language.

¢ CPN models are validated by means of simulation and
verified by means of state spaces and place invariants.

¢ Coloured Petri Nets is developed at University of Aarhus,
Denmark over the last 25 years. H N

Coloured Petri Nets 2
27/05/2005

Why do we make models?

¢ We make models to:

= Learn new things about a
system.

m To check that the system
design has certain

expected properties.

¢ CPN models are dynamic:

m They can be executed on a computer.
m This allows us to play and investigate different scenarios.

Coloured Petri Nets 3
27/05/2005

Overview of talk

Modelling Analysis

¢ Basic language & State spaces
] syntax a full
m semantics

_ m symmetries
¢ Extensions _
m equivalence classes

m modules
a time m sweep-line
¢ Tool support ¢ Place invariants
m editing m check of invariants
m simulation m use of invariants

Coloured Petri Nets 4
27/05/2005

*(1,"Maodellin)+

Simple protocol

1
INTXDATA 1°(2,"g and An")+
1'(3,"alysis b")+
1'(5,"0f Colou")+
1°'(6,"red Petr")+ DATA
) 1'(7." Nets#t")+
n, 1° (8, ") .
P ! if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) (n,p) Transmit | €lse empty (n.p) p<>stop
Packet A Packet then strip
i else sir
! k \ 4
: Int_0_10 1 :
| @ Receive
i Packet
| L T if n=k
i Int_0_10 Npr' e - then k+1
| —.else k if n=k
: ! then k+1
Receive ®‘ Transmit = else k
Acknow. : Acknow.
: INT i Ok(s.,r} : INT
. then 1'n
| else empty
Sender 5 Network Receiver
Coloured Petri Nets 5
27/05/2005
e OlMpPle protocol
INTXDATA 1°(2,"g and An")+
1'(3,"alysis b")+
1°(4,"y Means ")+ T
1'(5,"0f Colou")+
1°'(6,"red Petr")+ DATA
) 1'(7." Nets#t")+
n, 1" (B, A" .
P ! if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) (n,p) Transmit | €lse empty (n,p) p<>stop
Packet Packet then strip
i else sir
Places 1 y
Receive
' Packet
| L T if n=k
i INC_O_10\ ", — then k+1
i —.else k if n=k
: l then k+1
Receive Transmit else k
Acknow. : Acknow.
: INT i Ok(s.,r} : INT
. then 1'n
| else empty
Sender | Network Receiver

Coloured Petri Nets
27/05/2005

INTxDATA

(1,"Modellin")+
2,"g and An")+
JSalysis b")+
'y Means ")+
\"of Colou™)+
,'red Petr")+
Sl Nets#d")+
TR
]

INTXDATA

TN RGN

(mp)@ (n,p)

Simple protocol

Received
DATA

if Ok(s,r) i str | | if n=k

then 1°(n,p) iINTxDATA andalso

else empty (n,p) p<>stop
then strp
else sir

Transitions

.. else k if n=k
then k+1
- ®‘ C else k
INT if Ok(s.r) : INT
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets 7
27/05/2005
wee OlMple protocol
(2,"g and An")+

INTxDATA

Send

"(3.lalvsis b+

Packet

Receive
Acknow.

Sender

Coloured Petri Nets
27/05/2005

Received
DATA

! :) str| | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(mp).("\ (n,p) _| Transmit | ©!se empty (n.,p) p<>stop
ﬁ.\/ Packet then strip
else str

! k h 4

: Int_0_10 1 .

: @ Receive

Packet

| L e if n=k

i Int_0_10 ~pr' e — then k+1

i —.else k if n=k

| 5‘ then k+1

O‘ Transmit else k
D C
: Ack .
n P if Ok(s,r) CKNOW n =

. then 1'n

| else empty

5 Network Receiver

] Simple protocol

INTXDATA 1:[2."g anld An")+
17(3,"alysis b")+

‘m 1(4,"y Means ")+ -, = - Received
e Initial Marking
1°(8,"red Petr")+ TA
1°(7," Nets##")+
(n,p) 1°(8, " HHHHHRHEE)

: if Ok(s,r) , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso

Send (np) _~~ (n,p) else empty (n,p) p<>stop
Packet @ B then strp
| else str

Transmit
Packet

-
e
RS

o 1 (BP) 1 ‘ v
fnt_0_1 Receive
Packet
8 @ L INT i =k
Int_0_10 R then k+1
.. else k if n=k
n

I then k+1
Receive else k
Acknow. D
n if Ok(s,r)

INT :
then 1'n

else empty

Transmit
Acknow.

Sender | Network Receiver

Coloured Petri Nets 9
27/05/2005

Marking of Send

1" (1,"Modellin") +
1" (2,"g and An") +

INTXDATA ‘ 1" (3,"alysis b") +
1" (4,"y Means ") +
1" (5,"of Colou") +
1" (6,"red Petr") +
17 (7,"i Nets##") +
1° (8,"##HHHEHHE")
Number of tokens l

Multi-set of

token colours

Coloured Petri Nets
27/05/2005

e OlMple protocol

1
INTXDATA 1'(2."g and An")+
1'(3,"alysis b")+
1°(5,"of Colou")+
1°(6,"red Petr")+ DATA
1°(7." Nets#")+
17 (8, R) |
; i Ok(S:r} i str if n=k
XOATA then 17(n,p) INTxDATA andalso
Send ~, (n.p) Transmit | €lse empty . (n.p) B
Gl then strip
else sir
v
Receive
, Packet
if n=k

Receive
Acknow.

Transmit
Acknow.

(e
n if Ok(s,r)

***** . then k+1
T.else k if n=k
then k+1
C else k
n
INT

INT
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets 1 1
27/05/2005
Simple protocol
INTXDATA (2"
1°(3," 1
1'(5,"
1°(8," DATA
(n.p) e
n, 1'(8," .
P { if Ok(s,r) str | |if n=k
then 1°(n,p) InTxpAaTA andalso
Send (n,p) Transmit | €lse empty (n,p) p<>stop
Packet Packet then strip
else str
k v

Int_0_10 (1 "

(NextRed L’ Receive
L INT Packet

if n=k
Int_0_10 ~pr' e - then k+1
h else k if n=k
: then k+1
Receive /] D‘ Transmit else k
Acknow. n }w if Ok(s,r) Acknow. n r

then 1°n
else empty

1

Coloured Petri Nets
27/05/2005

2

ol

e OlMple protoc
INTXDATA 1°(2,"g and An")+
1'(3,"alysis b")+
1'(5,"0f Colou")+
1°(6,"red Petr")+ DATA
) 1'(7." Nets#t")+
n, 1° (8, ") .
P ‘ ! if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n.p) | Transmit | €IS€ empty (n.,p) p<>stop
Packet Packet then strp
else sir
Buffer places T
Receive
Interface fa
if n=k
: then k+1
Receive Transmit else k
Acknow. n j if Ok(s,r) Acknow.
. then 1'n
| else empty
Sender 5 Network Receiver
Coloured Petri Nets 1 3
27/05/2005
—1 Simple protocol
1'(2,"g and An")+
] 1'(3,"alysis b")+
1'(5,"0f Colou")+
1°'(6,"red Petr")+ DATA
) 1'(7." Nets#t")+
n, 1" (B, A" .
P ‘ _ if Ok(s.r) , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) p<>stop
e [Packets to be sent |& then i
else sir
1 1 <
INT ! 8 Packet
| RA) L mr if n=k
i Int_0_10 ~pr' e — then k+1
i T—..else k if n=k
: ! then k+1
Receive @‘ Transmit = else k
Acknow. : Acknow.
: INT i Ok(s.,r} : INT
. then 1'n
| else empty
Sender 5 Network Receiver

Coloured Petri Nets
27/05/2005

14

e OlMpPle protocol
INTXDATA 1 (2"g and An")+
1'(3,"alysis b")+
1'(5,"of Colou")+
1°'(6,"red Petr")+ DATA
) 1°(7," Nets##")+
n, 1°(8, "SHHHHEHE .
P ‘ - if Ok(s.) , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (np) _~~ (np) Transmit | &!se empty (n.p) p<>stop
Packet A Packet then strip
i else str
i K \ 4
: Int_0_10 1 :
| @ Receive
! Packet
5 L T if n=k
i INC0_10 Npr e — then k+1
Telse k if n=k
then k+1
Transmit C else k
Acknow. h Acknow.
il Ok(s.,r} : INT
. then 1'n
| else empty
Sender i Network Receiver
Coloured Petri Nets 1 5
27/05/2005
e OlMpPle protocol
INTXDATA 1 (2"g and An")+
1'(3,"alysis b")+
1'(5,"of Colou")+
1°(6,"red Petr")+ DATA
) 1°(7," Nets#")+
n, 1°(8, "HHHHHEHIE .
P ‘ - if Ok(s.r) , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) (‘\ (n,p) Transmit | &!se empty (n.p) p<>stop
Packet 'a_‘/ Packet then strip
else sir
! h J
; Int_0_10 :
! Receive
Packet
. Int_0_10
if n=k
: | then k+1
Receive ®‘ Transmit else k
Acknow. : Acknow.
"o i Ok(s.,r} INT
. then 1'n
| else empty
Sender | Network Receiver

Coloured Petri Nets
27/05/2005

16

*(1,"Maodellin)+

Simple protocol

1
INTXDATA 1°(2,"g and An")+
1'(3,"alysis b")+
1'(4,"y Means ")+ ; '
@ 1°(5,"of Colou")+ '
1'(6,"red Petr")+
1°(7." Nets##")+
(n,p) 1'(8, #####.L.LI.L) if Ok(s.r) | —
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n.p) ~ (.p) . p<>stop
Packet a Data received | tensw
i else sir
Int_0 TD 1 :
| @ Receive
i Packet
| “(RA) L wr if n=k
i Int_0_10 Npr' e — then k+1
| —.else k if n=k
: ! then k+1
Receive ®‘ Transmit = else k
Acknow. : Acknow.
o i Ok(s.,r} : INT
. then 1'n
| else empty
Sender 5 Network Receiver
Coloured Petri Nets 1 7
27/05/2005
e OlMpPle protocol
INTXDATA 1°(2,"g and An")+
1°(3,"alysis b")+
1'(4,"y Means ")+ B @
1°(5,"of Colou")+
1°(6,"red Petr")+ DATA
1°(7." Nets#")+
1°(8, "S- .
: if Ok(s.r) . str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
(n,p) .C\ (n.p) | Transmit | €!S€ empty (n.p) p<>stop
ﬁ.\/ Packet then strip
else sir
| K h 4
; Int_0_10 1 :
| @ Receive
Packet
, L T if n=k
i Int_0_10 ~pr' e — then k+1
i —.else k if n=k
: ! then k+1
Receive @‘ Transmit = else k
Acknow. : Acknow.
"o i Ok(s.,r} : INT
. then 1'n
| else empty
Sender 5 Network Receiver

Coloured Petri Nets
27/05/2005

18

| b = "Modeliin" |

INTXDATA __+1(2 g and An"
(g \+ 1°(3,"alysis b")
"+ 1°(4,"y Means ")
+ 1°(5,"of Colou")
+1°(6,"red Petr")
+1°(7,"i Netst##")
+ 1°(8, "HHHHHHHE")

1°(1,"Modellin"

Send packet
¢ The binding

<n=1 ,B="Modellin"> (1,p

is enabled.

INTXDATA
¢ When the binding occurs it (n.p)

adds a token to place A.

& This represents that the @ 11 Modelin’)
packet (1,"Modellin")
is sent to the network. L

¢ The packet is not removed it
from place Send and the

NextSend counter is not
changed. E

Coloured Petri Nets 1 9
27/05/2005
u
1'(1,"Modellin")+ Slmple prOtOCOI
INTxDATA 1'(2."g and An")+
1°(3,"alysis b")+
@ 1°(4."y Means ")+ - @
1°(5,"of Colou")+
1°(6,"red Petr")+ DATA
(n.p) 1°(7." Nets##")+
n,p 17(8, "SRR
! if Ok(s,r) str if n=k
INTXDATA then 1°(.'NTxDATA andalso

else str

Send (n,p)('-\ (n,p) Transmit elseempty (n,p) p<>stop
Packet '5_‘/ Packet then strip

-
e
—
RSy

8
Int_0_10 @ 1 y
Receive
8 Packet

, L T if n=k

i Int_0_10 e then k+1

i else k if n=k

i then k+1
Receive @‘ Transmit 5‘ else k

Acknow. n if Ok(s,r} Acknow.

then 1°n
else empty

Sender 5 Network Receiver

Coloured Petri Nets
27/05/2005 20

Transmit packet r 1. .10

if Ok(s

INTXDATA INTXDATA
— then 1°(n,p)

else empty

n=1,
¢ All enabled bindings are on the form:
m <n=1,p= "Modellin",s=8,r=...>

Coloured Petri Nets - Where r 61) 10

27/05/2005 21
if Ok(s,r)

Loss of packets |then 1°(np)

else empty

¢ The function Ok(s,r) checks whether r <'s.

m Forr 1. .8, OKk(s,r)=true.
The token is moved from A to B. This means
that the packet is successfully transmitted
over the network.

m Forr €9. .10, Ok(s,r)=false.
No token is added to B. This means that the
packet is lost.

¢ The CPN simulator makes random choices

between bindings: 80% chance for successful
transfer.

Coloured Petri Nets
27/05/2005

22

2,"g and An")+
JSalysis b")+
'y Means ")+
\"of Colou™)+
,'red Petr")+
Sl Nets#d")+
TR

INTxDATA

(n,p)

TN RGN

if Ok(s,r)

! i
INTXDATA then 1°(n,p) iINTxDATA

Transmit | €IS€ empty

e OlMple protocol

send | (np)_~ (n.p)
Packet @

Packet

—

B

I(‘:p

N

(=]
T

Transmit

e

Receive ®‘
Acknow. n if Ok(s,r)

if n=k
andalso
p<>stop
then strp
else sir

then k+1
else k

Acknow. n
INT
. then 1'n
| else empty
Sender | Network Receiver
Coloured Petri Nets
27/05/2005 23
Receive packet)
if n=k
¢ The number of the NTYDATA :an =
. . <>st
incoming packe then stinp
and the number Qf the else str
expected packe (1) 1@ Modelin)
are compared.
|
INT
Coloured Petri Nets 2 4

27/05/2005

Correct @ (1) 1" Wodeling and A’
packet number

if n=k
¢ The data in the packet is m [
concatenated to the data @ }ehlse

already received.

(1)1°(3,"alysis b")
N -

¢ The NextRec counter is
increased by one. . \{

@%\/‘l Receive
¢ An acknowledgement Packet

. . (1)13 ifngk

is sent. It containsthe ~'m the
number of the next packet eIser 13
the receiver wants to get. the

else

Coloured Petri Nets
27/05/2005 25

ived) (1)1"Modelling and An"
Wrong Received) (1)1vecetng
packet number

if n=k
andalso
str | p<>stop

¢ The data in the packet is @ (n.p) then strp
ignored. 7 el
(1)1'(2,"g and An")
N2 -
¢ The NextRec counter is
unchanged. . y
NextRec I Receive
¢ An acknowledgement Q Packet
. . (1) 13 if n=k —
is sent. It contains the '~ 'gg theguet
number of the next packet e's ek
the receiver wants to get. thep gt
-]
Coloured Petri Nets 26

27/05/2005

(1

INTXDATA (2

1'(3

Csena 118

1°(5.

1'(6

1°(7

(n,p) 1'(8

Send

Packet

' Modellin")+
"g and An")+
JSalysis b")+

"y Means ")+
,"of Colou")+
. red Petr")+

[Nets#")+
|

INTXDATA

Simple protocol

(mp)@ (n,p)

Transmit

if Ok(s,r)

i
then 1°(n,p) iINTxDATA

else empty

" (Received
DATA

str

(n.p)

Packet

e
i

1
Packet

e

k h

if n=k
andalso
p<>stop
then strp
else sir

if n=k
then k+1
else k if n=
then k+1
5‘ else

k

Receive Transmit k
Acknow. ®‘fOk (s,1)
. then 1'n
| else empty

Sender i Network Receiver
Coloured Petri Nets
27/05/2005 27

Transmit acknowledgement
8
@
Int_0_10
s
Q if Ok(s.1) n e
INT then 1'n INT
else empty 1
\\l/ 12
¢ This transition works in a similar way
as Transmit Packet.
¢ The marking of RA determines the

Coloured Petri Nets Success rate. 28

27/05/2005

]
e OlMple protocol
INTXDATA 1°(2,"g and An")+
1'(3,"alysis b")+
1'(5,"0f Colou")+
1°(6,"red Petr")+ DATA
.0) 1'(7." Nets##")+
n, 1 (8, "HHEHHEHIE) .
P ! if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (n,p) (n,p) Transmit | €lse empty (n.p) p<>stop
Packet A Packet B then strip
i else str
k h 4
Int_0_10 1 .
@ Receive
Packet
L e if n=k
| int_0_10 e then k+1
; TTelse k if n=k
) i then k+1
Receive Transmit else k
Acknow. n D if Ok(s,r) Acknow. n c
INT INT
then 1°n
else empty
Sender Network Receiver

Coloured Petri Nets
27/05/2005

29

Receive acknowledgement

¢ When an acknowledgement arrives to the Sender
it is used to update the NextSend counter.

m |In this case the counter value becomes 2,
and hence the Sender will begin to send

Coloured Petri Nets
27/05/2005

packet

number 2.

30

Intermediate state

¢ Receiver expects nwnoan
packet no. 6.

¢ Sender is still
sending packet
no. 5.

¢ Acknowledgement
requesting packet
no. 6 is arriving. "’

¢ Then NextSend

(1,"Modellin")
(2 "g and An")
“(3,"alysis b")
“(4,"y Means ")
*(5."of Colou™)
*(6,"red Petr")
(7" Nets##")
(8. " FHEHHHENE)

INTXDATA

@ 1""Modelling and

Analysis by Means of
Colou”

Transmit

if Ok(s.r) i
then 1°(n,p) fNTXDATA

DATA T

if n=k
andalso
sir p<=>stop

e
-

T

i Receive ST
IS updateq and Acknow. n (-@‘lfom_s,r} /T\cknow.t
Sender will start @QN‘T bon o
sending packet ..

no. 6 Sender

Coloured Petri Nets
27/05/2005

Network

else empty (n,p) then strp
@ else str
H
11°(5," ")

e

L

Receive
Packet

if n=k
then k+1
else k

Receiver

31

CP-nets has a formal definition

¢ The existence of a formal definition is important:

m Basis for simulation, i.e., execution of the CP-net.

m Basis for the formal verification methods (e.g.,
state spaces and place invariants).

m Without the formal definition, it would have been
impossible to obtain a sound net class.

¢ It is not necessary for a user to know the formal

definition of CP-nets:

m Correct syntax is checked by the CPN editor.

m Correct semantics is guaranteed by the CPN
simulator and the CPN verification tools.

Coloured Petri Nets
27/05/2005

32

High-level Petri nets

¢ The relationship between CP-nets and ordinary
Petri nets (PT-nets) is analogous to the relationship
between high-level programming languages and
assembly code.

m In theory, the two levels have exactly the same
computational power.

m In practice, high-level languages have much more
modelling power — because they have better
structuring facilities, e.g., types and modules.

¢ Several other kinds of high-level Petri Nets exist.
However, Coloured Petri Nets is the most widely used
— in particular for practical work.

Coloured Petri Nets
27/05/2005 33

Overview of talk

Modelling Analysis
¢ Basic language & State spaces
] syntax a full
m semantics .
m symmetries

¢ Extensions

equivalence classes

m modules
a time m sweep-line
¢ Tool support ¢ Place invariants
m editing m check of invariants
m simulation m use of invariants

Coloured Petri Nets
27/05/2005 34

CP-nets are used for large systems

¢ A CPN model consists of a number of modules.

m Also called subnets or pages.
m Well-defined interfaces and clear semantics.

¢ A typical industrial application of CP-nets has:
m 10-200 modules.
m 50-1000 places and transitions.
m 10-200 types.

< Industrial applications of this size would be totally
impossible without:
m Data types and token values.
s Modules.
m Tool support.

Coloured Petri Nets

27/05/2005 35
1'(1,"Modellig")+ M d I
INTXDATA 1 (2" and Ag")+ oauies
17(3,"alysis b+
1'(5,"of Coloff')+
1'(8,"red Petff)+ DATA
1°(7." Nets#f')+
(n,p) 1°(8,"#HHHEE) if Ok(s.r) N
INTPATA then 1°(n,p) nTxpAaTA andalso
Send (n,p) (n,p) Transmit | €lse empty (n,p) p<>stop
Packet Packet then strip
else sir
@ ¥
Int_0_1 1 L] :
(_NextReq L T:,eciwe
acket
B r if n=k
LSS R then k+1
—Jelse k if n=k
: then k+1
Receive /] D‘ Transmit else k
Acknow. n }. if Ok(s,r) Acknow. n
' I
then 1°n
else empty
Coloured Petri Nets 36

27/05/2005

Three different modules
Sender Receiver

1'(1,"Modellin')+
INTXDATA 11279 and A"y
1.{3,:aIyMsws by - @
(Send) ey Means) Network oaT—T1

1°(5,"of Colou")+

[out] | | [in]
k A 4

- 1
Int_0_10 Receive
INT Packet

if n=k

Receive @ ; | Transmit . (')
Acknow. n INT

Acknow. i
n i mr 1FOk(s.r) T

1°(6,"red Petr")+
1°(7,"i Nets##")+
(n,p) 1°(8, M) if Ok(s,1) str| |if n=k
INTxDATA andalso

INTXDATA INTXDATA then 1°(n,p) INTxDATA (np) o
Send (n,p) 6 (n.p) | Transmit | &'se empty .. tphen stg\p
.® Packet else str

Packet

8
mrom then k+1
else k if n=k
[n] ; [in] Out| then k1
©‘_) else k

then 1°'n
else empty

¢ Port places are used to exchange tokens

Coloured Petri Nets between modules.
27/05/2005

37

Abstract view
Protocol

INTXDATA INTXDATA

Network Receiver

DATA

Sender

INTXINT

& Substitution transitions refer to modules.

coloured Petri Nots ® S0CKet places are related to port places.
27/05/2005

38

Modules can be reused

Protocol

Sender

INTXDATA

Network

INTXINT

I
INTXDATA

INT

Receiver

RecNo2

Receiver

DATA

DATA

Coloured Petri Nets

27/05/2005

39

Protocol with multiple receivers
Network

Sender

INTxDATA

1°(1,"Modellin")+
1'(2,"g and An")+
1°(3,"alysis b")+

R
1°(5,"of Colou™)+

1°(6,"red Petr")+
1°(7." Nets##")+

(n,p) 1 (8, #HHHHHE)
INTXDATA
Send (n,p)
Packet (:)
/ [Out]
n

Receive
Acknow.

INTXDATA

() (n,p) :

if Ok(s.r1) INTxDATA
then 1°(n,p) @
else empty.
Transmit
Packet
INTXDATA

[in]

Int_0_10

Int_0_1

if Ok(s,r2)
then 1°(n,p)

else empty

8

D D>

if Ok(s,r)

Coloured Petri Nets

27/05/2005

then 1°(n.1) Transmit
m else empty Acknow.
INT
INTXINT
if Ok(s.r) Transmit ¢ n (:a
then 1°(n 2:> Acknow.
else empty INT
5 [in]
&
Int_0_10

Receiver

110 |

DATA K

str| |if n=k
INTxDATA andalso
(n,p) p<>stop
9 then strp
IEI else str
1 k h 4
Receive
Packet
INT if n=k
then k+1
else k if n=k
m then k+1

©‘_) else k

INT

40

Transmit packets

INTxDATA

@

(n.p)

Int_0_10

Transmit

Packet

if Okis.ri) INTxDATA
then 1°(n,p)

else empty

INTXxDATA
if Ok(s,r2)
then 1 (n,p)
else empty

¢ Packets are broadcasted to the two receivers.
m Some of the packets may be lost.

Coloured Petri Nets

27/05/2005 41
Transmit acknowledgments
8
Int_0_10 @
5
if Ok(s,r) N "
then 1(n,1) ransmi n
INT
INTxINT
g if Ok(s.r) Transmit ¢ n @
then 1(n.2) 1 Acknow.
else empty INT
5
(Y
Int_0_10
Coloured Petri Nets
27/05/2005 42

Receive acknowledgments

min{n1.n2)

Receive
) [D
Acknow. 1°(n1,1)+

1 . I: n E - 2 | | .If-,_; :"-_,{ | -II'-I_JI :,"

& The sender follows the slowest receiver.

Coloured Petri Nets
27/05/2005

Hierarchical descriptions

¢ We use modules to structure large and complex
descriptions.

¢ Modules allow us to hide detalils that we do not
want to consider at a certain level of abstraction.

¢ Modules have well-defined interfaces, consisting of
socket and port places, through which the modules
exchange tokens with each other.

& Modules can be reused.

Coloured Petri Nets
27/05/2005

(rect, ™) ++

. (rec2,~) Received
Another solution REMQ

¢ Multiple receivers (rec, i n=k
may also be _ RECXINTXDATA (rec,str) ”1“
modelled by adding (rec,(n.p)) then strp
a new component to else str)
the token colours.
¢ Similar changes 1
for Transmit Packet [fee3)™ trec))
2ng Tra?sdmit t - Receive
cknowledgment. :
g RECX.II.""UI T (rec’”' n=k PHCKEt
then k+1
else k} ,
(rec,if n=k
then k+1
else k)
Coloured Petri Nets
27/05/2005 RECxINT 45
Protocol for ISDN network
Message
UserToNetwork
NetworkToUser
Message
¢ Most abstract view of the system.
Coloured Petri Nets 46

27/05/2005

Overview of user site

URE
o (NetworkToUser)
4 e T
Message

UlntReq

(IntUserReq)

A \4 A4 A v vV Vv
uo Ul U2 U3 ud 7 us U u10 U1l ui12 ui19
Yy Vv
- » UserToNetwork)« J J v

”ﬂ”Message

Coloured Petri Nets
27/05/2005 47

Typical module

InternalUserReq (u,m) NetworkToUser
7 (Wetwork
UintReq / Message
(u,{mt=CLEAR_REQ, (u,m)

[#mtm =
REL_COM,

ai=Callref cref}) /
AV
CLEAR_REQ [#mtm = [#mt m = DISC, [#mt m = REL,
CONN_ACK, — cref=#crm
cref= #cr m] cref=#cr m]] cref= #cr m]

[#mtm = \

cref= #cr m]

t{mtDSC (u{mt = REL_COM, \ (u, {M/
cr=cref, cr = cref,

STATUS_ENQ,

cr=cref,
ai=null}) ai = null}) ai=Status 8})
Message
UserToNetwork o S
Out
(u,cref,b) (u,cref,b) (u,cref,b)
UserState UserState UserState

UserState

¢ This module describes the actions that can
happen when the user site is in state U8.
Coloured Petri Nets

2710512005 ¢ The node shapes have a meaning in SDL. 48

NetworkToUser
Message

Typical transition

type MessageRec =
record mt: MessageType
* cr : CallReference
* ai : MessageData,
type Message =
product User * MessageRec;

Status Enquiry
message [#mtm =

.) (ucrefb,s) o status ENQ,
reCEIved N UserState cref=#cr m]
state US.

type UserState =
product User
* CallRef
* BChanName
* HoldStatus;

(u, {Mt=STATUS,
cr=cref,
ai=Status 8})

UserToNetwork

Message

¢ Guard checks:
m Message is a Status Enquiry message.
m Call Reference is correct (i.e., matches the
one in the User State token at place U8).

¢ A Status message is sent to the network site.

g;f;;zg:et” Nets |t tells that the user site is in state U8. 49

Some modules are used many times

i”ISDN#L) Prime { DECLARE#4 |
N —— N -
Networks
SO TSER TOP#2) o{UREG GEN39) "NET_TOP#19 i ROUTING#24 | { N_SETUP#22 }
s [N v (. J \ J)
uo ¢ NO
N=—t{ NULL#3 }—oi NULL_SET#5 | N=—p{ NULL#20 }——o{ U_SETUP#21 }
U1l N2
»{ CALL_INI#6 IN——>{ OVERLAP#29 }—— { N_HOLD#44 ja—
U2 ey N3 m—————————y
N"_s{ OVERLAP#9 } N= > OUTGOING#26 ﬁ
S / | Sty Jﬁ
u3 \ N4 pmm==———=—=== \
Nt/ OUTGOING#15} 5 U_HOLD#45)<t N——{ CALL_DEL#28}
Ud e V.
N—{ CALL_DEL#16) {N_E_PART#27} {N_D_PART#31)
T S . ! U_PROG#41 }
' ooTmosmmms]
N—b{ CALL_REC#11] N——>{CALL_PRE#38
U8 e,
N—{ CONNECT#12 }
U9 o,
N—{INCOMING#13 } J
Smmmm e g I)
Vlo T {U_REL_Co#40) N
N—>{ “ACTIVERT | — N—{ INCOMING#37)
ULl ey NIO prmemmemeeee
ol BISCONNERS | - {ACTIVERSE J
UL2 ey 1 oy
o BISCINDHE) I~ o{ISCONERS)
U19 pmmmmm e m [NE T ——
" p{ RELEASE#L7 | N—+{ DISCONNE#34}

& 43 modules with more than 100 instances.

Coloured Petri Nets

27105/2005 & Entire model was made in only 3 man-weeks. 50

Time analysis

¢ CP-nets can be extended with a time concept. This
means that the same modelling language can be
used to investigate:

m Logical correctness.
Desired functionality, absence of deadlocks, etc.

m Performance.
How fast is the system and how many resources
are used.

Coloured Petri Nets 51
27/05/2005

How to add time

¢ Time has been added to Petri net models in many
different ways — typically by specifying delays on
places or transitions.

CPN model

O‘/ data value (token colour)

token \

time value (time stamp)

¢ Time stamp determines when the token can be used,
i.e., consumed by a transition.

m Delays can be fixed.
m Determined by an arbitrary distribution.

Coloured Petri Nets
27/05/2005 52

A timed CP-net for protocol

Retrans-
mission
delay

Coloured Petri Nets
27/05/2005

INT¥DATA
Z_Send " Received
A paTA” T[4
npy | (n,p)@+wait
) i if n=k
" -}..'!1;4 » if OK{s.r) . r;'!'. - andalso
12 then 1°{np) 404 slr pe=slop
Send (n,p) (.-'—':\ (mp) Transmit alse emply B n.pj then strp
Packet N Packet alse sir
1
1
@+9 |
!
n Ll
qa T e
B
IRP, 1
1 .--F-. 0 e "
 NextSend > | 1 NextRec J
INTTT - e Vo —
J i [l if =k
L““"«..“ then k+1

alse k

T

8
(RA
Int_0_10 "~ -~
2

Receive
@)‘. -
n it DIK(5.r)

Acknow.
tham 1'n

Blse armply

Transmit
Acknow.

Receiver

53

Sender

MNetwork \

Variable delay

Fixed delay

Application areas
Protocols and Networks

LA X X X R R R R X X 2

Intelligent Networks at Deutsche Telekom

IEEE 802.6 Configuration Control at Telstra Research Labs
Allocation Policies in the Fieldbus Protocol in Japan

ISDN Services at Telstra Research Laboratories

Protocol for an Audio/Video System at Bang & Olufsen
TCP Protocols at Hewlett-Packard

Local Area Network at University of Las Palmas

UPC Algorithms in ATM Networks at University of Aarhus
BRI Protocol in ISDN Networks

Network Management System at RC International A/S
Interprocess Communication in Pool IDA at King's College

Software

*

*
*
*
*
*
*
*

Coloured Petri Nets
27/05/2005

Mobile Phones at Nokia

Bank Transactions & Interconnect Fabric at Hewlett-Packard
Mutual Exclusion Algorithm at University of Aarhus
Distributed Program Execution at University of Aarhus
Internet Cache at the Hungarian Academy of Science
Electronic Funds Transfer in the US

Document Storage System at Bull AG

ADA Program at Draper Laboratories

54

Control of Systems

¢ Security and Access Control Systems at Dalcotech A/S
Mechatronic Systems in Cars at Peugeot-Citroén in France

L 2
¢ European Train Control System in Germany
¢ Flowmeter System at Danfoss
¢ Traffic Signals in Brazil

¢ Chemical Production in Germany

¢ Model Train System at University of Kiel

Hardware

& Superscalar Processor Architectures at Univ. of Newcastle

¢ VLSI Chip in the US
¢ Arbiter Cascade at Meta Software Corp.

Military Systems

¢ Military Communications Gateway in Australia
¢ Influence Nets for the US Air Force

¢ Missile Simulator in Australia

¢ Naval Command and Control System in Canada

Other Systems

¢ Bank Courier Network at Shawmut National Coop.
¢ Nuclear Waste Management Programme in the US

Coloured Petri Net
270052005 55
Overview of talk
Modelling Analysis
m syntax | = full
m semantics _
_ m symmetries
¢ Extensions val |
= modules m equivalence classes
a time m sweep-line
¢ Tool support ¢ Place invariants
m editing m check of invariants
m simulation m use of invariants
Coloured Petri Nets 56

27/05/2005

Computer tools

¢ Design/CPN was developed in the late 80'ies I
and early 90'ies.

2t

» Until recently, it was the most widely used Petri net
package.

» Used by 1000 different organisations in more than 60
countries — including 200 commercial companies.

¢ CPN Tools is the next generation of tool support for
Coloured Petri Nets.

= It has now replaced Design/CPN with 2500 users in
more than 100 countries.

m Development started in 1999 and a total of
25 man-years have been used.

m Development continues with an

expected effort of 3-4 man-years per year
Coloured Petri Nets 57
27/05/2005

CPN Tools and Design/CPN

The functionality of the two tools is the same:
¢ Editing and syntax check of CP-nets.

& Interactive and automatic simulation.

¢ Construction and analysis of state spaces.
¢ Communication with other tools.

¢ Simulation based performance analysis.

¢ Graphical animation of simulation results.

Coloured Petri Nets
27/05/2005 58

What is new in CPN Tools?

¢ Windows XP. Later versions will also support Linux.

¢ On-the-fly, incremental syntax check.

¢ Much more efficient simulation engine in particular for:

m Models with many tokens.

m Timed models.

& New user interface with a number of state-of-the-art
interaction mechanisms:

m No menu bars and (nearly) no dialogues boxes.
m Tool palettes.

m Circular marking menus.

Coloured Petri Nets
27/05/2005

59

[CPN Tools
- History
¥ Tool hax

B ALiliary

Binder 4
Receiveril)
F Create
L=
- Hierarchy
»Met
¥ Simulation
»Ctatespace
B Style 1
#Help
B Options
¥ HierarchicalProtacal.can
Step 0
Time: 0
¥Declarations
wcolor [INT
#-color DATA

eviRec
.16
INT

B-color INTxDATA
wcolor INTxINT

Fyar nkntln

Bvar p st

Bval stop = "ReR
#color Tend

1‘1| then k+1

elsek

np) o
str the| "
elsi

4

Binder &
Receiver(1)

Receive
Packet

n=k

if n=k
then k+1
else k

»calar Tent
Byl 5
Bvar 1l
B fun Okiz:Tend,:Tenl)= ‘Binder 3
wfun iminfiintjinti= Top
¥Top

Sender

Metwark

Receiver (1)

Receiver (2

Close

: Binder -
Binder12 .
color IMNTx

color INTT Unde Redo
Delsta
Binder

Metwork Receiver (1) Receiver{2) Sender

INTHDATA

INT=DATA

INTDATA

Itk

171] then k+1

else k

INT

Mane

ifn=k
andalso
p==stop
then strp
else sh

RecMol

= 1

<) B

Metwork

EREY.L)

DATA

™ 01

DATA

INTHIMNT

IMT
Hierarhical Protocol

Creat
J

e Hierarchy

=lalx]

®
(]

X r

(>

60

Standard ML

¢ Types, arc expressions and guards are specified
in Standard ML, which is a strongly typed,
functional programming language developed by
Robin Milner.

¢ Data types can be:

m Atomic (integers, strings, booleans and
enumerations).

m Structured (products, records, unions, lists,
and subsets).

¢ Arbitrary complex functions and operations can
be defined (e.g., using polymorphism).

¢ Standard ML is well-known, well-tested and very

general. Several text books are available.

Coloured Petri Nets 61
27/05/2005

Support for hierarchical models
Database ==

-

7 Sent
Mesis) Mo .
MES
Update Receive
Send Messages

and a
! I

Message |
I
(s.r)
[(!
|II|| MES | W8 Y

I |I||
" Mes(s) I

|II Active | C' 'nused g Jass, -,-2: jHe-:ewed;
] - sl S
||III f:n? ||||| S
s.r
III|I Mes(s) I|I.3. (s.1)
Lt .
Receive all Send an

Acknowledg-
ments

Acknowledg
ment

Ackno\..-IequJ ™

MES

¢ We want to move the selected part to a new module.

Coloured Petri Nets 4 This is done by a single operation. 62
27/05/2005

. Sockets (interf
Abstract view [Sockets (interface)

Database ==
Substitution
Update sl transition
and o
Send Messages
L ||I||
€ || Mes(s)
...--------.||||' —-1 "I",,,,,,,,,mu
I|: Active | UrILI:._.J | |r IS ive
I:I"""""'I|I Hl— — |||"':' @
L
el Mes(s) ||||h
L
Receiva all
Acknowledg- (s) Name Of
ments I new module

G e 63
. . Name of
Detailed view new module |

Recaive
a
Message

Send an

Acknowledg-
| ment

Interfaces and detailed relationship
between the two modules

are automatically determined by the

CPN editor.

Coloured Petri Nets
27/05/2005

64

Simulation of CP-nets

¢ When a syntactical correct CPN diagram has been
constructed, the CPN tool generates the necessary code to
perform simulations.

m Calculates whether the individual transitions and
bindings are enabled.

m Calculates the effect of occurring transitions and
bindings.

¢ The syntax check and code generation are incremental.
Hence it is fast to make small changes to the CPN diagram.

¢ We distinguish between two kinds of simulations:

m |[n an interactive simulation the user is in control,but
most of the work is done by the system.

= In an automatic simulation the system does all the work.

Coloured Petri Nets 65
27/05/2005
INTXDATA 1(1,"Modellin™)
_— +1°(2,"g and An") @ .
2 . B * 1°(3,"alysis b") 1""Modelling and T N rad
I nte ra ctlve '“-?en?_--—" - 1(4."y Means °) Analysis by Means of \REECEVEE’
+ 1°(5,"of Colou”) Colou” DATA r
+ 1°(6,"red Petr")

+ 1°(7,"i Nets##")
P (8)

simulation

_ if n=k
if Ok(s.r) andalso

INT XD.J" \TA

(n.p) {n,p)
A

1
1
then 1'{np) INTxDATA str| |p<>stop

Transmit glse empty {n,p) then strp
Packet B else sir

Send
Packet

Yo
{_NextSend

INT -

(De-
n if Oke(s,r)

Sender Network Receiver
¢ Simulation results are shown directly on the CP-net.
m Transitions are chosen by the user or the simulator.

Coloured Petri Nets

27/05/2005 = User can observe all details and set breakpoints. 66

Automatic simulation

¢ The user does not intend to follow the simulation:

m Simulation can be very fast - several
thousand steps per second.

m User specifies some stop criteria, which
determine the duration of the simulation.

m When the simulation stops the graphics of the
CP-net is updated.

m Then the user can inspect all details of the
graphics, e.g., the enabling and the marking.

¢ Automatic simulations can be mixed with
interactive simulations.

¢ To find out what happens during an automatic
simulation the user has a number of choices.

Coloured Petri Nets

27/05/2005

Simulation report

1 SendPack@(1:Top#1){n=1,p="Modellin"}
2 TranPack@(1:Top#1){n=1,p="Modellin",r=6,s=8}
3 SendPack@(1l:Top#1){n=1,p="Modellin"}
4 TranPack@(1l:Top#l){n=1,p=""Modellin",r=3,s=8}
5 RecPack@(1:Top#l) {k=1,n=1,p="Modellin",str=
6 SendPack@(l:Top#1l){n=1,p=""Modellin'}

ITransition I I Module I

Coloured Petri Nets 68

27/05/2005

Message sequence chart

Sender Network Receiver
1 1 1 1
SendPack: o
(1,"Modellin™)
TranPack:
(1,"Modellin™)
RecPack: o
(1,"Modellin*™)
SendAck:
2
Ack Host: 2
[
SendPack:
(1,"Modellin™)
TranPack: o
(1,"Modellin™)
SendPack:
(1,"Modellin™)
1 1 1 1
Coloured Petri Nets
27/05/2005 69
01 2 3 45 6 7 8 9 10 Packets
Business oo M .
charts pack2 —— i
pack3 | . ;| UEnroute
pack4 - . DLorst
packs || 4 | Failures
Dack6 _ISuccesses
Packet No .
0 Packets Received
9 -+ 1 L 1
3 7 8 9 10
Z
6
5
4
3
2
1 Step No.
20 40 60 80 100 120 140 160 180 200

Coloured Petri Nets
27/05/2005

70

Automatic code generation

¢ CPN models are often used to specify and
validate new software.

¢ It is also possible to implement the software by
automatic code generation.

m This method has been applied to develop a
system for access control to buildings.

m The source code for the final implementation
was generated automatically from the CPN
specification - by extracting parts of the
Standard ML code used by the CPN simulator.

m The approach is only adequate for systems
that are not time critical and systems that are

produced in small numbers.

Coloured Petri Nets 71
27/05/2005

Overview of talk

Modelling Analysis
¢ Basic language & State spaces
= syntax a full
m semantics :
m symmetries

¢ Extensions

equivalence classes

m modules
a time m sweep-line
¢ Tool support ¢ Place invariants
m editing m check of invariants
m simulation m use of invariants

Coloured Petri Nets
27/05/2005 72

State spaces

¢ A state space is a directed graph with:
m A node for each reachable marking (i.e., state).
= An arc for each occurring binding element. ﬁ

| transition + binding |

Deadlock

=

Coloured Petri Nets
27/05/2005 73

State space tool

¢ State spaces are often very large.

¢ The CPN state space tool allows the user to:
m Generate state spaces.

m Analyse state spaces to obtain information
about the behaviour of the modelled
system.

¢ Generation is totally automatic while analysis
is automatic or semi-automatic (based on
queries from the user).

Coloured Petri Nets
27/05/2005 74

State space report

¢ Generation of the state space report takes
often only a few seconds.

m The report contains a lot of useful
information about the behaviour of the
CP-net.

m The report is excellent for locating errors
or to increase our confidence in the
correctness of the system.

Coloured Petri Nets
27/05/2005 75

W b

| | Snieo
. INTXDATA ther 'h'lll;fn INTXDATA str p- .\‘[.,[_..
if Ok
then empty
alse 1'e
1 ‘ v
Limit @ Ze <: (NextRec Receive
s : Packet
"@ 11 if n=k
if Ok then k+1
then empty else k f n=k
else 1o \ then k+1
Receive O Transmit e
Acknow. < n D) If Ok Acknow. <
INT then 1'n
¢ To obtain a finite state space, we:
m Only have 4 packets.
= Limit the number of tokens on A, B, C, and D.
Coloured PetriNets o Binary choice between success and failure. 76

27/05/2005

State space report for protocol

Occurrence Graph Statistics

Nodes: 428

Arcs: 1130
Secs: 0

Status: Full

Scc Graph Statistics

Nodes: 182

Arcs: 673

Secs: 0

Comea e ot 77

Integer bounds

A, B, C, D, Limit: 0-2
NextSend, NextRec, Received: 1
Send: 4

¢ Integer bounds tell the maximal and
minimal number of tokens on the
individual places.

Coloured Petri Nets
27/05/2005 78

Integer bounds
O 1°(1."Mod’)

1°(2,"g and An")
+ 1°(3,"alysis&==")

If n=k
I 1Ok I andalso
TxDATA sir p+ -\1[|||'|

then strip
then empty

- else sir
-2
alse 1'e
. ‘ 4
imit 2e| 0. Receive
@ 0-2 T —]_Packet

if Ok /

If Ok

then empty if n=k
6lse 1's \ then k+1
Receive (Transmit e
Acknow. < n \@‘ If OK Acknow.
NT then 1'n
0-2 | _
Coloured Petri Nets 79

27/05/2005

Upper multi-set bounds

A, B: 2'(1,"Modellin") + 2°(2,"g and An") +
2°(3,"alysis##") + 2° (4, "HHHHHHE")

C, D: 22+23+24+25
Limit: 2'e

NextSend,

NextRec: 1T1+12+13+14+15

Received: 1'"" + 1™ Modellin" +
1""Modelling and An" +
1""Modelling and Analysis##"

Send: 1°(1,"Modellin™) + 1°(2,"g and An") +
1°(3,"alysis##") + 1" (4,"#HHHHHHHHE")

Coloured Petri Nets 80
27/05/2005

Home and liveness properties

Home Properties
Home Markings: [235]

Liveness Properties
Dead Markings: [235]
Live Transitions: None

I NextSend = 5
: NextRec =5
I \Received = "Modelling and Analysis##"\

235| Marking no. 235 is the desired final
marking where all packets have been
received in correct order.

Coloured Petri Nets
27/05/2005

81

Investigation of dead marking

¢ Marking 235 is the only dead marking.

m This implies that the protocol is partially
correct (if execution stops it stops in the
desired final marking).

¢ Marking 235 is a home marking.

m This implies that we always have a
chance to finish correctly (it is impossible
to reach a state from which we cannot
reach the desired final marking).

Coloured Petri Nets
27/05/2005

82

Fairness properties

Send Packet: Impartial
Transmit Packet: Impartial
Receive Packet: No Fairness
Transmit Acknow: No Fairness
Receive Acknow: No Fairness

& Fairness properties tell how often
the individual transitions occur.

Coloured Petri Nets
27/05/2005 83

Investigation of shortest path

¢ We want to find one of the shortest paths
from the initial marking to the dead marking.

val path = (> val path =)
NodeslInPath(1,235);| | [1,2,3,4,6,8,10,15,20,27,50,
64,80,102,133,164,179,192,
 201,215,235] : Node list

J
Length(path); (> 20 : int)
Query Answer

Coloured Petri Nets
27/05/2005 84

Drawing of shortest path

DisplayNodePath [1,2,3,4,6,8]; |(> () : unit)

¢ We want to investigate

the beginning of the Recei
calculated shortest path.

Coloured Petri Nets
27/05/2005

NextSend: 171 1
NextRec: 1°1 1:1
ved: 170

SendPack:
{p="Modellin",n=1}

NextSend: 171

NextRec: 171

E: 17 (1, "Modellin")

Received: 1°""
TranPack:
{p="Modellin",n=1,0k=true}

NextSend: 171

NextRec: 1°1 3

B: 17 (1, "Modellin") 1:1

Received: 1°""
RecPack:
{str="", p="Modellin",
n=1,k=1}

NextSend: 171
NextRec: 1°2 4

2:2

C: 172

Received: 1™ "Modellin"®

85

Draw more complex subgraph

RecPaclk:

27/05/2005 |Feceived:

NextSend: 171 {str="Modellin",
NextRec: 12 4 p="Modellin", n=1,k=2}
C: 1°2 2:2 ™
Received: 1~ "Modellin"” Y
TranAck Trandck:
{n=2,0k=true} {n=2,0k=false}
Llbasellee e NextSend: 1°1
NextRec: 172 NextRec: 1°2
D: 172 Received: 1" "Modellin®
Received: 1" "Modellin"
Rec%ck SendPack:
[n=2,k=1} {p="Modellin",n=1}
NextSend: 1°2 NextSend: %“1
NextRec: 1°2 Next?ec: 1°z2 .
Received: 1" "Modellin" A: 17(1,"Modellin"]
Received: 1" "Modellin"
SendPack: TranPack:
{p="g and &n",n=2} {p="Modellin",n=1,0k=true}
NextSend: 172 NextSend: 171
NextRec: 172 NextRec: 1°2
Coloured F |&: 17{2,"g and An") B: 17({1,"Modellin")

1" "Modellin”

Received:

1" "Modellin®

Non-standard queries

Receive

if Ok
then empty
else 1'e

Can the NextSend counter be decreased?

Coira ot 87
Query in Standard ML
PredAllArcs
(fn a => ((ms_to_col(Mark.NextSend 1
(SourceNode a))) >
(ms_to_col(Mark.NextSend 1
(DestNode a))));
>[973,951,934,921,920,895,894,845,844,818,817,
753,729,663,648,587,573,567,517,499,497,429,
428,360,310,271,233] : Arc list
Yes!
Coloured Petri Nets 88

27/05/2005

Counter example

DisplayArcs [973];

C> (): unit)

NextSend = 4
NextRec = 5
Received =
and Analysis##"

"Modelling

NextSend = 3

NextRec = 5

Received = "Modelling
and Analysis##"

B = 17 (4, "###H#H#H#H##")
D =13 B = 17 (4, "#####H##4")
RecAck = {n=3,k=4}
Coloured Petri Nets 89
27/05/2005
wwenne - IMProved protocol
INTXDATA 1°(2,"g and An")+
1°(3,"alysis b")+ -
1°(5,"of Colou")+
1°(6,"red Petr")+ DATA
p) 1°(7." Nets#t")+
n, 17 (8, "SRR .
P ‘ ! if Ok(s,r) , str | | if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (mp).("\ (n,p) _| Transmit | ©!se empty (n.,p) p<>stop
Packet '5_‘/ Packet then strip
else sir
| K h 4
: Int 1
| @ Receive
Packet
, L T if n=k
i T—..else k if n=k
: ! then k+1
Receive @‘ Transmit = else k
Acknow. : Acknow.
: INT ﬁOk@f} : INT
. then 1'n
| else empty
Sender i Network Receiver
Coloured Petri Nets 90

27/05/2005

Temporal logic

¢ |t is also possible to make state space queries
by means of a CTL-like temporal logic.

m States.
m Transitions.
m Binding elements.

Coloured Petri Nets
27/05/2005

91

State spaces - pro/contra

¢ State spaces are powerful and easy to use.
m Construction and analysis can be automated.

= No need to know the mathematics behind the
analysis methods.

¢ The main drawback is the state explosion, i.e., the
size of the state space.

m The present version of our tool handles graphs
with one million states.

m For many systems this is not sufficient.

Coloured Petri Nets
27/05/2005

92

Statistics — full state spaces

Coloured Petri Nets

Limit: 1 2 3 4 5 6
Original | 33 428 3,329 | 18,520 | 82,260 310,550
Nodes Max 33 293 1,829 9,025 37,477 136,107
Ratio 1.0 1.46 1.82 2.05 2.19 2.28
Original | 44 | 1,130 | 12,825 | 91,220 | 483,562 | 2,091,223
Arcs Max 44 764 6,860 | 43,124 | 213,902 | 891,830
Ratio 1.0 1.48 1.87 2.12 2.26 2.34
Original 0 0 3 41 560 7,686
Secs Max 0 0 2 16 153 1,634
Ratio | -~ | --—- 1.5 2.56 3.66 4.70

m Intel Pentium lll, 1GHz, 1 GB RAM
93

27/05/2005

Coloured Petri Nets

Condensed state spaces

¢ Fortunately,it is sometimes possible to construct
much more compact state spaces — without
loosing information.

¢ This is done by exploiting:
s Symmetries in the modelled system.
m Other kinds of equivalent behaviour.

m Progress measure.
m Concurrency between events.

94

27/05/2005

Protocol with multiple receivers

Network
Sender o o Receiver

INTXDATA 1(27g and An')+ INTXDATA
Hi:ﬁ:‘ai)*’ @_. Transmit - —
ns ")
@ 1'(5,"f Colou")+ (n.p) Packet eceive
DATA 4

1'(6,"red Petr")+)
1°(7," Nets##")+ IE' . if Ok(s,12) @
(n,p) 1" (B, ") . hen 1'(n,p) t .
= 6lse empty str| |if n=
LLte 2y Int_0_10 = INTxDATA andalso
Send (n,p) (n,p) p<>stop
Packet .

then strp

" (&)
! Out Int_0 w IE' else str
: k

1°(1,"Modellin")+

" [in]
. ‘ if Qk(s.r) T " 1 "'
1 then 1°(n,1) ransmit | g n (:) R ivi
Nexisend else empt Acknow. Peci f
INT INT INT if n=k acee

then k+1
INTXINT f Okiart Transmit N else k if n=k

i hen 1°(n.2 Acknow. then k+1
Receive else empty INT ©‘_/ else k
Acknow. N

k n

Coloured Petri Nets
27/05/2005 95

State space for three receivers

Receive
Packet

[c.-| [[c] [cB][.Bc][cB]|[BC|[cB |[BC_| [CBB||BCB]|BBC]

¢ The red nodes are equivalent (or symmetrical).

¢ They also have equivalent:
m direct successors,

m enabled binding elements.
Coloured Petri Nets 96

27/05/2005

Condensed state space
for three receivers

Y
BB | [DBB]| [cCB |-

1y

21 nodes instead
of 62 nodes
Coloured Petri Nets

27/05/2005

97

Symmetries

¢ A symmetry is a function ¢ that maps:
m markings into equivalent markings,
m binding elements into equivalent binding elements.

¢ A symmetry specification is a set of functions
® c [MuUBE — M u BE] such that:

x Voe®: (9| M)e[M > M] A (6| BE)e[BE — BE].
m (®,°) is an algebraic group.

Each element of @ is called a symmetry.

Coloured Petri Nets
27/05/2005 98

Equivalent markings

¢ Two markings M and M* are equivalent iff there exist
a symmetry ¢ that maps M* into M:

M=, M* & Fped: M = ¢p(M*).
¢ Two binding elements b and b* are equivalent iff

there exist a symmetry ¢ that maps b* into b:
M=, M* < 3Fded: b = ¢(b*).

¢ (®,°) is an algebraic group. This implies that
=, and =, are equivalence relations.

Coloured Petri Nets
27/05/2005 99

Consistency

¢ We demand that equivalent markings must have:
m equivalent direct successors,
m equivalent enabled binding elements.

¢ A symmetry specification ® is consistent iff the
following properties are satisfied for all symmetries
¢e®, all reachable markings M,, M, and all binding
elements b:

= M2 M, o oM,) 22 p(M,).
= ®(Mo) = My,

Coloured Petri Nets
27/05/2005 1 00

Protocol with multiple receivers

¢ Symmetries are defined as consistent permutations

of receiver-1Ds:

m \When we model each receiver by a separate
module we permute the markings of these
modules.

m \When we model all receivers by a single module

(adding a new component to the token colours)
we permute the colour values in the type:

REC = {rec,, rec,, recs,...}.

Coloured Petri Nets
27/05/2005

101

Construction of state spaces
with symmetries

¢ State spaces with symmetries are constructed
in the same way as ordinary state spaces,
except that:

m Before adding a new node we check whether
the marking is equivalent to the marking of
an existing node.

m Before adding a new arc we check whether
the binding element is equivalent to the
binding element of an existing arc (from the
same source node).

Coloured Petri Nets
27/05/2005

102

What can we prove from state
spaces with symmetries?

¢ State spaces with symmetries can be used to
investigate the same kinds of behavioural properties as
ordinary state spaces, but only modulo equivalence.

¢ As an example, this means that:

m We cannot investigate whether a certain marking is
reachable itself.

m Instead we can investigate whether there is an
equivalent marking which is reachable.

Coloured Petri Nets
27/05/2005 1 03

Statistics — symmetries

Limit = Receivers 2 3 4 5 6
(3 packets) | (2 packets) (2 packets)
Full 921 22,371 172,581 486,767 5,917,145
Nodes Sym 477 4,195 9,888 8,387 24,122
Ratio 1.93 5.33 17.45 58.04 245.30
Full 1,832 | 64,684 | 671,948 | 2,392,458 | 35,068,448
Arcs Sym 924 11,280 32,963 31,110 101,240
Ratio 1.98 5.73 20.38 76.90 346.39
Full 2secs| 4mins | 1991 mins | - | -
Time Sym 3secs | 2mins 8 mins 8 mins 1 hour
Ratio 0.7 2.0 239 | - | -
Perms n! 2 6 24 120 720

g;?::stgzg:etri Nets m Prototype implementation in 1998. 104

We can be more general

¢ We have defined the equivalence relations for
markings and bindings elements from a set of
symmetry functions.

¢ Instead we may define the equivalence relations
directly (i.e. from scratch).

¢ An equivalence specification is a pair (=, ,=,:) where:

m =, is an equivalence relation on the
set of all markings.

m =, iS an equivalence relation on the
set of all binding elements.

Coloured Petri Nets
27/05/2005 1 05

Consistency

¢ As before, we demand that equivalent markings
must have:

m equivalent direct successors,
m equivalent enabled binding elements.

¢ An equivalence specification (=, ,=;) is consistent iff
for all reachable markings M,, M,, M and all binding
elements b:

M=, M, A M, 2>M =
IM*=,M Tb*=, b: M,—2> M*.

Coloured Petri Nets
27/05/2005 1 06

State spaces with
equivalence classes
¢ State spaces with equivalence classes are

constructed in the same way as state spaces
with symmetries.

¢ They can be used to investigate the same kinds
of behavioural properties.

& State spaces with symmetries is a special case
of state spaces with equivalence classes.

Coloured Petri Nets
27/05/2005 1 07

Intermediate state of protocol

¢ Receiver expects wmoam {1 Modelio) o
pglic N g e
packet no. 6. O i O Jvectinte .~ Qeceived)
+1°(5,"f Colou") Colou” DATA y
+1°(6,"red Petr')
; ; +1°(7." Nels##"
& Sender is still © o) oot
I INTXDATA "
Sendlng paCket Send (n.p) O (np) Transmit ic-nSlsotrp"p
no. 5. Packet A else str
¢ This packet will " |
I 1 ¥ ! Int_0_10 ™ i :
:)e Igr;gred' NextSend Receive
tis old. INT : i 8 Packet
! Int_0_10 b

¢ This acknowledg-
ment will also

Receive
Acknow.

Transmit
Acknow.

n if Ok(s,r)

H INT hen 1°n INT
Ibte' Igr;gred " :Is(: -:j-ln;')l;,- @1‘6 i
is old. ! !
Sender i Network | Receiver
Coloured Petri Nets 1 08

27/05/2005

Equivalence relation
¢ A marking M(p) where p is one of the network

places A,B,C,D is split into two parts:
= M(p) = M(P)oLp + M(P)new

} t

Old packets/acks All remaining packets/acks

¢ Two markings M, and M, are equivalent iff:
= Mi(p) =M,(p) for pe{A,B,C,D}

= |My(P)oro| = [MaP)orpl for pe{A,B,C,D}
= M(Pvew = Ma(Pnew

Coloured Petri Nets
27/05/2005 1 09

Two equivalent states

INTXDATA 1°(1,"Modellin)
— + 1°(2,"g and An") ?\ .
8+ 1°(3,"alysis b") [1) 1""Modelling and Ty i
Send Q+ 1°(4,"y Means ") k“"’ Analysis by Means of @?
+ 1°(5,"of Colou") Colou” DATA
+ 1°(6,"red Petr")
(n,p) +1°(7."i Nets##")
+ 1°(8 BB . . if n=k
' if Ok(s,r) i andalso
INTxDATA then 1°(n,p) INTXDATA str | |p<>stop
Send (n,p) O (n,p) Transmit else empty (n,p) then strp
Packet A Packet else str
1

1'6 ifn=k
then k+1

else k
if n=k
then k+1
else k
f Ok(s.r
then 1
zlse empty

Coloured Petri Nets @ 1 1 0

27/05/2005

Statistics — equivalence classes

Limit: 1 2 3 4 5 6
Full 33 | 293 | 1,829 | 9,025 | 37,477 | 136,107
Nodes | Equiv | 33 155 492 1,260 | 2,803 | 5,635
Rato | 1.0 | 189 | 3.72 7.16 13.37 | 24.15
Full 44 | 764 | 6,860 | 43,124 | 213,902 | 891,830
Arcs Equiv | 44 | 383 | 1632 | 5019 | 12,685 | 28,044
Rato | 1.0 | 199 | 4.20 8.59 16.86 | 31.80
Full 1 1 6 56 642 7,507
Secs Equiv 1 1 7 36 157 553
Ratio | 1.0 1.0 0.9 1.56 4.09 13.58
cotoured PetriNeta ™ Sun Ultra Sparc 3000, 512 MB in 1997. 111

27/05/2005

Timed protocol

(6,"red Petr) @ [0] DATA
(n.p)@+wail 1 (7."i Nets#") @ [0]
@ - - (8,"HHHHHHAI") @ [0] ifn=k

1°100 n
" | it OK(s.r) | andalso
100 INTxDATA then 1°(n,p} INTxDATA str| |p<>stop

@ sait Send (n.p) @ (n.p) Transmit else empty (n.p) then strp
— Packet - Packet olse str
o @+9 @ 1'5 @ [796] @+DEL()
Ny n
Qfsers | Dfr+era) v
1 .
INT ' Packet
N if n=k
then k+1 @+17
D15 @s03
Receive - if n=k
< fD «— Transmit < Lme
Acknow. n itoKis.n | Acknow. else k
~ INT then 1'n — NT
@+7 | else emply @+DEL()
Coloured Petri Nets 1 12

27/05/2005

Creation time 787

1°(1,"Modellin") @ [218]
1(2,"g and An") @ [234]
1°(3,"alysis b") @ [324]
1°(4,"y Means ") @ [741]
1°(5,"of Colou") @ [887]
T
T
T

1"Modeliing and

Analysis by Means of
Coloured Pefri Nets=="

>0

Timed protocol

(1,"Modellin") |@ [0]
'(2,"g and An") |@ [0]
*(3,"alysis b") |@ [0]
‘(4,"y Means ") |@ [0]
*(5,"of Colou") |@ [100]
*(6,"red Petr") |@ [0]
(7,"i Netst#t") |@ [0]
“(8,"HitHHHHHA") |@ [0]

)
P D O

P} ':(::\- +wai

INTXDATA

walt Send {n,p) (\ n.p) Transmit else empty
A

Packet

Packet

" e ©)

1 Ko rsee ||
Qextsend)

Creation time 787

>0

1"Modeliing and

Analysis by Means of -)
Coloured Pelri Nets==" Receive
DATA

if OK(s.ry |
then 1°(n,p) INTxDATA

in.ph

ifn=K
andalso
str| |p<>stop
then str'p
else str

1
Receive
. A2 Packet

then k+1
. max(n,k) else k
Q)@ |
Receive f) Transmit
Acknow. . n D ‘n OK(s,n | Acknow. « I
- INT then1'n - INT
@+7 else empty @+DEL()

Coloured Petri Nets

@+17

if n=k
then k+1
else k

113

27/05/2005
| |
1'(1,"Modellin")+ S pl p t I
INTXDATA 1°(2,"g and An")+ I m e ro oco
1°(3,"alysis b")+ B
@ 1'(4,"y Means ")+ @
1°(5,"of Colou")+
1'(6,"red Petr")+ DATA
1°(7." NetstHt")+
(n,p) 1°(8, "HeHHA) Ok .
: if n=
INTXxDATA then 17°(.fNTxDA TA andalso
Send (n,p) N (n,p) Transmit o
i el then stri‘t
else str

The two counters
are monotonously
increased.

Receive ®‘
Acknow. n if Ok(s,r)

INT

Transmit
Acknow.

-l

e
e
T
-

else empty (P
1 h 4

Receive

Packet
L INT if n=k

then 1'n

Sender

Coloured Petri Nets
27/05/2005

| elseemptyl They can be used as
i a progress measure. ceive

MMMMM then k+1
..else k if n=
then k+1
else

k

k

114

Progress measure
* PM : STATES > A < o pirtararder < |

¢ Monotonous (non-decreasing):
X Y

O »CO

[PmM(x) s Pm(Y) '

¢ Protocol: (NextSend,NextRec)

lexicographical ordering.
Coloured Petri Nets 1 1 5
27/05/2005

States sorted by progress measure

Initial
state

Progress measure

Coloured Petri Nets
27/05/2005 1 1 6

Construction of state space

+1¢ All nodes to be processed

gl are in front of the sweep-line.

N e A Al S 1N LA

2l ¢ All arcs go left-to-right or

vertical.

’ s _ IS

¢ All new nodes are added in
front of the sweep-line.

o T T e T

¢ We do not need the nodes
behind the sweep-line. They
can be deleted from memory.

sweeprline

() Processed
[J Unprocessed

Coloured Petri Nets
27/05/2005 1 1 7

We continue the construction

sweep-line

¢ The sweep-line moves from left to right.
m In front of it, we add new nodes.

Coloured Petri Nets m Behind it, we remove nodes.
27/05/2005

118

Statistics — sweep-line

Limit: 1 2 3 4 5 6
Full 33 293 1,829 9,025 37,477 | 136,107
Nodes | Sweep 33 134 758 4,449 20,826 | 82,586
Ratio 1.0 2.19 2.41 2.03 1.80 1.65
Full 44 | 764 | 6,860 | 43,124 | 213,902 | 891,830
Arcs Sweep | - | - | | e | e | -
Rato | - | -——- | —— | = | - | -
Full 0 0 2 16 153 1,634
Secs Sweep 0 0 0 9 93 1,083
Ratio 1.78 1.65 1.51
m Intel Pentium lll, 1GHz, 1 GB RAM
Cospen et 119
Statistics — sweep-line | Limit=4 |
Packets: 4 5 6 7 8
Full 9,025 20,016 38,885 68,720 113,121
Nodes | Sweep 4,449 8,521 14,545 22,905 33,985
Ratio 2.03 2.35 2.67 3.00 3.33
Full 43,124 99,355 198,150 | 356,965 596,264
Arcs Sweep | - | o | e | e | e
Rato | -—-— | - | = | | -
Full 12 41 125 345 864
Secs Sweep 7 21 57 152 359
Ratio 1.71 1.95 219 2.27 2.41

Coloured Petri Nets
27/05/2005

s AMD Athlon 1.33GHz, 512 MB RAM

120

Sweep-line method — pro/contra

¢ We can construct larger state spaces, since we do not
need to have all states in memory at the same time.

¢ In a timed CP-net we can use the global clock as a
progress measure — time does not go backwards.

¢ “Problems”:
m Analysis must be done on the-fly.

m To deal with reactive systems we need to be able to
usSe NoN-monotonous progress measures.

m Counter examples are more difficult to construct,
since part of the state space has been deleted from
memory.

Coloured Petri Nets
27/05/2005 1 21

Overview of talk

Modelling Analysis

¢ Basic language & State spaces
] syntax a full
m semantics

m symmetries

¢ Extensions _
m equivalence classes

m modules
a time m sweep-line
¢ Tool support ¢ Place invariants
m editing m check of invariants
m simulation m use of invariants

Coloured Petri Nets
27/05/2005 1 22

Place invariants

& The basic idea is similar to the use of invariants in
program verification.

¢ An invariant describes a property which is fulfilled
for all reachable states.

m We first construct a set of place invariants.
m Then we check whether they are fulfilled.

m Finally, we use the place invariants to prove
behavioural properties of the CP-net.

Coloured Petri Nets
27/05/2005 1 23

Logo of Petri net community

Coloured Petri Nets
27/05/2005 1 24

Distributed data base

Receive
a
Message

Waitin @ @@ i i Performing

DBM DBM
Send an
Acknowledg-
ment
Coloured Petri Nets MES 125
27/05/2005

Data base managers

DBM = {d(1),d(2),d(3)}

1°d(1) + 1°d(2) + 1°d(3)

Update
and
Send Messages

v
Receive

> a
Message

s(s

DBM

Recelve all
> Acknowledg
ments

Coloured Petri Nets MES
27/05/2005 1 26

Message buffers

MES = {(s,r)e DBMxDBM | s # r}

1°(d(1),d(2)) +
1°(d(1),d(3)) +

1°(d(2),d(1)) +
1°(d(2),d(3)) +
1°(d(3),d(1)) +
1°(d(3),d(2))

A Receive all

2l Acknowledg-

Mes(d(2)) =
1°(d(2),d(1)) + 1°(d(2),d(3))

Coloured Petri Nets

Receive
a
Message

DBM

MES
27/05/2005 1 27
Mutual exclusion
E ={e}
Sent
Mes(s) (s.r)
MES| 1°e
Update Receive
and a
S Send Messages| s r Message r
e es(s)| \e (s:r)
MES DBM
Waitin Active Unused) Passive) (Inactive Received Performing
DBM MES E DBM MES DBM
e\ [Mes(s) /e (s.r)
S Receive all S r Send an r
Acknowledg- Acknowledg-
ments ment
Mes(s) (s,r)
Acknowledged

Coloured Petri Nets
27/05/2005

MES

128

Distributed data base

Receive
a
Message

and
Send Messageg

Wa \ - Performing
DBM

Acknowledg-
ments

Coloured Petri Nets
27/05/2005 1 29

Distributed data base

Receive
a
Message

Performing
DBM \ DBM

Receive all
Acknowledg-
ments

Coloured Petri Nets
27/05/2005 1 30

»

Distributed data base

and
Send Messages
v, [J
<
Receive all
Acknowledg-
ments

Receive
a
Message

»

Coloured Petri Nets
27/05/2005 1 31

Distributed data base
Mes(s) >® (s,r)

MES
\/

Update Receive

and 3 > a
Send Messages s r Message r
A »
Mes(s)| \°® (s1)
\/ » g — DBM \/ \/
m @ \ﬁ @ Inactive Recejved w
DB @ e ‘!‘ g £ (d(1)& DBM MES @ DBM
ml T (s,r)
M -
Receive all S r Send an r
L] Acknowledg- Acknowledg-iN
ments ment

. s=d(3)
Mes(s) p (s,r) r= d(2)
Coloured Petri Nets @

27/05/2005 132

Distributed data base

and
Send Messages
v, €
Receive all

Pl Acknowledg-
ments

[s=d@)]

Acknowledged JN

Receive
a
Message

Send an
Acknowledg- K
ment

Performing

DBM

Col d Petri Net
27I0512005 133
Distributed data base
Update Receive
and a
Send Messages Message
Wa Performing

DBM DBM
Coloured Petri Nets MES Inltlal marking 134

27/05/2005

Data base managers

M(Waiting) + M (Inactive) + M(Performing) = DBM

Update Receive
and a
Send Messages Message

DBM

[
(waiting) Cactive) (Unused
./

Send an
Acknowledg- N
ment

>

135

Coloured Petri Nets
27/05/2005 MES

Message buffers
M(Unused) + M(Sent) + M (Received) + M(Acknowl) = MES

Receive ‘
a
Message

\j
DBM

Send an
Acknowledg-
ment

Receive all
Acknowledg-
ments

136

Coloured Petri Nets
27/05/2005

Mutual exclusion

M(Active) + M (Passive) = E

Receive
a
Message

Update
and
Send Messages|

DBM DBM

Coloured Petri Nets
27/05/2005 MES

137

Received messages

Weight function

Rec(M(Received)) = M(Performing)

MES — DBM

Rec(s,r) =r

Receive
a
Message

Update
and
Send Messages

Different
colour sets! 138

Coloured Petri Nets
27/05/2005 VES

Used messages

MesM(Waiting)) = M(Sent) + M (Received) + M(Acknowledged)

Receive
a
Message

Update
and
Send Messages

DBM

Send an
Acknowledg- N
ment

Coloured Petri Nets
27/05/2005

139

Active and waiting
Ign(M(Waiting)) = M (Active)

Ign(x) = e

Receive
a
Message

Update
and
Send Messages|

Coloured Petri Nets
27/05/2005 MES

140

Place invariants Place > M(Place)

¢ Waiting+ Inactive + Performing = DBM

¢ Unused + Sent +Receive + Acknowledged = MES
(®Active + Passive = E

¢ Rec(Received) = Performing

¢ Mes(Waiting) = Sent + Received + Acknowledge
(®Ign(Waiting) = Active

More invariants can be obtained by linear combinations:
¢ Ign(Waiting) + Passive = E

Coloured Petri Nets
27/05/2005 1 41

Construction of invariants

¢ Construction of invariants can be manual. This is
often straightforward:

m System specification.
m Knowledge of system.

¢ Automatic calculation of all place invariants is
possible, but:

m Rather complex.
m Results are difficult to represent in a form
which is useful for analysis.
¢ Interactive calculation is much more suitable:
m The user proposes some of the weights.

m The tool calculates the remaining weights

Coloured Petri Nets i i
Gotoured or reports an inconsistency. 142

How to use invariants

¢ Ordinary programming languages:

= No one would construct a large program and then
expect afterwards to be able to calculate invariants.

m Instead invariants are constructed together with the
program.
¢ For CP-nets we should do the same:

m During the system specification and modelling the
designer gets a lot of knowledge about the system.

m Some of this knowledge can easily be formulated as
place invariants.

m The invariants can be checked and in this way
errors can be found.

m The errors can easily be located.
Coloured Petri Nets 143

27/05/2005

We use invariants to prove
behavioural properties of
the system

¢ As an example, let us prove that the data base
system cannot deadlock.

= Let af reachable marking |be given.

m We will then prove thatjat least one
transition is enabled.

All invariants are fulfilled

Coloured Petri Nets
27/05/2005 1 44

M(Waiting) + M (Inactive) + M(Performing) = DBM

All data base managers must be:

LN\
Let us assume that at least
one manager is Performing

D

Receive all
2 Acknowledg-
ments

Acknowledg- N
ment

Coloured Petri Nets
27/05/2005 MES

145

Rec(M(Received)) = M(Performing)

There is a message buffer
at Received with d(i)

as receiver
Reeive
asage
|DBM] v
N D>

[DBM|

Update
and
Send Messages

=52

Receive all
3 Acknowledg-
ments

Acknowledg-fiN
ment

OK | 146

Coloured Petri Nets
27/05/2005 MES

Next let us assume that at least
one manager is Waiting

Update
and
Send Messages

[.
(Waitig) (active) [Unused

Receive all
A Acknowledg-

Receive
a
Message

Send an
Acknowledg- N

ments

N

Coloured Petri Nets

o tokens on
Performing

27/05/2005 MES

147

lgn(Waiting) + Passive = E

Exactly one token
on Waiting

Update
and
Send Messages

Coloured Petri Nets
27/05/2005 MES

Receive
a
Message

Send an
Acknowledg- N
ment

148

lgn(Waiting) = Active

Exactly one token
on Active

Receive
a
Message

Update
and
end Messages

\}
@@

5

Send an
Acknowledg- N
ment

Receive all
2 Acknowledg-
ments

Coloured Petri Nets
27/05/2005 MES

149

M(Waiting) + M (Inactive) + M(Performing) = DBM

The other data base managers
must be Inactive

Receive
a
Message

Send Mess

Receive all
3 Acknowledg-
ments

Acknowledg- N
ment

Coloured Petri Nets
27/05/2005 MES

150

Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged)

The message buffers sent by d(i) must be:

OK

Receive
a
Message

Update

Send Messages
A
v‘
D, EE

' Rec(M(Received))

OK = M(Performing)

Coloured Petri Nets
27/05/2005

151

M(Waiting) + M (Inactive) + M(Performing) = DBM

All data base managerj

must be Inactive

Receive
a
Message

\}
Received

N
Send Messady ‘
R
Qe Gactive) (UnusedRassivary

AL ®
D
Receive all

3 Acknowledg-

No tokens on

Coloured Pet Waltl ng
27/05/2005 MES

DBM

Send an
Acknowledg- N
ment

es(s)

152

Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged)

No tokens on Sent, Received,
and Acknowledged

Update
and <
Send Messages
A \4
\4 »
v A
® Unused(Fassiva

OEEIC

4

Receive
a
Message

Send an
Acknowledg- N
ment

Receive all
2 Acknowledg-
ments

Coloured Petri Nets <

27/05/2005 MES

153

M(Unused) + M(Sent) + M (Received) + M(Acknowl) = MES

All message buffers are Unused

Receive
a
Message

Update
and
Send Messages

Send an
Acknowledg- N
ment

Receive all
3 Acknowledg-
ments

Coloured Petri Nets <

27/05/2005 MES

154

Ign(Waiting) = Active Active + Passive = E

No tokens One e-token on
on Active Passive

v
> Y
Update
and t >
Bend Messa r

L
S

Receive
a
Message

Receive all
2 Acknowledg-

Acknowledg- N

ments

Initial marking

(S,

Coloured Petri Nets <

27/05/2005 MES

155

We have now investigated all
possible reachable markings

& For each of them we have used the
invariants to prove that at least one
transition is enabled.

¢ Hence, we conclude that the data base
system cannot deadlock.

Coloured Petri Nets
27/05/2005

156

Invariants - pro/contra

¢ Invariants can be used to verify large systems.

m No complexity problems.

m |t is possible to combine invariants from
individual modules.

¢ Invariants can be used to verify a system without
fixing the system parameters such as the number of
sites in the data base system.

¢ The main drawback is that the user needs some
ingenuity to:

m Construct invariants. This can be supported by
computer tools — interactive process.

m Use invariants. This can also be supported by
Coloured Petri Nets COMpPULEr tools — interactive process.

27/05/2005 1 57
. TOOLS
Conclusion it
« editing
e Ssimulation
THEORY e verification
e models

* basic concepts
» analysis methods

PRACTICAL USE

& One of the reasons for the * specification
success of CP-nets is the e validation
fact that we simultaneously o verification

have worked in all three areas. « implementation

Coloured Petri Nets
27/05/2005 1 58

More information on CP-nets

¢ The following web-pages contain a lot of
information about CP-nets and their tools:

http://www.daimi.au.dk/CPnets/

¢ Introduction to CP-nets, including a number of
detailed examples.

¢ Manual for CPN Tools.

m The tool is free of charge also for
commercial companies.

¢ A list of more than 50 published papers
describing different industrial applications of
CP-nets and the CPN tools.

¢ Details of a 3-volume CPN text book.

Coloured Petri Nets
27/05/2005

159

