
27/05/2005
Coloured Petri Nets 1

Coloured Petri Nets

© Kurt Jensen
Department of Computer Science
University of Aarhus, Denmark

kjensen@daimi.au.dk
www.daimi.au.dk/~kjensen/

TOOLS
• editing
• simulation
• verificationTHEORY

• models
• basic concepts
• analysis methods

 PRACTICAL USE
 • specification
 • validation
 • verification
 • implementation

This slide set can be downloaded from:
http://www.daimi.au.dk/CPnets/slides/

27/05/2005
Coloured Petri Nets 2

What is a Coloured Petri Net?
Modelling language for systems where synchronisation,
communication, and resource sharing are important.

Combination of Petri Nets and Programming Language.

Control structures, synchronisation, communication,
and resource sharing are described by Petri Nets.

Data and data manipulations are described by
functional programming language.

CPN models are validated by means of simulation and
verified by means of state spaces and place invariants.

Coloured Petri Nets is developed at University of Aarhus,
Denmark over the last 25 years.

27/05/2005
Coloured Petri Nets 3

Why do we make models?

We make models to:

Learn new things about a
system.

To check that the system
design has certain
expected properties.

CPN models are dynamic:

They can be executed on a computer.

This allows us to play and investigate different scenarios.

27/05/2005
Coloured Petri Nets 4

Overview of talk

Modelling

Basic language
syntax
semantics

Extensions
modules
time

Tool support
editing
simulation

Analysis

State spaces

full

symmetries

equivalence classes

sweep-line

Place invariants
check of invariants
use of invariants

27/05/2005
Coloured Petri Nets 5

Simple protocol

27/05/2005
Coloured Petri Nets 6

Simple protocol

Places

27/05/2005
Coloured Petri Nets 7

Simple protocol

Transitions

27/05/2005
Coloured Petri Nets 8

Simple protocol
Place

Type (colour set)

27/05/2005
Coloured Petri Nets 9

Simple protocol

Initial MarkingPlace

27/05/2005
Coloured Petri Nets 10

Marking of Send

Send

INTxDATA 8

1 ` (1,"Modellin") +
1 ` (2,"g and An") +
1 ` (3,"alysis b") +
1 ` (4,"y Means ") +
1 ` (5,"of Colou") +
1 ` (6,"red Petr") +
1 ` (7,"i Nets##") +
1 ` (8,"########")

Number of tokens

Multi-set of
token colours

27/05/2005
Coloured Petri Nets 11

Simple protocol

Arc Inscriptions

27/05/2005
Coloured Petri Nets 12

Simple protocol

27/05/2005
Coloured Petri Nets 13

Simple protocol

Buffer places
Interface

27/05/2005
Coloured Petri Nets 14

Simple protocol

Packets to be sent

27/05/2005
Coloured Petri Nets 15

Simple protocol

Counter

27/05/2005
Coloured Petri Nets 16

Simple protocol

Counter

27/05/2005
Coloured Petri Nets 17

Simple protocol

Data received

27/05/2005
Coloured Petri Nets 18

Simple protocol

27/05/2005
Coloured Petri Nets 19

Send packet
The binding

<n=1,p="Modellin">

is enabled.

Send

INTxDATA
8

1`(1,"Modellin")
+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets##")
+ 1`(8,"########")

Send
Packet A

INTxDATA

NextSend
INT

1

1 1`1

(n,p)

(n,p)

n

n = 1

p = "Modellin"

The packet is not removed
from place Send and the
NextSend counter is not
changed.

This represents that the
packet (1,"Modellin")
is sent to the network.

1 1`(1,"Modellin")

(1,p)

When the binding occurs it
adds a token to place A.

27/05/2005
Coloured Petri Nets 20

Simple protocol

27/05/2005
Coloured Petri Nets 21

A

INTxDATA

1 1`(1,"Modellin")

Transmit
Packet

RP
8

Int_0_10

1 1`8

B

INTxDATA

(n,p)

if Ok(s,r)
then 1`(n,p)
else empty

s

Transmit packet

All enabled bindings are on the form:

<n=1,p= "Modellin",s=8,r=...>

where r ∈1. .10

n = 1,
p = "Modellin"

s = 8

r ∈1. .10

27/05/2005
Coloured Petri Nets 22

Loss of packets

The function Ok(s,r) checks whether r ≤ s.

For r ∈1. .8, Ok(s,r)=true.
The token is moved from A to B. This means
that the packet is successfully transmitted
over the network.

For r ∈ 9. .10, Ok(s,r)=false.
No token is added to B. This means that the
packet is lost.

The CPN simulator makes random choices
between bindings: 80% chance for successful
transfer.

if Ok(s,r)
then 1`(n,p)
else empty

27/05/2005
Coloured Petri Nets 23

Simple protocol

27/05/2005
Coloured Petri Nets 24

Receive packet

The number of the
incoming packet n
and the number of the
expected packet k
are compared.

B

INTxDATA

1 1`(1,"Modellin")

Receive
Packet

NextRec
INT

1

1 1`1

Received
DATA

""
1 1`""

C
INT

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

k

if n=k
then k+1
else k

str

27/05/2005
Coloured Petri Nets 25

Correct
packet number

An acknowledgement
is sent. It contains the
number of the next packet
the receiver wants to get.

B

1 1`(3,"alysis b")

Receive
Packet

NextRec
1

1 1`3

Received 1 1`"Modelling and An"

C

(n,p)
1

1`(3,"alysis b")

if n=k
andalso
p<>stop
then str^p
else str

1
1`"Modelling and Analysis b"

if n=k
then k+1
else k

1
1`4

k

1
1`3

if n=k
then k+1
else k

1
1`4

str

1
1`"Modelling and An"

The data in the packet is
concatenated to the data
already received.

The NextRec counter is
increased by one.

27/05/2005
Coloured Petri Nets 26

Wrong
packet number

B

1 1`(2,"g and An")

Receive
Packet

NextRec
1

1 1`3

Received 1 1`"Modelling and An"

C

(n,p)
1

1`(2,"g and An")

if n=k
andalso
p<>stop
then str^p
else str

1
1`"Modelling and An"

if n=k
then k+1
else k

1
1`3

k

1
1`3

if n=k
then k+1
else k

1
1`3

str

1
1`"Modelling and An"

An acknowledgement
is sent. It contains the
number of the next packet
the receiver wants to get.

The data in the packet is
ignored.

The NextRec counter is
unchanged.

27/05/2005
Coloured Petri Nets 27

Simple protocol

27/05/2005
Coloured Petri Nets 28

Transmit acknowledgement

This transition works in a similar way
as Transmit Packet.

The marking of RA determines the
success rate.

C
INT

1 1`2

Transmit
Acknow.D

INT

RA
Int_0_10

8
1 1`8

nif Ok(s,r)
then 1`n
else empty

s

27/05/2005
Coloured Petri Nets 29

Simple protocol

27/05/2005
Coloured Petri Nets 30

Receive acknowledgement

When an acknowledgement arrives to the Sender
it is used to update the NextSend counter.

In this case the counter value becomes 2,
and hence the Sender will begin to send
packet number 2.

Receive
Acknow.

NextSend
INT

1

1 1`1

D
INT

1 1`2

n

k n

27/05/2005
Coloured Petri Nets 31

Intermediate state

Then NextSend
is updated and
Sender will start
sending packet
no. 6.

Receiver expects
packet no. 6.

Sender is still
sending packet
no. 5.

Acknowledgement
requesting packet
no. 6 is arriving.

27/05/2005
Coloured Petri Nets 32

CP-nets has a formal definition

The existence of a formal definition is important:

Basis for simulation, i.e., execution of the CP-net.

Basis for the formal verification methods (e.g.,
state spaces and place invariants).

Without the formal definition, it would have been
impossible to obtain a sound net class.

It is not necessary for a user to know the formal
definition of CP-nets:

Correct syntax is checked by the CPN editor.

Correct semantics is guaranteed by the CPN
simulator and the CPN verification tools.

27/05/2005
Coloured Petri Nets 33

High-level Petri nets

The relationship between CP-nets and ordinary
Petri nets (PT-nets) is analogous to the relationship
between high-level programming languages and
assembly code.

In theory, the two levels have exactly the same
computational power.

In practice, high-level languages have much more
modelling power – because they have better
structuring facilities, e.g., types and modules.

Several other kinds of high-level Petri Nets exist.
However, Coloured Petri Nets is the most widely used
– in particular for practical work.

27/05/2005
Coloured Petri Nets 34

Overview of talk

Modelling

Basic language
syntax
semantics

Extensions
modules
time

Tool support
editing
simulation

Analysis

State spaces

full

symmetries

equivalence classes

sweep-line

Place invariants
check of invariants
use of invariants

27/05/2005
Coloured Petri Nets 35

CP-nets are used for large systems

A CPN model consists of a number of modules.
Also called subnets or pages.
Well-defined interfaces and clear semantics.

A typical industrial application of CP-nets has:
10-200 modules.
50-1000 places and transitions.
10-200 types.

Industrial applications of this size would be totally
impossible without:

Data types and token values.
Modules.
Tool support.

27/05/2005
Coloured Petri Nets 36

Modules

27/05/2005
Coloured Petri Nets 37

Three different modules
Sender Receiver

Network

In

Out InIn

In OutOut

Out

I/O

Port places are used to exchange tokens
between modules.

27/05/2005
Coloured Petri Nets 38

Abstract view

HS HSHS

Sender Network Receiver

Protocol

Substitution transitions refer to modules.

Socket places are related to port places.

27/05/2005
Coloured Petri Nets 39

Modules can be reused

HS

HS

HS

Sender Network

Receiver

Protocol

HS

Receiver

27/05/2005
Coloured Petri Nets 40

Protocol with multiple receivers

Sender Receiver
Network

In

Out In

In

In

Out

Out

Out
I/O

Out

In

27/05/2005
Coloured Petri Nets 41

Transmit packets

Packets are broadcasted to the two receivers.

Some of the packets may be lost.

27/05/2005
Coloured Petri Nets 42

Transmit acknowledgments

27/05/2005
Coloured Petri Nets 43

Receive acknowledgments

The sender follows the slowest receiver.

27/05/2005
Coloured Petri Nets 44

Hierarchical descriptions

We use modules to structure large and complex
descriptions.

Modules allow us to hide details that we do not
want to consider at a certain level of abstraction.

Modules have well-defined interfaces, consisting of
socket and port places, through which the modules
exchange tokens with each other.

Modules can be reused.

27/05/2005
Coloured Petri Nets 45

Another solution

Multiple receivers
may also be
modelled by adding
a new component to
the token colours.

Similar changes
for Transmit Packet
and Transmit
Acknowledgment.

27/05/2005
Coloured Petri Nets 46

Protocol for ISDN network

Most abstract view of the system.

UserToNetwork

Message

NetworkToUser
Message

Users Networks

27/05/2005
Coloured Petri Nets 47

Overview of user site

NetworkToUser

Message

UserToNetwork

Message

IntUserReq

UIntReq

U1 U2 U3 U4 U7 U8 U9 U10 U11 U12 U19U0

UREQ
In

Out

27/05/2005
Coloured Petri Nets 48

Typical module

This module describes the actions that can
happen when the user site is in state U8.

The node shapes have a meaning in SDL.

(u,{mt=DISC,
cr=cref,
ai=null})

(u,{mt = REL_COM,
cr = cref,
ai = null})

(u, {mt=STATUS,
cr=cref,
ai=Status 8})

(u,m)

(u,m)

(u,cref,b) (u,cref,b) (u,cref,b)
(u,0,none)

(u,{mt=CLEAR_REQ,
ai=Callref cref})

U8

UserState

NetworkToUser

Message

In

[#mt m =
STATUS_ENQ,
cref= #cr m]

[#mt m =
REL_COM,
cref= #cr m]

[#mt m = DISC,
cref= #cr m]

[#mt m =
CONN_ACK,
cref= #cr m]

UserToNetwork

Message

Out

U11

UserState

U10

UserState

U12

UserState

U0

UserState

[#mt m = REL,
cref= #cr m]

CLEAR_REQ

InternalUserReq

UIntReq

In (u,cref,b)

27/05/2005
Coloured Petri Nets 49

Typical transition

Guard checks:
Message is a Status Enquiry message.
Call Reference is correct (i.e., matches the
one in the User State token at place U8).

A Status message is sent to the network site.
It tells that the user site is in state U8.

(u, {mt=STATUS,
cr=cref,
ai=Status 8})

(u,m)

(u,cref,b,s)

NetworkToUser
Message

[#mt m =
STATUS_ENQ,
cref= #cr m]

UserToNetwork
Message

U8
UserState

type UserState =
 product User
 * CallRef
 * BChanName
 * HoldStatus;

type MessageRec =
 record mt : MessageType
 * cr : CallReference
 * ai : MessageData;
type Message =
 product User * MessageRec;

Status Enquiry
message
received in
state U8.

27/05/2005
Coloured Petri Nets 50

Some modules are used many times

43 modules with more than 100 instances.

Entire model was made in only 3 man-weeks.

ISDN#1

USER_TOP#2

NULL#3

DECLARE#4

CALL_REC#11

CONNECT#12

INCOMING#13

CALL_INI#6

OVERLAP#9

OUTGOING#15

CALL_DEL#16

NULL_SET#5

ACTIVE#7

DISCONNE#8

RELEASE#17

DISC_IND#18

NET_TOP#19

NULL#20 U_SETUP#21

N_SETUP#22ROUTING#24

OUTGOING#26

N_E_PART#27

CALL_DEL#28

OVERLAP#29

CONNECT#30

N_D_PART#31

CALL_REC#32

DISCONNE#33

DISCONNE#34

RELEASE#35

ACTIVE#36

INCOMING#37

CALL_PRE#38

UREQ_GEN#39

U_DISC#23

U_REL#25

U_REL_CO#40

U_PROG#41

U_INFO#42

N_HOLD#44

U_HOLD#45

{

Prime

Users

U1

U7

U8

U9

U0

U2

U3

U4

U10

U11

U19

U12

N0

N3

N4

N2

N8

N7

N11

N12

N19

N10

N9

N6

Networks

27/05/2005
Coloured Petri Nets 51

Time analysis

CP-nets can be extended with a time concept. This
means that the same modelling language can be
used to investigate:

Logical correctness.
Desired functionality, absence of deadlocks, etc.

Performance.
How fast is the system and how many resources
are used.

27/05/2005
Coloured Petri Nets 52

How to add time

Time has been added to Petri net models in many
different ways – typically by specifying delays on
places or transitions.

Time stamp determines when the token can be used,
i.e., consumed by a transition.

Delays can be fixed.

Determined by an arbitrary distribution.

data value (token colour)

token

CPN model

time value (time stamp)

27/05/2005
Coloured Petri Nets 53

A timed CP-net for protocol

Fixed delay Variable delay

Retrans-
mission

delay

27/05/2005
Coloured Petri Nets 54

Application areas
Protocols and Networks

Intelligent Networks at Deutsche Telekom
IEEE 802.6 Configuration Control at Telstra Research Labs
Allocation Policies in the Fieldbus Protocol in Japan
ISDN Services at Telstra Research Laboratories
Protocol for an Audio/Video System at Bang & Olufsen
TCP Protocols at Hewlett-Packard
Local Area Network at University of Las Palmas
UPC Algorithms in ATM Networks at University of Aarhus
BRI Protocol in ISDN Networks
Network Management System at RC International A/S
Interprocess Communication in Pool IDA at King's College

Software
Mobile Phones at Nokia
Bank Transactions & Interconnect Fabric at Hewlett-Packard
Mutual Exclusion Algorithm at University of Aarhus
Distributed Program Execution at University of Aarhus
Internet Cache at the Hungarian Academy of Science
Electronic Funds Transfer in the US
Document Storage System at Bull AG
ADA Program at Draper Laboratories

27/05/2005
Coloured Petri Nets 55

Control of Systems
Security and Access Control Systems at Dalcotech A/S
Mechatronic Systems in Cars at Peugeot-Citroën in France
European Train Control System in Germany
Flowmeter System at Danfoss
Traffic Signals in Brazil
Chemical Production in Germany
Model Train System at University of Kiel

Hardware
Superscalar Processor Architectures at Univ. of Newcastle
VLSI Chip in the US
Arbiter Cascade at Meta Software Corp.

Military Systems
Military Communications Gateway in Australia
Influence Nets for the US Air Force
Missile Simulator in Australia
Naval Command and Control System in Canada

Other Systems
Bank Courier Network at Shawmut National Coop.
Nuclear Waste Management Programme in the US

27/05/2005
Coloured Petri Nets 56

Overview of talk

Modelling

Basic language
syntax
semantics

Extensions
modules
time

Tool support
editing
simulation

Analysis

State spaces

full

symmetries

equivalence classes

sweep-line

Place invariants
check of invariants
use of invariants

27/05/2005
Coloured Petri Nets 57

Computer tools
Design/CPN was developed in the late 80'ies
and early 90'ies.

Until recently, it was the most widely used Petri net
package.

Used by 1000 different organisations in more than 60
countries – including 200 commercial companies.

CPN Tools is the next generation of tool support for
Coloured Petri Nets.

It has now replaced Design/CPN with 2500 users in
more than 100 countries.

Development started in 1999 and a total of
25 man-years have been used.

Development continues with an
expected effort of 3-4 man-years per year.

27/05/2005
Coloured Petri Nets 58

The functionality of the two tools is the same:

Editing and syntax check of CP-nets.

Interactive and automatic simulation.

Construction and analysis of state spaces.

Communication with other tools.

Simulation based performance analysis.

Graphical animation of simulation results.

CPN Tools and Design/CPN

27/05/2005
Coloured Petri Nets 59

Windows XP. Later versions will also support Linux.

On-the-fly, incremental syntax check.

Much more efficient simulation engine in particular for:

Models with many tokens.

Timed models.

New user interface with a number of state-of-the-art
interaction mechanisms:

No menu bars and (nearly) no dialogues boxes.

Tool palettes.

Circular marking menus.

What is new in CPN Tools?

27/05/2005
Coloured Petri Nets 60

27/05/2005
Coloured Petri Nets 61

Standard ML
Types, arc expressions and guards are specified
in Standard ML, which is a strongly typed,
functional programming language developed by
Robin Milner.

Data types can be:

Atomic (integers, strings, booleans and
enumerations).

Structured (products, records, unions, lists,
and subsets).

Arbitrary complex functions and operations can
be defined (e.g., using polymorphism).

Standard ML is well-known, well-tested and very
general. Several text books are available.

27/05/2005
Coloured Petri Nets 62

Support for hierarchical models

We want to move the selected part to a new module.

This is done by a single operation.

Database

27/05/2005
Coloured Petri Nets 63

Abstract view

Substitution
transition

Sockets (interface)

Name of
new module

Database

27/05/2005
Coloured Petri Nets 64

Detailed view

Ports (interface)

Interfaces and detailed relationship
between the two modules

are automatically determined by the
CPN editor.

New

Name of
new module

27/05/2005
Coloured Petri Nets 65

Simulation of CP-nets

When a syntactical correct CPN diagram has been
constructed, the CPN tool generates the necessary code to
perform simulations.

Calculates whether the individual transitions and
bindings are enabled.

Calculates the effect of occurring transitions and
bindings.

The syntax check and code generation are incremental.
Hence it is fast to make small changes to the CPN diagram.

We distinguish between two kinds of simulations:

In an interactive simulation the user is in control,but
most of the work is done by the system.

In an automatic simulation the system does all the work.

27/05/2005
Coloured Petri Nets 66

Interactive
simulation

Simulation results are shown directly on the CP-net.

Transitions are chosen by the user or the simulator.

User can observe all details and set breakpoints.

27/05/2005
Coloured Petri Nets 67

Automatic simulation
The user does not intend to follow the simulation:

Simulation can be very fast - several
thousand steps per second.

User specifies some stop criteria, which
determine the duration of the simulation.

When the simulation stops the graphics of the
CP-net is updated.

Then the user can inspect all details of the
graphics, e.g., the enabling and the marking.

Automatic simulations can be mixed with
interactive simulations.

To find out what happens during an automatic
simulation the user has a number of choices.

27/05/2005
Coloured Petri Nets 68

Simulation report

1 SendPack@(1:Top#1){n=1,p="Modellin"}

2 TranPack@(1:Top#1){n=1,p="Modellin",r=6,s=8}

3 SendPack@(1:Top#1){n=1,p="Modellin"}

4 TranPack@(1:Top#1){n=1,p="Modellin",r=3,s=8}

5 RecPack@(1:Top#1) {k=1,n=1,p="Modellin",str=

6 SendPack@(1:Top#1){n=1,p="Modellin"}

Transition Module Binding

27/05/2005
Coloured Petri Nets 69

Message sequence chart
Sender Network Receiver

Ack Lost: 2

SendPack:
(1,"Modellin")

TranPack:
(1,"Modellin")

RecPack:
(1,"Modellin")

SendAck:
2

SendPack:
(1,"Modellin")

TranPack:
(1,"Modellin")

SendPack:
(1,"Modellin")

27/05/2005
Coloured Petri Nets 70

Business
charts

Packets
pack1

pack2

pack3

pack4

pack5

pack6

pack7

pack8

5

5

7

5

4

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Successes
Failures
Lost
Enroute

Packets Received

Step No.

20 40 60 80 100 120 140 160 180 200

Packet No

1
2
3
4
5
6
7
8
9
10

27/05/2005
Coloured Petri Nets 71

Automatic code generation

CPN models are often used to specify and
validate new software.

It is also possible to implement the software by
automatic code generation.

This method has been applied to develop a
system for access control to buildings.

The source code for the final implementation
was generated automatically from the CPN
specification - by extracting parts of the
Standard ML code used by the CPN simulator.

The approach is only adequate for systems
that are not time critical and systems that are
produced in small numbers.

27/05/2005
Coloured Petri Nets 72

Overview of talk

Modelling

Basic language
syntax
semantics

Extensions
modules
time

Tool support
editing
simulation

Analysis

State spaces

full

symmetries

equivalence classes

sweep-line

Place invariants
check of invariants
use of invariants

27/05/2005
Coloured Petri Nets 73

1

2

5

3

4

7

6

8

State spaces
A state space is a directed graph with:

A node for each reachable marking (i.e., state).

An arc for each occurring binding element.

Deadlock

Cycle

transition + binding

27/05/2005
Coloured Petri Nets 74

State space tool

State spaces are often very large.

The CPN state space tool allows the user to:

Generate state spaces.

Analyse state spaces to obtain information
about the behaviour of the modelled
system.

Generation is totally automatic while analysis
is automatic or semi-automatic (based on
queries from the user).

27/05/2005
Coloured Petri Nets 75

State space report

Generation of the state space report takes
often only a few seconds.

The report contains a lot of useful
information about the behaviour of the
CP-net.

The report is excellent for locating errors
or to increase our confidence in the
correctness of the system.

27/05/2005
Coloured Petri Nets 76

To obtain a finite state space, we:
Only have 4 packets.
Limit the number of tokens on A, B, C, and D.
Binary choice between success and failure.

State
space
for
protocol

27/05/2005
Coloured Petri Nets 77

State space report for protocol

Occurrence Graph Statistics
Nodes: 428
Arcs: 1130
Secs: 0
Status: Full

Scc Graph Statistics
Nodes: 182
Arcs: 673
Secs: 0

27/05/2005
Coloured Petri Nets 78

Integer bounds

A, B, C, D, Limit: 0-2

NextSend, NextRec, Received: 1

Send: 4

Integer bounds tell the maximal and
minimal number of tokens on the
individual places.

27/05/2005
Coloured Petri Nets 79

Integer bounds

0-2

1

0-2

1

1

0-2

0-2

4

0-2

27/05/2005
Coloured Petri Nets 80

Upper multi-set bounds

A, B: 2`(1,"Modellin") + 2`(2,"g and An") +
2`(3,"alysis##") + 2`(4,"########")

C, D: 2`2 + 2`3 + 2`4 + 2`5

Limit: 2`e

NextSend,
NextRec: 1`1 + 1`2 + 1`3 + 1`4 + 1`5

Received: 1`"" + 1`" Modellin" +
1`"Modelling and An" +
1`"Modelling and Analysis##"

Send: 1`(1,"Modellin") + 1`(2,"g and An") +
1`(3,"alysis##") + 1`(4,"########")

27/05/2005
Coloured Petri Nets 81

Home Properties
Home Markings: [235]

Liveness Properties
Dead Markings: [235]
Live Transitions: None

Home and liveness properties

Marking no. 235 is the desired final
marking where all packets have been
received in correct order.

235

NextSend = 5
NextRec = 5

Received = "Modelling and Analysis##"

27/05/2005
Coloured Petri Nets 82

Investigation of dead marking

Marking 235 is the only dead marking.

This implies that the protocol is partially
correct (if execution stops it stops in the
desired final marking).

Marking 235 is a home marking.

This implies that we always have a
chance to finish correctly (it is impossible
to reach a state from which we cannot
reach the desired final marking).

27/05/2005
Coloured Petri Nets 83

Fairness properties

Send Packet: Impartial
Transmit Packet: Impartial
Receive Packet: No Fairness
Transmit Acknow: No Fairness
Receive Acknow: No Fairness

Fairness properties tell how often
the individual transitions occur.

27/05/2005
Coloured Petri Nets 84

Investigation of shortest path
We want to find one of the shortest paths
from the initial marking to the dead marking.

Length(path); > 20 : int

val path =

NodesInPath(1,235);

Query

> val path =

[1,2,3,4,6,8,10,15,20,27,50,

64,80,102,133,164,179,192,

201,215,235] : Node list

Answer

27/05/2005
Coloured Petri Nets 85

Drawing of shortest path
DisplayNodePath [1,2,3,4,6,8];

We want to investigate
the beginning of the
calculated shortest path.

> () : unit

27/05/2005
Coloured Petri Nets 86

Draw more complex subgraph

27/05/2005
Coloured Petri Nets 87

Non-standard queries

Can the NextSend counter be decreased?

27/05/2005
Coloured Petri Nets 88

PredAllArcs
(fn a => ((ms_to_col(Mark.NextSend 1

(SourceNode a))) >

(ms_to_col(Mark.NextSend 1
(DestNode a))));

Query in Standard ML

>[973,951,934,921,920,895,894,845,844,818,817,

428,360,310,271,233] : Arc list
Yes!

753,729,663,648,587,573,567,517,499,497,429,

1`44PredAllArcs
(fn a => ((ms_to_col(Mark.NextSend 1

(SourceNode a))) >

(ms_to_col(Mark.NextSend 1
(DestNode a))));

27/05/2005
Coloured Petri Nets 89

Counter example

> () : unitDisplayArcs [973];

NextSend = 4
NextRec = 5
Received = "Modelling
and Analysis##"
B = 1`(4,"########")
D = 1`3

RecAck = {n=3,k=4}

368 385

NextSend = 3
NextRec = 5
Received = "Modelling
and Analysis##"
B = 1`(4,"########")

27/05/2005
Coloured Petri Nets 90

Improved protocol

max(n,k)

27/05/2005
Coloured Petri Nets 91

Temporal logic

It is also possible to make state space queries
by means of a CTL-like temporal logic.

States.

Transitions.

Binding elements.

27/05/2005
Coloured Petri Nets 92

State spaces - pro/contra

State spaces are powerful and easy to use.

Construction and analysis can be automated.

No need to know the mathematics behind the
analysis methods.

The main drawback is the state explosion, i.e., the
size of the state space.

The present version of our tool handles graphs
with one million states.

For many systems this is not sufficient.

27/05/2005
Coloured Petri Nets 93

Statistics – full state spaces

0

0

1.0

44

44

1.0

33

33

1

Ratio

Max

Original

Ratio

Max

Original

Ratio

Max

Original

2.56

16

41

2.12

43,124

91,220

2.05

9,025

18,520

4

4.703.661.5-----

1,63415320Secs

7,68656030

2.342.261.871.48

891,830213,9026,860764Arcs

2,091,223483,56212,8251,130

2.282.191.821.46

136,10737,4771,829293Nodes

310,55082,2603,329428

6532Limit:

Intel Pentium III, 1GHz, 1 GB RAM

27/05/2005
Coloured Petri Nets 94

Condensed state spaces

Fortunately,it is sometimes possible to construct
much more compact state spaces – without
loosing information.

This is done by exploiting:

Symmetries in the modelled system.

Other kinds of equivalent behaviour.

Progress measure.

Concurrency between events.

27/05/2005
Coloured Petri Nets 95

Protocol with multiple receivers

Sender Receiver
Network

In

Out In

In

In

Out

Out

Out
I/O

Out

In

27/05/2005
Coloured Petri Nets 96

State space for three receivers

Init

Send Packet Transmit Packet

Receive
Packet

CBB BCB BBC_CB _BC C_B B_C CB_ BC_C_ _ _C_ _ _C

The red nodes are equivalent (or symmetrical).

They also have equivalent:

direct successors,

enabled binding elements.

A

0

1

32

BBB_BB B_B BB_B_ _ _B_ _ _B

27/05/2005
Coloured Petri Nets 97

Condensed state space
for three receivers

B

Init

CC

DD

DBB

D

D

Send Packet

Transmit Packet

0

1

3

2

Receive Packet

Transmit Acknowledgment

BB

21 nodes instead
of 62 nodes

CB

BBBBB

DCC

C CBB

DBB CCB

A

27/05/2005
Coloured Petri Nets 98

Symmetries

A symmetry is a function φ that maps:

markings into equivalent markings,

binding elements into equivalent binding elements.

A symmetry specification is a set of functions
Φ ⊆ [M ∪ BE → M ∪ BE] such that:

∀φ∈Φ: (φ⏐M)∈[M → M] ∧ (φ⏐BE)∈[BE → BE].
(Φ,°) is an algebraic group.

Each element of Φ is called a symmetry.

27/05/2005
Coloured Petri Nets 99

Equivalent markings

Two markings M and M* are equivalent iff there exist
a symmetry φ that maps M* into M:

M ≈M M* ⇔ ∃φ∈Φ: M = φ(M*).

Two binding elements b and b* are equivalent iff
there exist a symmetry φ that maps b* into b:

M ≈BE M* ⇔ ∃φ∈Φ: b = φ(b*).

(Φ,°) is an algebraic group. This implies that
≈M and ≈BE are equivalence relations.

27/05/2005
Coloured Petri Nets 100

Consistency

A symmetry specification Φ is consistent iff the
following properties are satisfied for all symmetries
φ∈Φ, all reachable markings M1, M2 and all binding
elements b:

M1 M2 ⇔ φ(M1) φ(M2).

φ(M0) = M0.

We demand that equivalent markings must have:

equivalent direct successors,

equivalent enabled binding elements.

b φ(b)

27/05/2005
Coloured Petri Nets 101

Protocol with multiple receivers

Symmetries are defined as consistent permutations
of receiver-IDs:

When we model each receiver by a separate
module we permute the markings of these
modules.

When we model all receivers by a single module
(adding a new component to the token colours)
we permute the colour values in the type:

REC = {rec1, rec2, rec3,…}.

27/05/2005
Coloured Petri Nets 102

Construction of state spaces
with symmetries

State spaces with symmetries are constructed
in the same way as ordinary state spaces,
except that:

Before adding a new node we check whether
the marking is equivalent to the marking of
an existing node.

Before adding a new arc we check whether
the binding element is equivalent to the
binding element of an existing arc (from the
same source node).

27/05/2005
Coloured Petri Nets 103

What can we prove from state
spaces with symmetries?

State spaces with symmetries can be used to
investigate the same kinds of behavioural properties as
ordinary state spaces, but only modulo equivalence.

As an example, this means that:

We cannot investigate whether a certain marking is
reachable itself.

Instead we can investigate whether there is an
equivalent marking which is reachable.

27/05/2005
Coloured Petri Nets 104

Statistics – symmetries

346.3976.9020.385.731.98Ratio

101,24031,11032,96311,280924Sym

35,068,4482,392,458671,94864,6841,832Full

Arcs

----------23.92.00.7Ratio

Time

n!

Sym

Full

Ratio

Sym

Full

24

8 mins

191 mins

17.45

9,888

172,581

4
(3 packets)

72012062

1 hour8 mins2 mins3 secs

Perms

----------4 mins2 secs

245.3058.045.331.93

24,1228,3874,195477Nodes

5,917,145486,76722,371921

6
(2 packets)

5
(2 packets)

32Limit = Receivers

Prototype implementation in 1998.

27/05/2005
Coloured Petri Nets 105

We can be more general

We have defined the equivalence relations for
markings and bindings elements from a set of
symmetry functions.

Instead we may define the equivalence relations
directly (i.e. from scratch).

An equivalence specification is a pair (≈M ,≈BE) where:

≈M is an equivalence relation on the
set of all markings.

≈BE is an equivalence relation on the
set of all binding elements.

27/05/2005
Coloured Petri Nets 106

Consistency

An equivalence specification (≈M ,≈BE) is consistent iff
for all reachable markings M1, M2, M and all binding
elements b:

M1 ≈M M2 ∧ M1 M ⇒

∃M*≈MM ∃b*≈BE b: M2 M*.

As before, we demand that equivalent markings
must have:

equivalent direct successors,

equivalent enabled binding elements.

b

b*

27/05/2005
Coloured Petri Nets 107

State spaces with
equivalence classes

State spaces with equivalence classes are
constructed in the same way as state spaces
with symmetries.

They can be used to investigate the same kinds
of behavioural properties.

State spaces with symmetries is a special case
of state spaces with equivalence classes.

27/05/2005
Coloured Petri Nets 108

Intermediate state of protocol

Receiver expects
packet no. 6.

This acknowledg-
ment will also
be ignored.
It is old.

max(n,k)

Sender is still
sending packet
no. 5.

This packet will
be ignored.
It is old.

27/05/2005
Coloured Petri Nets 109

Equivalence relation

Two markings M1 and M2 are equivalent iff:

M1(p) = M2(p) for p∉{A,B,C,D}

| M1(p)OLD| = | M2(p)OLD|

M1(p)NEW = M2(p)NEW

A marking M(p) where p is one of the network
places A,B,C,D is split into two parts:

M(p) = M(p)OLD + M(p)NEW

Old packets/acks All remaining packets/acks

for p∈{A,B,C,D}}

27/05/2005
Coloured Petri Nets 110

max(n,k)

Two equivalent states

27/05/2005
Coloured Petri Nets 111

Statistics – equivalence classes

1.0

1

1

1.0

44

44

1.0

33

33

1

Ratio

Equiv

Full

Ratio

Equiv

Full

Ratio

Equiv

Full

1.56

36

56

8.59

5,019

43,124

7.16

1,260

9,025

4

13.584.090.91.0

55315771Secs

7,50764261

31.8016.864.201.99

28,04412,6851,632383Arcs

891,830213,9026,860764

24.1513.373.721.89

5,6352,803492155Nodes

136,10737,4771,829293

6532Limit:

Sun Ultra Sparc 3000, 512 MB in 1997.

27/05/2005
Coloured Petri Nets 112

Timed protocol

1`5 @ [796]

1`5 @ [803]

1`4 @ [728]

1`5 @ [796]

1`(1,"Modellin") @ [218]
1`(2,"g and An") @ [234]
1`(3,"alysis b") @ [324]
1`(4,"y Means ") @ [741]
1`(5,"of Colou") @ [887]
1`(6,"red Petr") @ [0]
1`(7,"i Nets##") @ [0]
1`(8,"########") @ [0]

max(n,k)max(n,k)

Creation time 787 0

27/05/2005
Coloured Petri Nets 113

1`(1,"Modellin") @ [218]
1`(2,"g and An") @ [234]
1`(3,"alysis b") @ [324]
1`(4,"y Means ") @ [741]
1`(5,"of Colou") @ [887]
1`(6,"red Petr") @ [0]
1`(7,"i Nets##") @ [0]
1`(8,"########") @ [0]

1`4 @ [728]1`5 @ [796]

1`5 @ [803]

1`5 @ [796]

max(n,k)

Creation time 787

@ [0]
@ [0]
@ [0]
@ [0]
@ [100]
@ [0]
@ [0]
@ [0]

@ [16]

@ [0]

0

@ [9]

@ [9]

Timed protocol

27/05/2005
Coloured Petri Nets 114

Simple protocol

max(n,k)

They can be used as
a progress measure.

The two counters
are monotonously

increased.

27/05/2005
Coloured Petri Nets 115

Progress measure

PM : STATES A

Monotonous (non-decreasing):
X Y

function all states

set with linear
or partial order ≤

PM(X) ≤ PM(Y)

Protocol: (NextSend,NextRec)
lexicographical ordering.

27/05/2005
Coloured Petri Nets 116

States sorted by progress measure

Progress measure

Initial
state

27/05/2005
Coloured Petri Nets 117

Construction of state space

Processed

Unprocessed

All arcs go left-to-right or
vertical.

All nodes to be processed
are in front of the sweep-line.

All new nodes are added in
front of the sweep-line.

We do not need the nodes
behind the sweep-line. They
can be deleted from memory.

sweep-linesweep-line

27/05/2005
Coloured Petri Nets 118

We continue the construction

The sweep-line moves from left to right.

In front of it, we add new nodes.

Behind it, we remove nodes.

sweep-line

27/05/2005
Coloured Petri Nets 119

Statistics – sweep-line

0

0

44

1.0

33

33

1

Ratio

Sweep

Full

Ratio

Sweep

Full

Ratio

Sweep

Full

1.78

9

16

43,124

2.03

4,449

9,025

4

1.511.65----------

1,0839300Secs

1,63415320

--------------------Arcs

891,830213,9026,860764

1.651.802.412.19

82,58620,826758134Nodes

136,10737,4771,829293

6532Limit:

Intel Pentium III, 1GHz, 1 GB RAM

27/05/2005
Coloured Petri Nets 120

Statistics – sweep-line

1.71

7

12

43,124

2.03

4,449

9,025

4

1.95

21

41

99,355

2.35

8,521

20,016

5

2.19

57

125

198,150

2.67

14,545

38,885

6

Ratio

Sweep

Full

Ratio

Sweep

Full

Ratio

Sweep

Full

2.41

359

864

596,264

3.33

33,985

113,121

8

2.27

152Secs

345

-----Arcs

356,965

3.00

22,905Nodes

68,720

7Packets:

Limit = 4

AMD Athlon 1.33GHz, 512 MB RAM

27/05/2005
Coloured Petri Nets 121

Sweep-line method – pro/contra

We can construct larger state spaces, since we do not
need to have all states in memory at the same time.

In a timed CP-net we can use the global clock as a
progress measure – time does not go backwards.

“Problems”:

Analysis must be done on the-fly.

To deal with reactive systems we need to be able to
use non-monotonous progress measures.

Counter examples are more difficult to construct,
since part of the state space has been deleted from
memory.

27/05/2005
Coloured Petri Nets 122

Overview of talk

Modelling

Basic language
syntax
semantics

Extensions
modules
time

Tool support
editing
simulation

Analysis

State spaces

full

symmetries

equivalence classes

sweep-line

Place invariants
check of invariants
use of invariants

27/05/2005
Coloured Petri Nets 123

Place invariants

The basic idea is similar to the use of invariants in
program verification.

An invariant describes a property which is fulfilled
for all reachable states.

We first construct a set of place invariants.

Then we check whether they are fulfilled.

Finally, we use the place invariants to prove
behavioural properties of the CP-net.

27/05/2005
Coloured Petri Nets 124

Logo of Petri net community

27/05/2005
Coloured Petri Nets 125

Distributed data base

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

27/05/2005
Coloured Petri Nets 126

Data base managers

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

DBM = {d(1),d(2),d(3)}

1`d(1) + 1`d(2) + 1`d(3)

27/05/2005
Coloured Petri Nets 127

Message buffers

DBM

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

PerformingInactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

MES = {(s,r)∈ DBM×DBM | s ≠ r}

1`(d(1),d(2)) +
1`(d(1),d(3)) +
1`(d(2),d(1)) +
1`(d(2),d(3)) +
1`(d(3),d(1)) +
1`(d(3),d(2))

Mes(d(2)) =
1`(d(2),d(1)) + 1`(d(2),d(3))

27/05/2005
Coloured Petri Nets 128

Mutual exclusion

E = {e}

1`e

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e
e

27/05/2005
Coloured Petri Nets 129

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Distributed data base

DBM d(2)

d(3)

e

(3,2)
(3,1)
(2,3)
(2,1)
(1,3)
(1,2)

s = d(3)

(d(1),d(2))

d(1)

27/05/2005
Coloured Petri Nets 130

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Distributed data base

DBM d(2)d(3) e

(2,3)
(2,1)
(1,3)
(1,2) d(1)

(3,2)(3,1)

s = d(3)
r = d(1)

27/05/2005
Coloured Petri Nets 131

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Distributed data base

DBM d(1)d(3) e

(3,2)

(3,1)

(2,3)
(2,1)
(1,3)
(1,2)

s = d(3)
r = d(2)

s = d(3)
r = d(1)

d(2)

27/05/2005
Coloured Petri Nets 132

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Distributed data base

DBM d(1) d(2)d(3) e (3,2)

(3,1)

(2,3)
(2,1)
(1,3)
(1,2)

s = d(3)
r = d(2)

27/05/2005
Coloured Petri Nets 133

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Distributed data base

DBM d(3) e

(3,2)(3,1)

(2,3)
(2,1)
(1,3)
(1,2)

s = d(3)

d(2)d(1)

27/05/2005
Coloured Petri Nets 134

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Distributed data base

DBM d(2)

d(3)

e

(3,2)
(3,1)
(2,3)
(2,1)
(1,3)
(1,2) d(1)

Initial marking

27/05/2005
Coloured Petri Nets 135

Data base managers

M(Waiting) + M (Inactive) + M(Performing)

–s+s–s +s +r–r+r–r

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

= DBM

27/05/2005
Coloured Petri Nets 136

Message buffers

M(Unused) + M(Sent) + M (Received) + M(Acknowl)

–Mes(s) +Mes(s) –Mes(s)+Mes(s) –(s,r) +(s,r)

= MES

DBM

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

PerformingInactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

+(s,r)–(s,r)

27/05/2005
Coloured Petri Nets 137

Mutual exclusion

M(Active) + M (Passive)

–e+e +e–e

MES

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

Active

E

Passive

E

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e
e

= E

27/05/2005
Coloured Petri Nets 138

M(Received) M(Performing)

Received messages

–r–(s,r)–Rec

–Rec() +

Rec(s,r) = r

Weight function

MES → DBM

Waiting

DBM

MES

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

PerformingInactive

DBM

DBM

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

Active

E

Passive

E

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e
e

+r+(s,r)

= ØRec(M(Received)) = M(Performing)

Different
colour sets!

27/05/2005
Coloured Petri Nets 139

+Mes(s)+s =

Used messages

MesM(Waiting)) = M(Sent) + M (Received) + M(Acknowledged)

–Mes(s)–Mes(s)–sMes –(s,r) +(s,r)

MES

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

Active

E

Passive

E

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e
e

–(s,r)+(s,r)

27/05/2005
Coloured Petri Nets 140

Active and waiting

Ign(M(Waiting)) = M (Active)
Ign(x) = e

+e+sIgn = –e–s

MES

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

Active

E

Passive

E

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e
e

27/05/2005
Coloured Petri Nets 141

Place invariants

Waiting+ Inactive + Performing = DBM

Unused + Sent +Receive + Acknowledged = MES

Active + Passive = E

Rec(Received) = Performing

Mes(Waiting) = Sent + Received + Acknowledge

Ign(Waiting) = Active

Place M(Place)

Ign(Waiting) + Passive = E

More invariants can be obtained by linear combinations:

27/05/2005
Coloured Petri Nets 142

Construction of invariants
Construction of invariants can be manual. This is
often straightforward:

System specification.

Knowledge of system.

Automatic calculation of all place invariants is
possible, but:

Rather complex.

Results are difficult to represent in a form
which is useful for analysis.

Interactive calculation is much more suitable:

The user proposes some of the weights.

The tool calculates the remaining weights
or reports an inconsistency.

27/05/2005
Coloured Petri Nets 143

How to use invariants
Ordinary programming languages:

No one would construct a large program and then
expect afterwards to be able to calculate invariants.

Instead invariants are constructed together with the
program.

For CP-nets we should do the same:

During the system specification and modelling the
designer gets a lot of knowledge about the system.

Some of this knowledge can easily be formulated as
place invariants.

The invariants can be checked and in this way
errors can be found.

The errors can easily be located.

27/05/2005
Coloured Petri Nets 144

We use invariants to prove
behavioural properties of
the system

As an example, let us prove that the data base
system cannot deadlock.

Let a reachable marking be given.

We will then prove that at least one
transition is enabled.

All invariants are fulfilled

27/05/2005
Coloured Petri Nets 145

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

M(Waiting) + M (Inactive) + M(Performing) = DBM

All data base managers must be:

d(i)

Let us assume that at least
one manager is Performing

27/05/2005
Coloured Petri Nets 146

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

d(i)

OK

Received

Rec(M(Received)) = M(Performing)

(d(j),d(i))

There is a message buffer
at Received with d(i)

as receiver

27/05/2005
Coloured Petri Nets 147

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Next let us assume that at least
one manager is Waiting

d(i) X

No tokens on
Performing

27/05/2005
Coloured Petri Nets 148

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

d(i)

Exactly one token
on Waiting

Ign(Waiting) + Passive = E

X

27/05/2005
Coloured Petri Nets 149

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

d(i)

Ign(Waiting) = Active

Exactly one token
on Active

Active

e X

27/05/2005
Coloured Petri Nets 150

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

d(i) X

M(Waiting) + M (Inactive) + M(Performing) = DBM

d(k)

d(j)
Active

e

The other data base managers
must be Inactive

27/05/2005
Coloured Petri Nets 151

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

d(i) Xd(k)

d(j)

Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged)

The message buffers sent by d(i) must be:

Received

Acknowledged

(d(i),d(k))

(d(i),d(j))

OK
Rec(M(Received))

= M(Performing)

Impossible

(d(i),d(j))

Sent OK
(d(i),d(j))

Active

e

27/05/2005
Coloured Petri Nets 152

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

No tokens on
Waiting

X

M(Waiting) + M (Inactive) + M(Performing) = DBM

X
d(3)

All data base managers
must be Inactive

d(2)
d(1)

27/05/2005
Coloured Petri Nets 153

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

XX

Mes(Waiting) = M(Sent) + M (Received) + M(Acknowledged)

No tokens on Sent, Received,
and Acknowledged

X

X

X

d(3)

d(2)
d(1)

27/05/2005
Coloured Petri Nets 154

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

XX

X

X

X

M(Unused) + M(Sent) + M (Received) + M(Acknowl) = MES

All message buffers are Unused

(3,2)
(3,1)
(2,3)
(2,1)
(1,3)
(1,2) d(3)

d(2)
d(1)

27/05/2005
Coloured Petri Nets 155

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive

DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive

E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

XX

X

X

X

(3,2)
(3,1)
(2,3)
(2,1)
(1,3)
(1,2)

Passive

Active + Passive = E

e

One e-token on
Passive

Ign(Waiting) = Active

No tokens
on Active

X

Initial marking

OK

d(3)

d(2)
d(1)

27/05/2005
Coloured Petri Nets 156

We have now investigated all
possible reachable markings

For each of them we have used the
invariants to prove that at least one
transition is enabled.

Hence, we conclude that the data base
system cannot deadlock.

27/05/2005
Coloured Petri Nets 157

Invariants - pro/contra
Invariants can be used to verify large systems.

No complexity problems.

It is possible to combine invariants from
individual modules.

Invariants can be used to verify a system without
fixing the system parameters such as the number of
sites in the data base system.

The main drawback is that the user needs some
ingenuity to:

Construct invariants. This can be supported by
computer tools – interactive process.

Use invariants. This can also be supported by
computer tools – interactive process.

27/05/2005
Coloured Petri Nets 158

Conclusion

One of the reasons for the
success of CP-nets is the
fact that we simultaneously
have worked in all three areas.

 TOOLS
 • editing
 • simulation
 • verificationTHEORY

• models
• basic concepts
• analysis methods

 PRACTICAL USE
 • specification
 • validation
 • verification
 • implementation

27/05/2005
Coloured Petri Nets 159

More information on CP-nets
The following web-pages contain a lot of
information about CP-nets and their tools:

http://www.daimi.au.dk/CPnets/

Introduction to CP-nets, including a number of
detailed examples.

Manual for CPN Tools.

The tool is free of charge also for
commercial companies.

A list of more than 50 published papers
describing different industrial applications of
CP-nets and the CPN tools.

Details of a 3-volume CPN text book.

