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Place/Transition Nets I

Prepared by:
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Speaker:
Wolfgang Reisig, Humboldt-Universität zu Berlin

Introductory Tutorial

I. Introduction to place/transition nets
II. Basic analysis techniques
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I. Introduction to place/transition nets

An example
Features of PT-nets
PT-nets vs EN-systems

Formal definitions
PT-net
Occurrence sequence,

reachability
Marking graph

Behavioral properties
Deadlock, Liveness
Boundedness, 1-safety
Reversibility

Extensions
Capacities
Complement places
Inhibitor arcs
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Example: a vending machine

Control structure:

ready for
insertion insert coin

holding 
coin

reject coin

accept coinready to
dispence

dispence
item

ready for
insertion insert coin

holding 
coinreject coin

accept coinready to
dispence

dispence
item

an EN system its behaviour 4

Example: a vending machine
Adding concurrent refill – capacity one

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
item

insert coin

reject coin

accept coin

refill

insert coin

reject coin

accept coin

dispence
item

refill

refill

refill
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Example: a vending machine
Adding concurrent refill – capacity four

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
itemrefill

ins

rej

acc

disp

ins

rej

acc

refill

refill

refill

disp

ins

rej

acc

refill

refill

refill

disp

ins

rej

acc

refill

refill

refill

disp

ins

rej

acc

refill

refill

refill
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Example: a vending machine
Add unbounded counters:

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
item

insert coin

reject coin

accept coin

dispence
item

coins

insert coin

reject coin

accept coin

dispence
item

insert coin

reject coin

accept coin

dispence
item

insert coin

reject coin

accept coin

dispence
item ...
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Example: a vending machine
Adding arc weights:

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
itemrefill

2

2
selling pairwise

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
itemrefill

22

storing pairwise
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Example: a vending machine
Adding capacities:

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
itemrefill

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
itemrefill

k=4
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P/T Nets generalize EN systems

Each contact free EN system is a 1-safe marked PT net

Terminology

in EN systems:                  in P/T nets
condition                            place
event                                  transition
case, state                         marking
c G conditions                    m : places Æ {0,1,....}
sequential case graph       marking graph

(reachability graph, 
state graph)
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Formal definition

A place/transition net consists of:       

S – set of places, [german: “Stellen”], finite
T – set of transitions, finite, disjoint to S
F – flow relation, F G (S x T) � (T x S)

k – partial capacity restriction, k: S Æ {1,2,3,...} � {∞}
w – arc weight function, w: F Æ {1,2,3,...}
m0 - the initial marking, m0: S Æ {0,1,2,...} s.t. ¢s∈S, m0(s)☯k(s)

“[S,T,F] is a net”

“a marking”

[S,T,F,k,w,m0]
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Occurrence Rule

Transition t is enabled at marking m if

for [s,t] ∈ F:            w(s,t) ☯ m(s)        and
for [t,s] ∈ F: m(s) + w(t,s) ☯ k(s)

k=4

2

2

3
k=4

2

2

3m  t m’
m [ t > m’

Successor marking:

m(s)                                   if [s,t] ∉ F  [t,s] ∉ F 
m(s) – w(s,t)                      if [s,t] ∈ F  [t,s] ∉ F 

m’(s) =          m(s)               + w(t,s)        if [s,t] ∉ F  [t,s] ∈ F 
m(s) – w(s,t)  + w(t,s)        if [s,t] ∈ F  [t,s] ∈ F 12

Occurrence sequences, reachability

m0
t
1 m2

t
2 ...... t

n mn

Æ “t1 t2 ...tn” is finite occurrence sequence
Æ mn is reachable from m0
Æ [m0> - the set of all reachable markings   

m0
t
1 m2

t
2 ....... t

n .....
Æ “t1 t2 ...” is infinite occurrence sequence  
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Marking graph

t1 t2

t3s1

s2

s3

2

(110)      (101)

(020)       (011)       (002)

t2

t1 t1
t2 t2

t3

Marking graph = directed edge-labeled graph with initial vertex
- vertices = reachable markings
- initial vertex = m0
- labeled edges =    m   t m’

occurrence sequence = directed path starting at m0
14

Behavioral properties

A marked net is

terminating has only finite occurrence sequences
deadlock-free each marking enables a transition
live  each reachable marking enables an

occurrence sequence containing all
transitions

bounded each place has a bound b(s):
m(s) ☯ b(s), for all reachable markings m

1-safe b(s) = 1 is a bound for all places  
reversible always possible to return to m0

Our vending machines are deadlock-free and live.
We had 1-safe, bounded, and unbounded versions.
The bounded vending machines are reversible.
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Further examples

t1

t2

t3
t4

t2
t1 t4

t3

t4 t2

Æ not deadlock-free

deadlock = vertex without successor

deadlock-free Æ not terminating
16

Further examples
t2

t1

t3

t2
t1

t3

t4

t5 t4
t5deadlock-free,  not live

live = no reachable marking where a transition is dead
(cannot become enabled again)

t2

t1

t3

t4

t5t1,t2,t3 dead

t4
t5
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Boundedness
bounded  = finitely many reachable markings

Why?

“Å” finitely many reachable markings  
Æ take max. number of tokens as bound

“Æ” bounded 
Æ m(s) between 0,....,b(s)    Æ b(s) + 1 possibilities
Æ max. (b(s1)+1) (b(s2)+1) ...(b(sn)+1) different markings
Æ finitely many

Æ 1-safe net has up to 2n reachable markings 18

Further examples
t2

t3

t2t1
t3

t4

t5 t4t51-safe, deadlock-free,  not live, not reversible

t1

....
unbounded, not reversible

....
unbounded, reversible

Æ reversible = marking graph strongly connected

t1

t2

t3

t4
t5

t3

t4

t3

t4

t2

t11-safe, live, not reversible

t5



4

19

Substituting capacities

refill

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
item

k=4

Every net with capacities can be replaced by one without!

ready for insertion insert coin

holding 
coin

reject coin

accept coinready to dispence

dispence
itemrefill

“complement 
place” 20

Weak capacities
Construction:

k=3

... does not quite implement original enabling rule, but:

t enabled at m if
- m(s) � w(s,t)                                for [s,t] ∈ F     [t,s] ∉ F
- m(s) + w(t,s) ☯ k(s)                      for [s,t] ∉ F     [t,s] ∈ F
- m(s) – w(s,t) + w(t,s) ☯ k(s)         for [s,t] ∈ F     [t,s] ∈ F

but: for finite k(s), s is k(s)-bounded
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Strong capacities
Construction:

k=3

- implements original enabling rule:
t enabled at m if
- m(s) � w(s,t)                                for [s,t] ∈ F    
- m(s) + w(t,s) ☯ k(s)                      for [t,s] ∈ F

-generalizes contact in EN systems:
EN system = marked PT net 

- no arc weights
- k(s) = 1 (strong!) for all places s 22

Inhibitor arcs

t t only enabled if

m(s) = 0
s

If k(s) is finite, construction:

k=3

3 3
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II. Basic analysis techniques

Linear algebra
Marking equation
Place invariants
Transition invariants

Structural tecchniques
Siphons
Traps
Siphon/trap property

Restricted net classes
State machine
Marked graph
Free choice net

Causal semantics
Occurrence net
Process net

24

Marking, transition as vector

t2 t5

t3

t4

t1

s1

s2

s3

s4

s5

m0:   ( 4 , 0 , 0 , 0 , 1 )

t2 = ( -1 , 1 , 1 , 0 , -1 )

If  m0
t
2 m1 then  m0 + t2 = m1 =  ( 3 , 1 , 1 , 0 , 0 )
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Matrix representation of a net

t2 t5

t3

t4

t1

s1

s2

s3

s4

s5

1 –1 0 0 0
-1 1 0 0 0
0 1 –1 0 1
0 0 1 –1 –1
0 –1 0 1 0

(N) = 
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The marking equation
If  m0

t
2

t
3

t
5

t
1

t
3 m   then 

m0 + t2 + t3 + t5 + t1 + t3 = m

m0 + (1•t1) + (1•t2) + (2•t3) + (0•t4) + (1•t5) = m
m0 + (N) • (1,1,2,0,1) = m

Parikh-Vector of
t2 t3 t5 t1 t3

ÆIf m0
σ m   then  m0 + (N) • Parikh(σ) = m

Æ A marking is only reachable if

(N) • x = (m – m0)     has a solution for nat. x
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Example
t1

t2

t3

t4
t5

reachable markings:    corresponding solutations

( 1 , 0 , 0 , 0 , 0 )       ( 0 , 0 , 0 , 0 , 0),   ( 1 , 0 , 1 , 0 , 1),   ... 
( 0 , 1 , 0 , 0 , 1 )       ( 1 , 0 , 0 , 0 , 0),     ... 
( 0 , 0 , 1 , 1 , 0 )       ( 0 , 1 , 0 , 0 , 0),     ... 
( 0 , 0 , 0 , 1 , 1 )       ( 1 , 0 , 1 , 0 , 0),   ( 0 , 1 , 0 , 1 , 0),   ... 

non-reachable marking  has also solutions!  /
( 0 , 1 , 1 , 0 , 0 )             ( 1 , 1 , 0 , 0 , 1),    ... 
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Place invariants
Example: mutual exclusion

enter cs

leave cs

enter cs

leave cs

Process 1 Process 2

mutex:  m reachable Æ m(s2) + m(s4) ☯ 1

Proof:    1.  m(s2) + m(s3) + m(s4) = 1     initially true
2.  m(s2) + m(s3) + m(s4) = 1     is stable
3.  m(s2) + m(s3) + m(s4) = 1  Æ m(s2) + m(s4) ☯ 1

s1 s2
s3

s4 s5

use place 
invariant
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Place invariant i

Def. 1:   for all t,   Σ [s,t]∈F w(s)•i(s) = Σ [t,s]∈F w(s)•i(s)

Def. 2:  for all t,   i • t = 0

Def. 3:  i • (N) = (0,...,0)

If m reachable from m0 then i • m = i • m0

Proof:   m0
s m    Æ m0 + (N) • Parikh(s) = m

Æ i • m0 + i •(N) • Parikh(s) = i • m
(    = 0    )

Æ i • m0 = i • m
30

Place invariants

enter cs

leave cs

enter cs

leave cs

Process 1 Process 2

s1 s2
s3

s4 s5

( 0 , 1 , 1 , 1 , 0 )   is place invariant

Æi • m0 = 1 = i • m = m(s2) + m(s3) + m(s4)
for all reachable m

Æ m(s2) + m(s3) + m(s4) = 1    is stable.
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Further place invariants

enter cs

leave cs

enter cs

leave cs

Process 1 Process 2

s1 s2
s3

s4 s5

( 0 , 1 , 1 , 1 , 0 )   mutual exclusion

( 0 , 1 , 1 , 0 , -1)   m(s2) + m(s3) = m(s5)
-Æ if s2 is marked then s5 is marked

( 1 , 1 , 0 , 0 , 0 )   m(s1) + m(s2) = 1
Æ m(s1) ☯1, m(s2) ☯ 1,     s1,s2 bounded 32

Place invariants and liveness

For all PT nets,                   for all place invariants i
-live                         Æ - no negative entries      :    i • m0 > 0
-no isolated places             - some positive entry s

(otherwise transitions connected with s are dead)

enter cs

leave cs

enter cs

leave cs

Process 1 Process 2

s1 s2
s3

s4 s5

( 0 , 1 , 1 , 1 , 0 )      ( 1, 1 ,0 , 0 , 0 )       ( 0 , 0 , 0 , 1 , 1 )  

33

Place invariants and boundedness
if exists place invariant i
- for all s, i(s) > 0                         Æ net is bounded

enter cs

leave cs

enter cs

leave cs

Process 1 Process 2

s1 s2
s3

s4 s5

( 1, 2 ,1 , 2 , 1 )     

Proof:  m reachable    Æ i • m = i • m0
Æ i(s) • m(s) ☯ i • m = i • m0
Æ m(s) ☯ i • m0 / i(s)
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Place invariants and reachability

-m unreachable
-for all place invariants i: i • m = i • m0

Æ no place invariant is able to prove non-reachability of m
-Marking equation (N) • x = (m – m0) : no solution in naturals

Æ marking equation is able to prove non-reachability of m
- Marking equation does have rational solution: (1 , 0 , 1 , ½ , ½)

There is a place invariant  i s.t.   i • m� i • m0 if and only if
marking equation does not have rational solution

Æ modulo invariants

35

Transition invariants

enter cs

leave cs

enter cs

leave cs

Process 1 Process 2

s1 s2
s3

s4 s5

( 1, 1 , 0 , 0 )      ( 0 , 0 , 1 , 1 )      ( 2, 2 , 1 , 1 )   

= solutions of   (N) • y = (0,...,0)

m0
σ m      Æ m0 = m if and only if Parikh(σ) is

transition invariant
36

Transition invariants, liveness,
boundedness

net                                             there is transition invariant j
- live                           Æ - for all t,   j(t) > 0
- bounded 

Proof:
By liveness:  m0

σ
1 m1

σ
2 m2

σ
3 m3 ....

all transitions all transitionsall transitions ....

By boundedness:  for some i < j:   mi = mj

Æmi
σ

i+1
.... σ

j mj = mi

ÆParikh(σi+1 .... σj) is transition invariant.
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Structural techniques
t2

t1

t3

t4

t5

siphon

once empty – always empty

Def.:   •S G S•

Æif t produces into S,
then  t consumes from S

trap

once marked, always marked

Def.: S•G •S

Æif t consumes from S,
then t produces into S

38

Example
t1

t2

t3

t4
t5

{s1,s4,s5} initially marked trap !  

Æ ( 0 , 1 , 1 , 0 , 0 )      unreachable 

s1
s4

s5

(Marking equation could not prove non-reachability!)
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Siphons, traps  and liveness, deadlocks
net

- live                                Æ every siphon (�©) initially marke
- no isolated places

(transitions connected to empty siphon are dead)

net
- has a transition
- no capacity restriction
- all arc weights 1                      Æ net deadlock-free
- every siphon (�©) contains
initially marked trap

(Set of places unmarked at a deadlock marking   is siphon.
This siphon is empty  Æ does not contain marked trap

Æ contains no initially marked trap) 40

Restricted net classes
t2

t1
t3

t4

t5

-every transition has exactly one pre-place
-every transition has exactly one post-place
-all arc weights 1
-no capacity restrictions

state machine

- live      if and only if    - strongly connected,
- initially marked

state machine:

- bounded

41

Restricted net classes

-every place has exactly one pre-transition
-every place has exactly one post-transition
-all arc weights 1
-no capacity restrictions

marked graph

- live          if and only if     each cycle initially marked   

marked graph:

- 1-safe     if and only if     each place belongs to a cycle
with exactly 1 token
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Restricted net classes
t1

t2

t3

t4

s1

s2 s4
s3

-all arc weights 1
-no capacity restrictions
-if transitions share pre-places, they share

all their pre-places:
(s,t) ∈ F Æ •t x s•G F

free choice net

not free choice free choice

free choice is live     if and only if   every siphon (�©) contains
initially marked trap

{s1,s3}   {s2,s4}
{s1,s3,s4}   {s2,s3,s4}
{s1,s2,s3,s4}

{s1,s2,s3,s4}
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Causal semantics of PT nets
A consumer/producer system

produced

consume

received
receive

full

send

consumed

sent

produce

a causal run: consumedsent
produce

produced

receivedreceive

full
send

sent
produce

produced

full
send

sent

consume

consumed 44

Causal runs

A causal run of a PT net is a labeled Petri net  (B, E , K)

net element           name   symbol  interpretation

place                      condition  B     token on place

transition                event       E      transition occurrence

arc                          causal     K      token flow
relation

45

Occurrence nets

Causal runs:

-no cycles                                           K+ is partial order  C
-no branch at conditions                     |b•| ☯ 1, |•b| ☯ 1
-events have finite fan-in, fan-out       •e finite, e• finite
-events have at least one input,         |•e| � 1, |e•| � 1

one output condition
-every node has finite “history” {x | x C n}  finite

occurrence net

46

Process net
represents causal run of a PT net

= occurrence net related to given PT net

labels at B,E

labels:  π:  B Æ S,   E Æ T     

-m0 agrees with start conditions:  
for all s:  m0(s) = | {b ∈ B | •b = Ø, π(b) = s} |

-respect transition vicinities 
π(•e) = •π(e)  ,   w(s,π(e)) = | {b ∈ •e | π(b) = s} |
π(e•) = π(e)• ,   w(π(e),s) = | {b ∈ e• | π(b) = s} |

process
net
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Occurrence sequence vs process net
a

b c
D

E

F

G

H

occurrence sequences

abc
bac
acb
bca

process nets
a

b c
D

E
F

G

H

a

b c
D

E
F

G

H

F

F

provide partial order
reflecting causality

provide total orders
respecting causality
independence Æ
arbitrary interleaving
information about causality 
can get lost
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1 occurrence sequence in 2 process nets

rej
acc

disref

ins

ref  ins acc dis
ins acc dis
ins rej 

ref

ins insinsacc accdis dis rej

ref

ins insinsacc accdis dis rej
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2 process nets, no common sequence

rej
acc

disref

ins

ref

ins insinsacc accdis dis rej

ref

ins insinsacc accdis dis rej


