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Abstract

Formal methods for software development are becoming increasingly necessary as software
becomes an important part of everyday life. To handle the complexities inherent in large-
scale software systems these methods need to be combined with a sound development
methodology which supports modularity and reusability. Object orientation, based on the
concept that systems are composed of collections of interacting objects whose behaviours
are specified by classes, is such a methodology.

This thesis presents the formal specification language Object-Z which is an extension of
the formal specification language Z to facilitate specification in an object-oriented style.
The major extension in Object-Z is the introduction of the class schema which captures
the object-oriented notion of a class by encapsulating a single state schema with all the
operation schemas which may affect its variables. The class schema is not simply a
syntactic extension but also defines a type whose instances are objects. Object-Z also
supports single and multiple inheritance allowing classes to be reused in the definition
of other classes and polymorphism allowing a variable to be assigned to objects of more
than one class.

The thesis also presents a set-theoretic model of classes in Object-Z which could form the
basis of a full formal semantics. The model, based on the histories of a class, i.e. the
sequences of states and operations which an object of the class can undergo, facilitates
the specification of liveness properties using a temporal logic notation. A fully-abstract
model of classes in Object-Z, derived from the history model, is also presented. This
model is used to formally define a notion of behavioural compatibility in Object-Z which
could form the basis of a theory of class refinement.
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Chapter 1

Introduction

“Only from the alliance of the one, working with and through the
other, are great things born.”

— Antoine de Saint-Exupéry
The Wisdom of the Sands, 1948.

Software is being increasingly used in applications which affect our everyday lives. It
has found application in the fields of commerce, industry, government, medicine, law
and education. In particular, it is being used in a growing number of safety-critical
applications ranging from heart pacemakers through to auto-pilots in aircraft. These
applications, whose failure could result in injury or even loss of life, demand development
techniques which can ensure the production of high-quality, reliable software.

The main approach advocated for making software more reliable is the use of formal ,
or mathematical, methods of software specification, verification and refinement. These
techniques, although promising, have not yet been widely adopted. This is due partly to
their immaturity and partly to their inability to cope with the complexities inherent in
large-scale software systems.

The main approach for handling these complexities in the software itself has been to
develop high-level programming languages which support sound modular design and soft-
ware reusability. A natural culmination of this trend has been the development and
growing interest, in the last decade, of programming languages which support the modu-
lar design methodology of object orientation[80, 20].

Only by adopting similar techniques in languages for the formal specification of software,
will it be possible to overcome the problems of scalability. This thesis presents the formal
specification language Object-Z1 which is an extension of the formal specification language

1The language Object-Z is, at the time of publication of this thesis, still under development by a team
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1.1. FORMAL SPECIFICATION

Z[56, 108, 93] to facilitate specification in an object-oriented style. As a preliminary, this
chapter reviews the current state of the art in formal specification and object orientation
in Sections 1.1 and 1.2 respectively. Section 1.3 discusses their combination and reviews
existing work in this area. Section 1.4 provides an outline of the rest of the thesis.

1.1 Formal Specification

While the need for methods for the formal development of software systems has been
recognised for some time[60, 38], it is only within the last few years that they have found
increasing application. In 1991, the UK Ministry of Defence prepared a draft standard,
00-55[113], insisting upon the use of formal methods for all military software which may
endanger life. A software quality assurance standard, AS 3563[109], is also being developed
in Australia.

Formal specification is the first step in the formal development of a software system. It is
followed by a series of steps involving verification and refinement which lead to an eventual
implementation. The primary role of the formal specification is to provide a precise and
unambiguous description of the system as a basis for these subsequent steps.

1.1.1 Uses of formal specifications

A formal specification allows the system designer to verify important properties, resolve
ambiguities and detect design errors before system development begins. Without a formal
specification, a system would have to be extensively tested after implementation. This
alternative is not only expensive, since on failing the tests the system may need to be
reimplemented, but also can never guarantee reliable behaviour.

A formal specification also provides a means of communication between the system de-
signer and other persons involved with the system. It acts as a contract between the sys-
tem designer and the client who wants the system built. It provides a plan (or blueprint)
for the system implementor, or programmer, and can form the basis for the user docu-
mentation.

It can also provide a means of communication between designers of separate systems which
need to be in some way compatible. For example, international standards of communi-
cation protocols are formally specified so that telecommunications companies in different
countries can build compatible exchanges.

of researchers. This thesis presents a particular version of Object-Z which has been developed by the
thesis author and which does not correspond entirely to any previously published version of the language.
Other versions of Object-Z can be found in [27, 41].

2



1.1. FORMAL SPECIFICATION

In the long-term, a formal specification may be used as a reference manual for maintenance
and modification of the system. Proposed extensions to the system can be formally
specified and their interactions with the existing system determined.

1.1.2 Properties of specification languages

To enable verification of system properties and refinement towards an implementation,
a language for formal specification must be mathematically based. Usually this basis is
expressed algebraically or in set theory and logic. A formal specification language must
also have a well-defined syntax and semantics.

Formal specification languages are generally concerned with specifying safety properties.
That is, properties that state that something ‘bad’ doesn’t happen[70]. Formal speci-
fication languages may, however, also be used to specify liveness properties. That is,
properties that state that something ‘good’ does happen[70]. Liveness properties may
state that an event is guaranteed to take place, that events occur fairly or that the system
is guaranteed to terminate successfully, i.e. it won’t run forever. A formal definition of
safety and liveness properties is given by Alpern and Schneider[6].

A formal specification language need not, in general, be executable. Some specification
languages such as OBJ[51] are executable. However, to manage this, these languages
sacrifice other desirable properties such as abstraction and nondeterminism. This issue is
discussed in detail by Hayes and Jones[58].

Abstraction allows the specification of a system’s functionality independent of any partic-
ular implementation. That is, the specification describes what the system does without
regard for how it does it. Such specifications are necessarily simpler not having to describe
any algorithmic details and are therefore easier to reason about and verify. Abstraction
also allows the specification of system interfaces which aid in composing systems.

Although abstraction from implementation details is desirable, it is also desirable to be
able to capture these details in a specification language. This allows refinement towards
a suitable implementation. A specification language should therefore ideally be capable
of specification at many levels of abstraction.

Nondeterminism allows the specification of systems which exhibit more than one response
to a given input. Support for nondeterminism is desirable in a specification language since
a purely deterministic specification may unnecessarily constrain the choice of possible
system implementations.

Another property which is sometimes considered important for a specification language
is the ability to capture concurrency. Concurrency is essentially an implementation issue,
a concurrent system being one where more than one process is being run simultaneously.
To allow refinement towards such an implementation, however, requires the specification
language to model the simultaneous occurrence of more than one event. Also, for many

3



1.1. FORMAL SPECIFICATION

systems, even functionality at the highest level is best captured in terms of a collection
of concurrent components. For example, a multiprocessor system is best specified as a
collection of concurrently operating processors.

Specification languages should also be usable. That is, despite their formality and math-
ematical basis, they should be readable and easily comprehended. One way to achieve
this is by structuring the specification into independent parts that can then be read and
understood in isolation. Methods such as genericity which enable reuse of existing parts
of the specification can also aid readability . Readability can also be achieved by including
within the specification informal explanatory text and diagrams. These, however, should
only assist the understanding of the formal part, not replace it.

1.1.3 Classes of specification languages

A wide range of formal specification languages have been proposed. Most of these lan-
guages can be classified as either property-oriented or model-oriented . Property-oriented
languages describe a system implicitly by stating its properties whereas model-oriented
languages construct an explicit model of the system.

Property-oriented languages

Property-oriented languages include algebraic languages such as Clear[23] and OBJ, ax-
iomatic languages[71] and temporal logics[92, 84, 72]. The latter languages are particularly
suited to specifying liveness properties. As an example of specification with a property-
oriented language, consider the following Clear specification of a simple buffering system
that can store up to two items.

const Item =
theory

sorts item
opns error : item

endth

const Buffer =
enrich Item by

data sorts buf
opns empty : buf

in : item, buf → buf
out : buf → (item, buf )

eqns in(z , in(y , in(x , empty))) = in(y , in(x , empty))
out(in(x , empty)) = (x , empty)
out(in(y , in(x , empty)) = (x , in(y , empty))
out(empty) = (error , empty)

enden

4



1.1. FORMAL SPECIFICATION

The specification starts with a theory describing the basic type, or sort, item. The
operation error can be thought of as a function which takes no arguments. It defines
a constant of sort item. Since all operations in algebraic specification languages are
required to be total, such constants are needed as the return arguments of operations
applied outside their intended domain.

The theory Buffer enriches the theory Item with a new sort buf , and operations empty ,
in and out . The keyword data indicates that the sort buf is defined completely by this
theory. That is, all values of buf can be generated by applying the theory’s operations.
The sort item is not constrained in this way.

The equations state that the buffer will only hold up to two items and that they are
removed on a first-in/first-out basis. If the operation out is applied when the buffer is
empty, the error constant is returned.

Model-oriented languages

By explicitly modelling systems, model-oriented languages tend to give specifications
which are easier to understand than those produced by property-oriented techniques.
However, property-oriented techniques, being more abstract, tend to be better suited to
reasoning about specified systems.

Model-oriented languages can be further classified into state-based and event-based lan-
guages. State-based languages include an explicit state as part of the model. Transitions
are then defined on the state. Event-based languages describe transitions, or events,
without reference to an explicit state.

State-based languages include logic-based languages such as Z and VDM[65], as well
as languages based on nets[89] and finite state machines[12, 63]. As an example, consider
once again a simple two-place buffer. A specification in Z can be given as follows.

[Item]

Buffer
buf : seq Item

#buf 6 2

Init
Buffer

buf = 〈 〉

In
∆Buffer
in? : Item

#buf < 2

buf ′ = buf a 〈in?〉

Out
∆Buffer
out ! : Item

buf 6= 〈 〉

buf = 〈out !〉 a buf ′

5



1.1. FORMAL SPECIFICATION

The specification consists of the declaration of a basic type Item, one state schema Buffer ,
an initial state schema Init and two operation schemas In and Out . Each schema consists
of a declaration of some variables together with a predicate relating these variables.

The state schema Buffer describes the state of the system as a sequence of items of length
two or less. The initial state schema Init includes the variable and predicate of Buffer
and adds a new predicate to indicate that the buffer is initially empty.

The operations schemas In and Out describe state transitions. The values of variables
before a transition are unprimed whereas the values after are primed. The primed and
unprimed variables of Buffer are introduced by the declaration ∆Buffer .

In has an additional variable in? corresponding to an item to be input to the buffer.
By convention, the names of input variables end with a question mark. In also has a
precondition that the length of the buffer must be less than two. The specification says
nothing about what happens if the operation is applied when its precondition does not
hold. That is, under these conditions the outcome of the operation is unspecified. A more
robust specification could be given by incorporating schemas for error handling. Examples
of this can be found in Hayes[56].

Out also has an additional variable out ! this time corresponding to an item to be output
from the buffer. By convention, the names of output variables end with an exclamation
mark. Out has a precondition that the buffer is not empty.

Event-based languages include process algebras such as CSP[61], CCS[81] and ACP[13],
as well as languages based on traces[62, 78] and grammars[10]. Such languages are ideally
suited to capturing concurrency.

For example, a two-place buffer can be specified in CSP as the concurrent composition of
two one-place buffers.

B1 = in?x → transfer !x → B1
B2 = transfer?y → out !y → B2

BUFFER = (B1 || B2) \ {transfer}

The processes B1 and B2 define traces of events corresponding to the behaviours of the
one-place buffers. Each event consists of a channel and a message which is passed on that
channel. For example, in?x is the event that passes the message x on input channel in.
Similarly, transfer !x is the event that passes the message x on output channel transfer .

The concurrency operator || is used to construct a process which is composed of the
component processes B1 and B2. Any trace of this process is an interleaving of traces of
B1 and B2 subject to the restriction that synchronisation occurs on the common-named
channel transfer . Events involving this channel are subsequently hidden in the traces of
the process BUFFER. When specifying systems in terms of concurrent components it
is often necessary to specify channels such as transfer which are internal to the system.
Hiding the events involving these channels is necessary to prevent them being further
constrained by the system’s environment.

6



1.2. OBJECT ORIENTATION

Heterogeneous languages

Some specification languages do not belong to just one of the above classes. For example,
the specification language LOTOS[19, 64] has two distinct parts: a process algebra based
on CCS and an abstract data type language based on the algebraic specification language
ACT ONE[46].

The Object-Z specification language developed in this thesis also combines two techniques.
Being an extension to Z, it is primarily a state-based language but it also has a temporal
logic component used to capture liveness properties.

1.2 Object Orientation

The most common approach to handling complexity in large-scale software systems is
to decompose them into a number of easily comprehensible parts, or modules. This
approach, advocated by Parnas in 1972[88], has motivated the development of several
modular programming languages including Ada[11], CLU[75] and Modula-2[121].

Object orientation is a modular design methodology based on constructing systems as
collections of interacting components called objects. It originated with the programming
language Simula 67[14], an extension of Algol 60 which was concerned with modelling
objects in the real world for the purpose of simulation. As a result, object orientation
offers a particularly intuitive way of modelling systems.

An object has a state and a set of operations which may act on its state. The state consists
of a collection of state variables, or attributes, some of which may designate other objects.
In this way, objects may themselves be composed of objects. Objects differ from abstract
data types by the presence of their state. This affects their method of data abstraction.
Abstract data types abstract away from data by creating a type whose representation is
unknown to the user, or client. Objects, on the other hand, abstract away from data by
means of a procedural interface. This difference affects extensibility, efficiency, typing and
verification as shown by Cook[29].

Object orientation gained rapid popularity as a programming paradigm in the last decade
following the advent of Smalltalk-80[53]. Several object-oriented languages have since been
developed including Eiffel[80], POOL[9] and FOOPS[50]. Also, several object-oriented
extensions to existing programming languages have been developed. The most notable
among these are the C extensions, C++[112] and Objective-C[32], and the Lisp extensions,
LOOPS[18] and Flavors[24].

7



1.2. OBJECT ORIENTATION

1.2.1 Benefits of object orientation

Most of the benefits of the object-oriented approach extend directly from its modularity.
The most obvious of these is that it aids understanding. Each of the objects which make
up a system can be understood and reasoned about in isolation. Understanding the
system in its entirety is then reduced to simply understanding the interactions between
its objects.

Object orientation also encourages software reuse since smaller components are more likely
to be reused in a system than larger ones. By creating libraries of object templates, or
classes, software reuse between systems is also possible.

Object orientation also makes it easier to modify or extend software systems. Often
simple modifications will only affect one object and these modifications can be made to
that object in isolation.

1.2.2 Features of object orientation

There has been much debate as to what “object-oriented” actually means. This is evident
from the varying features supported by different object-oriented languages. Most, how-
ever, support the notion of classes as a means of encapsulating the state information and
operations of objects. Many also support the notions of inheritance and polymorphism.
Inheritance is a mechanism for incremental modification of classes. Polymorphism is the
ability of variables to be assigned to objects of more than one class.

Classes

Objects can be grouped into classes which encapsulate their state information and associ-
ated operations. Objects with the same class have the same state variables and operations
and hence the same behaviour. For example, consider the following Eiffel class PERSON 2.

2The operation Create which is required for initialisation of objects upon creation has been left out
of this and subsequent Eiffel classes in this section for reasons of simplicity.

8



1.2. OBJECT ORIENTATION

class PERSON export
name, age, birthday

feature
name : STRING ;
age : INTEGER;
birthday is

- - Increment age
do

age := age + 1
end; - - birthday

end - - class PERSON

This class has two attributes name of type STRING and age of type INTEGER, and an
operation birthday which increments age. The class itself is not an object but is used as
a template to create objects. In this way, a number of distinct objects can be defined
which share the code of their class.

A class can be thought of as defining a type such that objects of the class are instances
of the type. While some object-oriented languages, including Eiffel, identify a class with
the type it defines, it is important to distinguish between these concepts. An object’s
class describes its (implementational) structure whereas an object’s type describes its
properties or behaviour. It is possible for objects with identical properties to be structured
differently. For example, a stack may be implemented as either an array or a linked list.
A discussion of the distinction between classes and types is given in [52].

A class provides a well-defined interface limiting a client’s view of an object. Often all, or
part, of an object’s state is hidden from the client who only sees its interaction with the
environment. This enables changes to be made to the state of a class, perhaps to improve
efficiency, without affecting the operation of the rest of the system.

Hiding the state of an object also prevents clients from changing attributes in ways other
than those defined by the object’s operations. This is vital for the correct operation of
most objects.

Sometimes, however, it is necessary for the values of certain attributes to be available
to clients. In languages such as Smalltalk-80, where the entire state is hidden, separate
operations have to be defined for each attribute that may be accessed. Other languages
provide mechanisms so that the hiding of attributes (and operations) is left to the imple-
mentor of the class. For example, the export list of Eiffel and the use of public, protected
and private in C++.

The notion of hiding the state of an object is central to the Object-Z language presented in
this thesis. An object in Object-Z may only be accessed through the procedural interface
defined by its class. The syntax and semantics of classes and object instantiation in
Object-Z are presented in Chapter 2.
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Inheritance

Inheritance is defined by Wegner and Zdonik[117] as a mechanism for “incremental mod-
ification” of classes. Although it was originally introduced into Simula 67 as an organi-
sational tool for classification, its primary use in modern object-oriented programming is
as a means of sharing code between classes.

Inheritance allows a class, called a subclass, to be constructed from another class, called its
superclass. A subclass usually represents an extension or specialisation of its superclass.
For example, consider the Eiffel class STUDENT which inherits PERSON .

class STUDENT export
name, age, nb subjects, birthday , enrol , complete

inherit
PERSON

feature
nb subjects : INTEGER;
enrol is

- - Enrol in a new subject
do

if nb subjects < 8 then
nb subjects := nb subjects + 1

end
end; - - enrol

complete is
- - Complete a subject

do
if nb subjects > 0 then

nb subjects := nb subjects − 1
end

end; - - complete
end - - class STUDENT

The class STUDENT includes, through inheritance, the attributes and operation birthday
of PERSON as well as the additional attribute nb subjects, corresponding to the num-
ber of subjects currently studied, and the additional operations enrol , corresponding to
enrolling in a new subject, and complete, corresponding to completing a subject. The
operation enrol is defined so that a student can only enrol in up to 8 subjects at any time.

As well as addition of attributes and operations, inheritance may also allow existing
attributes and operations to be renamed and existing operations to be redefined. For
example, the class HONOURS STUDENT inherits student and redefines the operation
enrol so that up to 10 subjects may be studied at any time.

10
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class HONOURS STUDENT export
name, age, nb subjects, birthday , enrol , complete

inherit
STUDENT redefine enrol

feature
enrol is

- - Enrol in a new subject
do

if nb subjects < 10 then
nb subjects := nb subjects + 1

end
end; - - enrol

end - - class HONOURS STUDENT

The new definition of enrol overrides the existing one in STUDENT . Redefinition allows
the possibility of deferred operations which are only fully defined in the subclasses of the
class in which they originally occur. Classes with deferred operations, called deferred
classes, cannot be used for object declaration but provide an abstract representation of
their subclasses.

Inheritance may also allow attributes and operations to be cancelled. This causes the
subclass to be a generalisation, rather than a specialisation, of its superclass. Cancellation
of attributes and operations, however, is not supported in most object-oriented languages.

Many object-oriented languages allow a class to inherit from more than one class. This
is called multiple inheritance. Notions of single and multiple inheritance in Object-Z
are presented in Chapter 3 of this thesis. These notions allow inherited attributes and
operations to be renamed and inherited operations to be arbitrarily redefined.

Polymorphism

Polymorphism is described by Meyer[80] as “the ability to take several forms”. A number
of different kinds of polymorphism that exist in programming languages are discussed by
Cardelli and Wegner[26].

In the context of object orientation, polymorphism refers to the ability of a variable to
be assigned to objects of more than one class. The classes of objects to which a variable
may be assigned are in some way compatible with its declared class.

In many object-oriented languages, polymorphism is restricted to the inheritance hier-
archy. That is, an object-valued variable may be assigned to an object of its declared
class or any class derived from its declared class by inheritance. For example, a variable
declared to be of class PERSON could be assigned to an object of any of the classes
PERSON , STUDENT or HONOURS STUDENT .

11
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Associating inheritance and polymorphism requires restricting the modifications allowed
by inheritance so that subclasses are in some way compatible with their superclasses. In
some languages, such as Smalltalk-80, which don’t provide relevant type-checking facili-
ties, it is the responsibility of the program designer to ensure compatibility is maintained
through inheritance.

In other languages, such as C++, inheritance is restricted to ensure a type of compatibility
known as signature compatibility . Informally, a subclass is said to be signature compatible
with its superclass if it has all the attributes and operations of the superclass (and perhaps
some more). This allows the subclass to be applied in any environment in which its
superclass can be applied, i.e. all operation invocation sequences allowed for the superclass
are also allowed for the subclass. A formal definition of signature compatibility in Object-
Z is presented in Chapter 3 of this thesis.

In Eiffel, inheritance is restricted even further to ensure behavioural compatibility . Objects
of the subclass can not only be applied in any environment that their superclass can be
applied in, but will also respond in a way that their superclass would have responded. This
can only be ensured by limiting the redefinition of operations. Eiffel adopts a rule for the
redefinition of the pre-conditions and post-conditions of operations based on the notion
of contravariance. Basically, this requires that the redefined operation be applicable in
(possibly) more states than the original operation and, for a given pre-state, result in
(possibly) less allowable post-states.

By ensuring behavioural compatibility through inheritance, subclasses in Eiffel are also
subtypes. However, just as it is important to distinguish between classes and types,
it is also important to distinguish between subclassing and subtyping. Subclassing is
concerned with sharing of the internal structure of classes whereas subtyping is concerned
with specialising the external behaviour, or functionality, of classes. The distinction
between subclassing and subtyping has been discussed by America[7], Cook et al.[30] and
Snyder[105].

Behavioural compatibility, however, is an important concept as it determines whether
one object can be substituted for another without affecting the behaviour of the rest of
the system. This has many practical applications, such as updating the implementation
of an object for reasons of efficiency or to add extra functionality, and is also related to
the notion of class refinement[114, 119]. A formal definition of behavioural compatibility
in Object-Z, which could form the basis of a theory of class refinement, is presented in
Chapter 6 of this thesis.

Other features

Other features supported by object-oriented languages include the notions of delegation
and object identity . Delegation is described by Wegner[116] as a “class-independent notion
of inheritance”. It allows objects to delegate responsibility for performing operations or
returning values to other objects. Although delegation can model class-based inheritance
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and is therefore more flexible, it is a difficult concept to handle semantically[5]. Delegation
will not be considered further in this thesis.

Objects are often regarded as having an identity independent of their state and operations.
That is, they are not characterised completely by their class. This enables objects from the
same class with identical attributes values to be distinguished. Unlike in many object-
oriented languages where object identity is implicit, it must be explicitly modelled in
Object-Z. This issue is examined in Chapter 2 of this thesis.

1.2.3 Models of object orientation

To help clarify the fundamental concepts of object orientation, many formal and semi-
formal models of object orientation have been developed. Some of these models are in the
form of semantics for object-oriented programming languages while others take a more
general view of object orientation.

Semantics of object-oriented programming languages

Wolczko[122] presents a denotational semantics of Smalltalk-80 based on the “Virtual
Machine” model described by Goldberg and Robson[53]. This model isn’t very abstract
and includes many implementational details specific to Smalltalk-80 such as the “method
lookup” mechanism required for inheritance. This mechanism works by first searching an
object’s class for a particular method, or operation, and, if it is not found, searching its
superclass. This search continues up the class hierarchy until the method is found.

Operational definitions such as this, however, do not always lead to an intuitive under-
standing of the concepts they are describing. Cook and Palsberg[31] describe a more
abstract denotational model of inheritance using fixed points. Fixed points allow a recur-
sive function, i.e. one defined in terms of itself, to be transformed into a non-recursive
function called a generator . In their semantics, Cook and Palsberg represent a class as a
recursive function and use the generator of this function to create objects. Inheritance is
modelled as an operation on generators. Correctness of the model is proven by showing
it is equivalent to an operational semantics based on the “method lookup” mechanism.

Similar models of inheritance are given in the denotational semantics of Smalltalk-80
presented by Kamin[68] and Reddy[94]. Kamin’s model represents an object as having
a local environment and a reference to a class. Reddy’s model is more abstract as it
hides the local environment. Objects in this model are represented as closures, i.e. data
structures containing functions with access to some local state.

Both Kamin and Reddy are motivated by the idea that the denotations of objects should
only be detailed enough to explain their externally observable behaviour. A semantics
with this property is described as being fully-abstract [90, 111, 79]. Yelland[123] shows that
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Reddy’s model is not fully-abstract as systems which are behaviourally equivalent can be
given different semantic denotations. He proposes a fully-abstract algebraic semantics as
well as a more “natural” fully-abstract semantics based on state-transition graphs.

A fully-abstract model of classes in Object-Z is presented in Chapter 5 of this thesis. From
a theoretical point of view, this model is interesting as it captures the precise meaning of
a class independent of its syntactic representation. From a practical point of view, the
model allows simpler definitions of behavioural compatibility, and hence subtyping and
refinement, to be developed.

General models of object orientation

Much of the language-independent formal work on object orientation has involved the
development of relevant type theories[25, 26, 3]. A review of the work in this area is
presented by Danforth and Tomlinson[37]. Several general models of object orientation
have, however, also been developed.

Wand[115] proposes a model of object orientation which reflects the idea of objects as
providing an intuitive or natural way to describe systems. The model is based on the
ontological concepts defined in Bunge’s “Treatise on Basic Philosophy”. The model ab-
stracts away from the notion of operations. Instead, objects are described in terms of
their observable attributes and laws which constrain the allowed combinations of values
of the attributes.

Other, more formal, models of object orientation have been proposed by Cusack[33],
Goguen[49] and Ehrich and Sernadas[45]. Cusack presents a language-independent frame-
work for inheritance based on a generic notion of refinement. Classes are represented as
sets of objects and inheritance by the subset relation. The definition of classes, therefore,
defines the type of inheritance allowed. This model insists that if one class is a subtype of
another then it is necessarily also a subclass. In [36], the model is modified to distinguish
between inheritance and subtyping.

Goguen models objects in terms of the observations that can be made of them over space
and time. This model captures the behaviour of objects, rather than their structure,
and also enables the behaviour of a system of objects to be derived from the behaviours
of its components. The model is particularly oriented towards capturing concurrency in
object-oriented systems.

Ehrich and Sernadas also adopt an approach which describes objects in terms of their
behaviour. An object is modelled as a mapping from the trace of operations it undergoes
to the corresponding trace of its attribute’s values. This approach is combined with the
work of Goguen in [44]. Various forms of inheritance and refinement are defined in terms
of the combined model.

A behavioural model of classes is presented in Chapter 2 of this thesis as the basis of
a full formal semantics of Object-Z. The model is based on representing an object by
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the sequence of states it has passed through together with the sequence of events it has
undergone. This model facilitates the specification of liveness properties in Object-Z using
a temporal logic notation presented in Chapter 4. The model is also used in the derivation
of the fully-abstract model of classes presented in Chapter 5.

1.3 Object-Oriented Formal Specification

The benefits derived from object orientation apply not only to software implementation,
but to any stage of software development. In particular, object orientation can be used in
the formal specification of software as a means of handling the complexity of large-scale
systems.

The enhanced structuring and reusability provided by adopting an object-oriented ap-
proach not only improves the clarity of specifications but also aids in the subsequent
steps of verification and refinement. Properties of objects can be verified locally and then
these properties can be used to verify global properties of the system. By choosing to
implement in an object-oriented programming language, the specification can be refined
to represent the exact structure, in terms of attributes and operations, of each object in
the implementation.

Specifying systems as collections of objects, however, generally results in a lower level of
abstraction as the consequent structuring is often suggestive of a possible implementation.
High-level specifications, however, can be accommodated in such cases by modelling the
system as a single object. The class of such an object provides a specification of the
system’s interface with its environment.

Object-oriented concepts have been incorporated in several specification languages in-
cluding algebraic specification languages[100, 28], SDL[85], Estelle[101], VDM[102, 120]
and CSP[33]. Most work in the area of object-oriented formal specification, however, has
involved the specification languages LOTOS and Z.

1.3.1 Object-oriented LOTOS

In general, process algebras offer an intuitive model of the behaviour of objects and
are, therefore, ideal for capturing notions of subtyping and behavioural compatibility.
Mayr[77] suggests using LOTOS to specify object-oriented systems. The behaviour of an
object is specified as a LOTOS process and a system of objects as a parallel composition
of such processes. Subtyping is identified as being equivalent to the extension relation
defined for LOTOS by Brinksma et al. in [21].

Similarly, Cusack et al.[36] build on the work in [33] to develop an object-oriented interpre-
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tation of Basic LOTOS3. A class template is specified as a LOTOS process definition and
object instantiation is identified as being equivalent to the conformance relation defined
in [21]. That is, any process which conforms to a class template represents an object of
that class. Subtyping is once again identified as being equivalent to the extension relation
of Brinksma et al.

While subtyping is captured easily in these approaches, a general notion of inheritance is
not. Black[15] discusses a notion of inheritance which involves the reuse of one or more
LOTOS process definitions within another. However, as Black goes on to show, problems
arise with this approach when an inherited process is defined recursively. A syntactic
extension to overcome these problem has been subsequently proposed by Rudkin[96].

A more fundamental problem with modelling inheritance in LOTOS, however, is to do
with the nature of inheritance itself. As mentioned in Section 1.2.2, inheritance is con-
cerned with the structure of classes and not with the behaviour of their objects. This
structure is not captured by a LOTOS process definition.

State-based techniques, on the other hand, are ideal for modelling the structure of a
class. Consequently, object-oriented adaptations of these techniques have met with greater
success. By adopting a semantics of classes based on the the behaviours of their objects,
such techniques can also be used for discussing notions of behavioural compatibility. This
is precisely the approach adopted for the semantics of Object-Z presented in this thesis.

1.3.2 Object-oriented Z

The earliest published work on object-oriented Z is that of Schuman and Pitt[98]. They
present a variant of Z in which classes are specified as a single state schema and an
associated set of operation schemas. The schemas belonging to a particular class are
related by their headers. The header of the state schema identifies the class name and
the header of each operation schema is prefixed by this name. The primed and unprimed
variables of the class state are included implicitly within each class operation.

While some changes are made to the syntax of Z to accommodate this style, the major
departure from standard Z is semantic. A class is represented semantically by a set
of operation histories. A rule of “historical inference” is introduced which means only
the minimum change to a state need be specified in an operation. A state variable not
mentioned in an operation’s post-condition is not assigned a nondeterministic value, as in
standard Z, but simply remains unchanged. Rules of inference for reasoning about class
specifications are given in terms of this semantics.

Schuman and Pitt allow inheritance to be modelled by inheriting each schema from an-
other class individually into the corresponding schemas of the new class. Their work is
extended in [99] to also include object instantiation and concurrent composition.

3Basic LOTOS is standard LOTOS without the abstract data type language ACT ONE.
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Hall[55] presents conventions for specifying systems in an object-oriented style in standard
Z. These conventions include the use of object identities, a means of expressing the state
of a system in terms of its component objects and a means of specifying the effect on a
system of an operation on one of its component objects. Extensions to Z to more readily
handle these conventions are also suggested.

Cusack and Lai[35] present an extension to Z incorporating the notion of a template
schema which encapsulates a state schema together with an initial state schema and zero
or more operation schemas. A template schema represents a class type, i.e. instances of
a template schema are objects of an associated class. Based on the work in [33], various
pre-orders are defined on template schemas in an attempt to define a subtyping relation.

This work is extended by Cusack in [34] to consider inheritance in object-oriented Z.
Two types of inheritance are defined: incremental inheritance for reuse of existing class
specifications and subtyping inheritance for specifying classes which may be substituted
for their inherited classes.

Whysall and McDermid[118] present an approach to object-oriented Z in which each object
has two separate specifications: an algebraic export specification and a body specification
in standard Z. The approach is motivated by the use of object specifications during refine-
ment. The export specification provides a description of the object’s behaviour without
reference to its state and is used to prove properties about the object which may be
needed in reasoning about systems in which it is used. The body specification provides a
basic description of the object in terms of its state and operations and is used as a basis
for its subsequent refinement. Refinement, substitution and composition relations in this
framework are presented in [119].

Lano[73] presents an object-oriented extension to Z called Z++. The syntax of Z is
extended to allow class types to be defined. A class type has local type and variable
declarations and a set of operations. The operations are defined as functions from input
parameters to output parameters and adopt the convention that variables not mentioned
in their definition are unchanged. A class type may also have generic parameters and may
inherit other classes.

Instances of class types are used in standard Z specifications. This allows the modification
of data structures without requiring changes to the specification body. The class concept
in Z++, therefore, primarily provides a means of separating the implementational details
of data structures from the high-level specification of system functionality.

Alencar and Goguen[4] present an object-oriented specification language called OOZE
(Object Oriented Z Environment) which combines an extended Z syntax with the algebraic
semantics of the object-oriented programming language FOOPS. OOZE supports not
only classes but also modules which are used to group related classes, theories which
are used to specify module interfaces and views which assert relationships of refinement
between modules. Object instantiation as well as inheritance, at both the class and
module level, are supported. Specifications in OOZE may be restricted to a subset of the
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language so that they are either interpretable, for rapid prototyping, or compilable, for
implementation.

Object-Z has been developed independently of these other approaches and has, in fact,
influenced some of them. In particular, the work of Cusack has been directly inspired
by Object-Z as has the syntax of OOZE. Object-Z supports both object instantiation
and multiple inheritance and is currently the only object-oriented adaptation of Z which
allows the specification of liveness properties. Object-Z is compared with the other object-
oriented adaptations of Z in Chapter 7.

1.4 Thesis Outline

The objective of this thesis is to present the formal specification language Object-Z and
to provide a basis for the development of a full formal semantics and theory of refinement
for the language. This basis is provided in terms of a set-theoretic model of classes and
an associated theory of the behavioural compatibility of objects.

Chapter 2 introduces the notion of a class in Object-Z which groups a single state schema
with the operation schemas which can affect its variables. The notation presented was
originally developed by the thesis author in collaboration with the authors of [42] and
subsequently revised by the thesis author in collaboration with the authors of [27] and
[41]. The author’s contribution to all aspects of each of these papers was substantial.

A set-theoretic model of classes, based on the sequences of states and operations an object
of a class can undergo, is also presented in Chapter 2. This model, initially inspired by
the work of Duke and Duke[39], is used to explain the meaning of object instantiation
and the initialisation and application of operations to objects of a class.

Chapter 3 presents inheritance and polymorphism in Object-Z. The fundamental ideas
presented were developed by the thesis author in collaboration with the authors of [27].
Inheritance in Object-Z is not restricted to maintain compatibility between a class and its
subclasses and, hence, it is the responsibility of the specifier to ensure compatibility exists
when an inheritance hierarchy is used polymorphically. Rules for maintaining signature
compatibility through inheritance are presented in this chapter.

Chapters 4, 5 and 6 present original research carried out solely by the thesis author.
Chapter 4 examines the specification of liveness properties in Object-Z. A formal definition
of the concepts of safety and liveness are presented as well as the full formal syntax and
semantics of a temporal logic notation for specifying liveness properties concerned with
the occurrence of both states and events. This notation is incorporated into the syntax
and semantics of Object-Z classes.

Chapter 5 presents a fully-abstract model of classes in Object-Z. Within the model, the
denotation of a class contains the minimum amount of information such that the denota-
tion of the class of any object which is composed of a number of objects can be determined
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from the denotations of the classes of these objects. Intuitively, the model includes no
unnecessary syntactic detail and describes a class in terms of the external behaviour of
its objects.

Chapter 6 discusses the concept of behavioural compatibility as a basis for refinement in
Object-Z. As well as a general definition of behavioural compatibility, two weaker notions
of behavioural compatibility are defined. Observational compatibility is relevant when an
active object is placed within a passive environment and operational compatibility when
a passive object is placed in an active environment. Rules for maintaining each type of
behavioural compatibility through inheritance are also presented.

The thesis is concluded in Chapter 7 by providing a summary of the major points, evalu-
ating the contributions with respect to related work and indicating future research direc-
tions.
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Chapter 2

Classes

“We live in a world of things, and our only connection with them
is that we know how to manipulate or to consume them.”

— Erich Fromm
The Sane Society , 1955.

Z is a state-based formal specification language based on the established mathematics of
set theory and first-order predicate logic1. It has been developed, over the past ten years,
from the work of Abrial et al.[2] by the Programming Research Group at Oxford University
(e.g. see [106, 83, 56, 107, 108]) and has been used to specify a wide range of systems
including transaction processing systems[86] and communications protocols[40, 59].

A specification in Z typically consists of a number of state and operation schemas. A
state schema groups together variables and defines the relationship that holds between
their values. An operation schema defines the relationship between the ‘before’ and ‘af-
ter’ values of variables belonging to one or more state schemas. Inferring the operation
schemas that may affect a particular state schema requires examining the signatures of
all schemas in the specification. In a large specification, containing numerous state and
operation schemas, this task may prove impracticable.

This problem can be overcome by extending Z to facilitate an object-oriented approach
to formal specification. A fundamental idea of object orientation is that the state of an
object may only be changed by operations within its class. By adopting the notion of class,
therefore, the relationship between state and operation schemas can be made explicit.
Furthermore, the enhanced structuring enables the specifier to incorporate elements of
design into a specification.

1A familiarity with Z will be assumed throughout this thesis. A glossary of the Z notation used is
included in Appendix B.
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Object-Z is an extension of Z in which the existing syntax and semantics of Z are retained
and new constructs are introduced to facilitate specification in an object-oriented style.
The major extension in Object-Z is the class schema which captures the object-oriented
notion of a class by encapsulating a single state schema with all the operation schemas
which may affect its variables. The class schema is not simply a syntactic extension but
also defines a type whose instances are objects. Section 2.1 presents the syntax of a
basic class schema. This syntax will be extended in later chapters as new features are
introduced. Section 2.2 presents a set-theoretic model of classes which could be used as
the basis of a full formal semantics of Object-Z. This model is used to explain the meaning
of object instantiation in Section 2.3.

2.1 Syntax of Classes

The objective of this section is to provide an informal description of the syntax of a basic
class schema in Object-Z. A formal description of this syntax can be found in Appendix A.

An Object-Z class schema, often referred to simply as a class, is represented syntactically
as a named box with zero or more generic parameters. In this box there may be local
type and constant definitions, at most one state and associated initial state schema and
zero or more operations. A class may also include the names of inherited classes (intro-
duced in Chapter 3) and history invariants for capturing liveness properties (introduced
in Chapter 4). For this chapter, the basic structure of a class is as follows.

ClassName[generic parameters]

type definitions
constant definitions
state schema
initial state schema
operations

2.1.1 Class features

The type and constant definitions within an Object-Z class have the same syntax as global
type and constant definitions in Z. Their scope, however, is limited to the class in which
they are declared. A constant is associated with a fixed value which cannot be changed by
any of the operations of the class. However, the value of constants may differ for different
instantiations, i.e. objects, of the class.

The state schema is like a Z state schema except that it has no name associated with it.
The declarations of the state schema are referred to as the state variables and the predicate
as the state invariant . The state invariant restricts the possible values of not only the
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state variables but also the constants. The state variables and constants collectively define
the class attributes.

The initial state schema is distinguished by the name INIT. Since the state and the initial
state schema are encapsulated within a class, there is no need to explicitly include the
state variables and state invariant in the initial state schema. Instead, they are included
implicitly.

Similarly, the state variables and state invariant in both primed and unprimed form are
implicitly included in each of the operations of the class. The state invariant is, therefore,
true at all times, i.e. in each possible initial state and before and after each operation.

An operation is either an operation schema or a schema expression involving existing class
operations and schema operators similar to those in Z. The operation schemas within an
Object-Z class differ from Z operation schemas in that they have, in addition to the
declaration and predicate parts, a ∆-list . The ∆-list of an operation contains a subset
of the state variables. The understanding is that when the operation is applied to an
object of the class, those variables not in the ∆-list remain unchanged. (Application of
class operations to objects is discussed in Section 2.3.) When two or more operations are
combined in a schema expression, the ∆-list of the resulting operation unites all of the
variables in the ∆-lists of the constituent operations.

As an example, consider the following class C .

C

c : N

x , y : N

x 6 y + c

INIT

x = y = 0

IncX
∆(x )

x ′ = x + 1

IncY
∆(y)

y ′ = y + 1

IncBoth =̂ IncX ∧ IncY

IncEither =̂ IncX ∨ IncY
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The class has a constant c and two state variables x and y . The state invariant stipulates
that the value of x cannot exceed the value of y by more than c.

Initially, both x and y have the value zero. The initial state schema could be expanded,
by explicitly including the state variables and state invariant, to yield the semantically
identical schema shown below.

INIT

x , y : N

x 6 y + c
x = y = 0

Two of the class operations, IncX and IncY , are defined by operation schemas and the
other two, IncBoth and IncEither , by schema expressions involving IncX and IncY . The
operations IncX and IncY increment the values of the state variables x and y respectively.
They could be expanded to yield the following semantically identical schemas.

IncX
∆(x )
x , x ′, y , y ′ : N

x 6 y + c
x ′ 6 y ′ + c
x ′ = x + 1

IncY
∆(y)
x , x ′, y , y ′ : N

x 6 y + c
x ′ 6 y ′ + c
y ′ = y + 1

On application of operation IncX to an object of class C the value of y will be unchanged,
i.e. y ′ = y , as it is not included in the operation’s ∆-list. Similarly, on application of
operation IncY to an object of class C the value of x will be unchanged. This property
is referred to as late binding as the variables are bound to a particular value only on
application of the operation and not on its declaration.

The late binding of ∆-lists allows operations within a class to be combined with maximum
flexibility. For example, the operation IncBoth, which increments the values of x and y
simultaneously, is defined as the conjunction of the operations IncX and IncY . It is
semantically identical to the following operation schema.

IncBoth
∆(x , y)

x ′ = x + 1
y ′ = y + 1

Without the late-binding property of ∆-lists, the expanded version of IncX would need
to include the predicate y ′ = y . Similarly, the expanded version of IncY would need
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to include the predicate x ′ = x . Since IncX includes a predicate to increment x and
IncY a predicate to increment y , conjoining the expanded schemas would result in an
operation whose precondition and postcondition were always false. Hence, the operation
which increments both variables could not be defined as a schema expression conjoining
IncX and IncY .

The late binding property of ∆-lists must be taken into account when combining opera-
tions to ensure the resulting operation will behave as desired. For example, consider the
operation IncEither which is defined as the disjunction of the operations IncX and IncY .
It is semantically identical to the following operation schema.

IncEither
∆(x , y)

(x ′ = x + 1
∨
y ′ = y + 1)

This operation may increment x only, y only or both x and y . In the first and second
cases, the variable which is not incremented may take on any value consistent with its
type and the state invariant. This is because it appears in the operation’s ∆-list but is
not constrained by the operation’s predicate.

If, however, the intention is to specify an operation which increments one variable leaving
the other unchanged then the following approach is appropriate. An extended version of
IncX , IncJustX , is introduced which adds the constraint that y does not change, i.e. the
∆-list of IncX is widened to include y and y ′ = y is added to its predicate. Similarly, an
extended version of IncY , IncJustY , is introduced.

IncJustX
∆(y)
IncX

y ′ = y

IncJustY
∆(x )
IncY

x ′ = x

The desired operation can then be defined as follows.

IncExactlyOne =̂ IncJustX ∨ IncJustY

It is semantically identical to the following operation schema.

IncExactlyOne
∆(x , y)

((x ′ = x + 1 ∧ y ′ = y)
∨
(y ′ = y + 1 ∧ x ′ = x ))
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An operation which increments either one or both variables could also be defined by a
schema expression involving the operations IncExactlyOne and IncBoth.

IncOneOrBoth =̂ IncExactlyOne ∨ IncBoth

2.1.2 Parameterised classes

Classes in Object-Z may have generic parameters corresponding to arbitrary types. The
generic parameters are listed after the class name in square brackets and may be used
in the definition of local types and constants as well as in the declaration of variables in
the state and operation schemas. Generic parameters reduce the need to specify almost
identical classes and are particularly useful for specifying classes representing data struc-
tures such as queues, stacks and arrays. For example, consider the following Object-Z
specification of a generic queue class. The queue is modelled as a sequence of items which
is initially empty. Operations are provided to allow items to join or leave the queue on a
first-in/first-out basis.

Queue[T ]

items : seq T

INIT

items = 〈 〉

Join
∆(items)
item? : T

items ′ = items a 〈item?〉

Leave
∆(items)
item! : T

items 6= 〈 〉

items = 〈item!〉 a items ′

The class has a single generic parameter T corresponding to the type of the items in
the queue. It is used in the declaration of the state variable items as well as in the
declaration of the input and output variables item? and item! in the operations Join and
Leave respectively.

T is called a formal generic parameter . When an object of class Queue[T ] is declared,
the parameter T must be instantiated by an actual generic parameter . An example of
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instantiation of a formal generic parameter with an actual generic parameter is given in
Section 2.3.

An actual generic parameter may be any type, including a class type. If the object is
declared within another generic class then the actual generic parameter may also be a
formal generic parameter of that class. The expressions involving variables of a generic
type must be applicable to all possible types so that the substitution of any type for the
formal generic parameter is possible.

2.2 Semantics of Classes

A full formal semantics of Object-Z, i.e. a mapping from an abstract syntax to some
semantic domain, is beyond the scope of this thesis2. Instead, a formal model of classes
is presented which could form the basis for such a semantics.

To enable classes in Object-Z to be used as types, the meaning of a class is taken to be
a set of values. Each value corresponds to a potential object of the class at some stage
of its evolution. The value chosen to represent an object is the sequence of states the
object has passed through together with the corresponding sequence of events the object
has undergone. This value is referred to as the history of the object.

As a preliminary, a model based upon the syntactic structure of classes is presented in
Section 2.2.1. This model is used to derive the history model of classes in Section 2.2.2.
Both models are defined using the specification language Z.

2.2.1 Structural model

Structurally, a class in Object-Z consists of a set of attributes and a set of operations which
act upon those attributes. The set of attributes includes, as well as all local constants
and state variables of the class, any global constants to which the class may refer. Each
operation has a set of parameters for the purpose of input and output.

Attributes and operations within a class are given unique names, or identifiers. Also,
parameters within a particular operation are identified uniquely with respect to each
other and with respect to the attributes and operations of the class.

Let Id denote the set of all possible identifiers. In Object-Z, this would be the set of all
strings of alphanumerics, underscores and symbols excluding certain reserved symbols.
Such details will not be elaborated upon formally here.

2Preliminary work on a full formal semantics for Object-Z can be found in [39].
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The signature of a class can be defined in terms of its attributes, operations and operation
parameters as follows.

ClassSig
attr : P Id
ops : P Id
op params : Id 7→ P Id

attr ∩ ops = ∅

dom op params = ops
∀ o : ops • op params(o) ∩ (attr ∪ ops) = ∅

Let Value denote the set of all possible values that could be assigned to any identifier of
any type. A state is an assignment of values to a set of identifiers representing attributes.
It can be defined as a finite partial function from identifiers to values as follows.

State == Id 7 7→ Value

An event is an occurrence of an operation. It can be defined as a tuple consisting of
the operation’s name and a finite partial function defining the values of the operation’s
parameters.

Event == Id × (Id 7 7→ Value)

The auxiliary functions op and params are defined to enable access to an event’s associated
operation name and parameter values respectively.

op : Event → Id
params : Event → (Id 7 7→ Value)

∀ e : Event • e = (op(e), params(e))

The structural model of a class defines a set of objects in terms of the states they can be
in and the events they can undergo. It extends the definition of the signature of the class
to include the following.

states - the set of possible states of an object of the class. This includes those states
which are composed of the attributes of the class (including any global constants)
and which satisfy the state invariant of the class.

initial - the set of possible initial states of an object of the class. This includes those states
from the set of possible states of an object of the class which satisfy the predicate
of the initial state schema of the class.
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trans - a function from the set of possible events an object of the class may undergo to
the associated set of state transitions. This includes, for each event, those pairs
of states from the set of possible states of an object of the class which satisfy the
precondition and resulting postcondition of the operation associated with the event.
The interpretation of operations in an Object-Z class differs from that in Z in that
an operation cannot occur when its precondition is not enabled. In Z, the operation
would be able to occur but the outcome would be unspecified.

ClassStruct
ClassSig
states : PState
initial : P State
trans : Event 7→ (State ↔ State)

∀ s : states • dom s = attr
initial ⊆ states
∀ e : dom trans •

op(e) ∈ ops
dom params(e) = op params(op(e))
trans(e) ⊆ states ↔ states

The predicate of the schema ClassStruct relates the possible states, initial states and
events of objects of the class to the class signature.

The schema ClassStruct effectively defines a state transition system. The same informa-
tion can, therefore, also be represented graphically as a state transition diagram. As an
example, consider the following Object-Z specification of a simple vending machine.
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VendingMachine

credit : {0, 50, 100, 150}

INIT

credit = 0

Coin
∆(credit)
coin? : {50, 100}

credit < 100
credit ′ = credit + coin?

Choc
∆(credit)
change! : {0, 50}

credit > 100
change! = credit − 100
credit ′ = 0

The vending machine allows a customer to purchase a chocolate for one dollar by inserting
either one dollar or 50 cent coins. The state variable credit denotes the amount of money
inserted by a customer. Initially, the credit is zero. The operation Coin represents the
customer inserting a coin, denoted by the input parameter coin?, whose value is added
to credit . The precondition of Coin prevents a customer inserting another coin when the
credit already exceeds one dollar. The operation Choc represents the customer receiving
a chocolate. The precondition allows this operation to occur only when the credit is at
least one dollar. The customer also receives change, denoted by the output parameter
change!, and the credit is returned to zero.

The sets attr , ops and the function op params for this class are as follows.

attr = {‘credit ’}

ops = {‘Coin’, ‘Choc’}

op params = {‘Coin’ 7→ {‘coin?’}, ‘Choc’ 7→ {‘change!’}}

The notation ‘credit ’ denotes the name of attribute credit as opposed to its semantic
value. Similarly, the notations ‘Coin’, ‘Choc’, ‘coin?’ and ‘change!’ denote the names of
the corresponding operations and parameters.

The sets states, initial and the function trans for the class VendingMachine are as follows.
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states = {{‘credit ’ 7→ 0}, {‘credit ’ 7→ 50}, {‘credit ’ 7→ 100}, {‘credit ’ 7→ 150}}

initial = {{‘credit ’ 7→ 0}}

trans = {(‘Coin’, {‘coin?’ 7→ 50}) 7→ {({‘credit ’ 7→ 0}, {‘credit ’ 7→ 50}),
({‘credit ’ 7→ 50}, {‘credit ’ 7→ 100})},

(‘Coin’, {‘coin?’ 7→ 100}) 7→ {({‘credit ’ 7→ 0}, {‘credit ’ 7→ 100}),
({‘credit ’ 7→ 50}, {‘credit ’ 7→ 150})},

(‘Choc’, {‘change!’ 7→ 0}) 7→ {({‘credit ’ 7→ 100}, {‘credit ’ 7→ 0})},
(‘Choc’, {‘change!’ 7→ 50}) 7→ {({‘credit ’ 7→ 150}, {‘credit ’ 7→ 0})}}

An equivalent state transition diagram is shown in Figure 2.1. Circles represent states
and labelled arcs represent events. A circle with an unlabelled arc entering it is an initial
state.

(Coin, coin?=100)

(Coin, coin?=50)

(Choc, change!=50)

(Coin, coin?=50)

credit=50

credit=100credit=0

credit=150

(Coin, coin?=100)

(Choc, change!=0)

Figure 2.1: State transition diagram of the VendingMachine class.

2.2.2 History model

The history model defines the type of a class in Object-Z as opposed to its syntactic
structure. This type is defined to be the set of histories that objects of the class can
undergo. Intuitively, the history of an object represents the sequence of states the object
has passed through together with the sequence of operations it has undergone. It can
be modelled as a non-empty sequence of states ss, where each state assigns values to a
common set of identifiers, and a sequence of events es such that the number of states in
ss is one more than the number of events in es unless ss is infinite in which case es is
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also infinite. The relationship between the sequence of states ss and the corresponding
sequence of events es of a history can be represented by a state transition diagram as
shown in Figure 2.2.

. . . . . .
es(1)

ss(1) ss(2) ss(3) ss(n)

es(n)es(n-1)es(3)es(2)

Figure 2.2: State transition diagram representation of a history.

Building on the definitions in Section 2.2.1, a history is defined as follows.

History
states : seq

∞
State

events : seq
∞

Event

states 6= 〈 〉
∀ i , j : dom states • dom states(i) = dom states(j )
∀ i : N1 • i ∈ dom events ⇔ i + 1 ∈ dom states

Any history whose sequences of states and events are prefixes of or equal to those of
another history is referred to as a pre-history of that history. Intuitively, a pre-history of
an object’s history represents the history of that object at some stage of its evolution.

prehist : History → PHistory

∀ h : History •
prehist(h) = {ph : History | ph.states ⊆ h.states ∧ ph.events ⊆ h.events}

The set of histories representing a class can be derived from the structural model of the
class using the function H defined below.

H : ClassStruct → PHistory

∀ c : ClassStruct •
H(c) = {h : History |

h.states(1) ∈ c.initial ∧
∀ i : dom h.events •

h.events(i) ∈ dom c.trans ∧
(h.states(i), h.states(i + 1)) ∈ c.trans(h.events(i))}

The first state in the sequence of states of any history of a class is an initial state of the
class and each pair of consecutive states is a possible state transition of the corresponding
event in the sequence of events.
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An important property of the set of histories of a class is that it is pre-history closed , i.e.
given any history in the set, all pre-histories of that history are also in the set. This is
necessary as any pre-history of an object’s history is the history of that object at some
earlier stage in its evolution and hence represents a possible history of the object’s class.

2.3 Object Instantiation

A fundamental concept of object orientation is that objects may be composed of other
objects. In effect, the attributes of an object may themselves be objects.

Adopting the history model of classes, a class in Object-Z may be used as a type and
incorporated into the Z type system. An object may then be declared as an instance of
a class. For example, if C is a class then the declaration c : C declares the object c to
be of class C . The semantic representation of such an object is a history from the set of
histories representing its class. That is, if C : ClassStruct is the structural model of the
class C then c ∈ H(C).

Adopting the point of view that the state of an object is hidden, its attributes may not
be accessed directly. An object may only be accessed through the procedural interface
defined by its class. If the value of an attribute is required in the environment of an object
then an operation must be included in the object’s class to return this value.

In this section, the use of objects to specify systems in Object-Z is illustrated through two
examples. The first example, a simple communication channel, involves instantiation of
classes with generic parameters and introduces the use of the dot notation for initialising
and applying operations to objects. The second example, a simple card game, looks at
specifying aggregates of objects and the concept of object identity in Object-Z.

2.3.1 Composite objects

An object can be specified in terms of other objects. Although the functionality of such
an object can usually be specified without modelling its components, it is important to be
able to specify the components to enable refinement to a low level of abstraction and to
enhance clarity when the system is not easily described except in terms of its components.

The class of such an object has objects of other classes as state variables. When declaring
an object to be of a particular class, any formal generic parameter of that class must be
replaced by an actual generic parameter, i.e. a type or a formal generic parameter of the
class in which the declaration occurs.

As an example, consider a simple communication channel consisting of two queues of
messages joined together so that the output from the first queue becomes the input for
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the second queue. Using the class Queue[T ] specified in Section 2.1.2, the class of this
channel may be specified as follows.

Let MSG denote the set of all possible messages that may be sent along the channel.

Channel

q1, q2 : Queue[MSG ]

INIT

q1.INIT

q2.INIT

Join =̂ q1.Join

Transfer =̂ q1.Leave ‖ q2.Join

Leave =̂ q2.Leave

The class Channel has two state variables, q1 and q2, representing objects of the class
Queue[T ] with the formal generic parameter T instantiated with the type MSG .

Dot notation

The class Channel illustrates the use of the dot notation to initialise and apply operations
to objects. Semantically, the notation q1.INIT is identical to the schema which states that
the object q1 has not undergone any events.

q1.INIT

q1.events = 〈 〉

It can be deduced, from the definition of H, that the state of q1, i.e. the final state in
q1’s state sequence, satisfies the predicate of the INIT schema of its class. That is, the
predicate items = 〈 〉 is true. Similar meaning can be given to the notation q2.INIT.

The notation q1.Join can also be represented semantically as a schema which states that
the object q1 undergoes an event associated with the operation Join provided the se-
quence of events q1 has undergone is finite. The condition of finiteness is required as
only appending to a finite sequence is defined. The input variable item? declared in Join
is included in the signature of this schema. In general, all input and output variables
declared in the corresponding operation’s signature would be similarly included.
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q1.Join
∆(q1)
item? : MSG

q1.events ∈ seq Event
front q ′

1.states = q1.states

q ′

1.events = q1.events a 〈(‘Join’, {‘item?’ 7→ item?})〉

It can be deduced that if q1.Join occurs then the state of q1 before the operation satisfies
the precondition of the operation Join and the state of q1 after the operation is related
to the state before by a state transition defined by Join. Similar meanings can be given
to the notations q1.Leave, q2.Join and q2.Leave.

The above schema expansions of expressions involving the dot notation are given only to
clarify the meaning of such expressions with respect to the history model of Section 2.2.2.
In practice, expressions which equate an object to a history are not allowed in Object-Z
specifications as they allow objects to be used in ways other than specified by their class.
Expressions such as a = b and a ∈ A, where a and b are objects and A is a set of objects,
are also not allowed for similar reasons discussed in Chapter 7.

An object may only be referred to in the ∆-list of an operation, in expressions involving
the dot notation as detailed in this and the following section or in history invariants as
detailed in Chapter 4.

Parallel operator

The parallel operator ‖ used in the operation Transfer of class Channel is a binary oper-
ator introduced into Object-Z to allow specification of inter-object communication. The
operator conjoins two operations but also identifies and equates input variables in either
schema with output variables in the other schema having the same type and basename,
i.e. apart from the ‘?’ or ‘!’. These identified input and output variables are hidden in the
resulting operation, i.e. they are not available in the environment of objects of the class.
The operation Transfer is semantically identical to the following operation schema.

Transfer
∆(q1, q2)

∃ item?, item! : MSG •
item? = item!
q1.Leave
q2.Join

The parallel operator may be compared with the concurrency operators used to capture
synchronisation in process algebras such as CSP[61]. The main difference is in the level
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at which the operator is applied. The parallel operator of Object-Z is applied between
operations, or events, whereas the concurrency operator of a process algebra is applied
between the specifications of processes, or objects. The process algebra approach leads to
specifications which are more concise, but also more restrictive in that operations which
synchronise have to have the same name. The Object-Z approach not only allows more
flexibility when naming operations, but also allows objects to be declared with other
non-object state variables allowing additional state information to be captured in the
system specification. The ability to distribute state information between the system and
component specifications aids in handling complexity in large systems as detailed in [104].

2.3.2 Aggregates of objects

Often systems are composed of aggregates of objects of the same class. For example, a
telephone system consists of a collection of telephones and exchanges and a multiprocessor
system consists of a collection of processors.

Each object within such an aggregate is assumed to have its own identity which persists
through time. This enables it to be distinguished from any other object in the aggregate
even if the other object has undergone exactly the same events and hence has the same
history.

In the class Channel the objects q1 and q2 were uniquely identified by their names. In
aggregates where the number of objects is large or arbitrary, however, it may not be
practical or possible to uniquely instantiate each object as a state variable. Instead,
objects may be instantiated as members of a set with the notion of object identity captured
by specifying a mapping from a set of identifiers into this set. To illustrate this idea,
consider the following specification of a simple card game.

Card Game Example

The game is played by an arbitrary collection of players. The game begins with each
player having the same even number of cards from a given pack. A move consists of a
player selecting another player and offering the selected player some cards. The selected
player must reply by accepting the cards and offering, from his or her original hand, the
same number of cards in response. At any time, players can discard pairs of cards in their
hand with the same face value. The game continues as long as there are two or more
players still holding cards.

Let Card denote the set of all possible cards. A pack of cards may contain more than one
of the same card. The function value : Card → N gives the face value of each card.

Let Even == {n : N | ∃m : N • n = 2m} be the set of all even numbers and dealt : Even
be a constant denoting the number of cards initially held by each player. Using these
definitions, the class of a player can be specified as follows.
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Player

hand : seq Card

INIT

#hand = dealt

SelectPartner
∆(hand)
offer !, respond? : seq Card

#respond? = #offer !
∃ f : dom offer ! � dom hand •

∀ i : dom f • offer !(i) = hand(f (i))

hand ′ = squash(ran f −C hand) a respond?

SelectedAsPartner
∆(hand)
offer?, respond ! : seq Card

#respond ! = #offer?
∃ f : dom respond ! � dom hand •

∀ i : dom f • respond !(i) = hand(f (i))

hand ′ = squash(ran f −C hand) a offer?

DiscardPairs
∆(hand)

∃ discard : seq Card •
∃ f : dom discard � dom hand •

∀ i : dom f • discard(i) = hand(f (i))
∀ n : N • #(discard o

9
value B {n}) ∈ Even

hand ′ = squash(ran f −C hand)

The class has a single state variable hand denoting the player’s hand. Initially, the player
holds an even number of cards corresponding to the constant dealt .

The operation SelectPartner corresponds to the player selecting a partner and swapping
some cards, the operation SelectedAsPartner corresponds to the player being selected as
a partner and swapping some cards, and the operation DiscardPairs corresponds to the
player discarding some or all matching pairs of cards.

The class denoting the game can be specified as follows.

37



2.3. OBJECT INSTANTIATION

Game

[Name]

players : Name 7→ Player

INIT

∀ n : dom players • (players, n).INIT

ΦSelectPlayer
∆(players)
n : Name

n ∈ dom players
{n} −C players ′ = {n} −C players

ΦSelectPlayers
∆(players)
n1, n2 : Name

n1 6= n2

{n1, n2} ⊆ dom players
{n1, n2} −C players ′ = {n1, n2} −C players

Discard =̂ ΦSelectPlayer • (players, n).DiscardPairs

Swap =̂ ΦSelectPlayers •
((players, n1).SelectPartner ‖ (players, n2).SelectedAsPartner)

The class Game has a local type Name denoting the set of all possible names of players
of the game. The state variable players is a partial function which associates each object
of class Player in its range with a unique identifier from the set of names.

The class illustrates an alternative usage of the dot notation for objects in the range of
a function. The notation (players, n).INIT can only be interpreted in the scope of the
declaration of a variable n representing a possible domain value of the function players.
Given n : Name, the notation (players, n).INIT is semantically identical to the following
schema.

(players, n).INIT

n : Name

n ∈ dom players
players(n).events = 〈 〉
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Framing schemas

The class Game has two framing schemas identified by names beginning with the symbol
Φ. These schemas don’t correspond to actual operations but can be combined with other
schemas to define operations. They are generally used to change one, or a limited number,
of objects in an aggregate leaving the rest unchanged.

For example, the framing schema ΦSelectPlayer specifies that the single player identified
by the name n is updated and all other players remain unchanged. The schema does
not, however, specify how the selected player is updated. Similarly, the framing schema
ΦSelectPlayers specifies that the players identified by the names n1 and n2 are updated
and all other players remain unchanged.

These framing schemas are used in the definitions of the operations Discard and Swap
to specify a player discarding matching pairs of cards and two players exchanging cards
respectively.

Nesting operator

The definitions of the operations Discard and Swap in class Game also involve the use of
the nesting operator •. This operator is introduced into Object-Z to enable schemas to
be defined within a scope which includes the declarations of another schema.

For example, the notation ΦSelectPlayer • (players, n).DiscardPairs allows variables de-
clared in the signature of the framing schema ΦSelectPlayer to be used when interpreting
(players, n).DiscardPairs. This is necessary as the variable n is not declared in the state
schema of class Game.

Given the declarations n : Name from the signature of ΦSelectPlayer , however, the nota-
tion (players, n).Discard can be represented semantically as follows.

(players, n).DiscardPairs
∆(players)
n : Name

n ∈ dom players ∩ dom players ′

players(n).events ∈ seq Event
front players ′(n).states = players(n).states

players ′(n).events = players(n).events a 〈(‘DiscardPairs’, ∅)〉

The operation Discard in class Game can be represented semantically as the conjunction
of this schema with ΦSelectPlayer .
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Discard
∆(players)
n : Name

n ∈ dom players ∩ dom players ′

players(n).events ∈ seq Event
front players ′(n).states = players(n).states

players ′(n).events = players(n).events a 〈(‘DiscardPairs’, ∅)〉
{n} −C players ′ = {n} −C players

The operation Swap in class Game can be interpreted in a similar fashion.

The parallel and nesting operators constitute the only additional schema operators in-
troduced into Object-Z. All existing Z schema operators are also available within a class
with the exception of the schema composition operator o

9. The reasons for the exclusion
of this operator are discussed in Chapter 7.
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Chapter 3

Inheritance

“Begin with another’s to end with your own.”

— Baltasar Gracián
The Art of Worldly Wisdom, 1647.

Classes provide a means of modular decomposition by encapsulating the state information
and operations of the constituent objects of a system. Such objects are declared as
instances of a class type and, hence, a class may be reused to define a number of objects
possessing the same state information and operations. The full benefits of reusability of
classes can only be realised, however, when classes may also be used in the definition of
other classes.

Inheritance allows a class to be defined as an extension or specialisation of another class by
a process of incremental modification. In this way, the repetition of structure between class
definitions can be avoided. Inheritance may, in general, involve the addition, cancellation
and renaming of attributes and operations as well as the redefinition of operations.

In many object-oriented languages, inheritance is restricted so that the classes within an
inheritance hierarchy can be used polymorphically. That is, an object declared to be of a
particular class may be assigned to an object of that class or any class derived from that
class by inheritance. This concept is particularly useful in object-oriented specification
languages as it allows an object to be defined as a member of a set of classes thus providing
greater freedom to the system implementor.

Object-Z supports both single and multiple inheritance and allows inheritance hierarchies
to be used polymorphically. Section 3.1 introduces inheritance in Object-Z and Section 3.2
discusses renaming and redefinition. Polymorphism in Object-Z is discussed in Section 3.3.
Inheritance in Object-Z is not restricted to maintain compatibility between a class and its
subclasses and, hence, it is the responsibility of the specifier to ensure compatibility exists
when an inheritance hierarchy is used polymorphically. Rules for maintaining signature
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compatibility through inheritance are presented in Section 3.3. Rules for maintaining the
stronger notion of behavioural compatibility are presented in Chapter 6.

3.1 Introduction to Inheritance

Inheritance is achieved syntactically in Object-Z by including the names of the inherited
classes within the inheriting class. Informally, the syntactic structure of a class which
inherits one or more other classes is an extension of the syntactic structure of a class
defined in Section 2.1 as follows.

ClassName[generic parameters]

inherited classes
type definitions
constant definitions
state schema
initial state schema
operations

3.1.1 Meaning of inheritance

When a class in Object-Z inherits another class, the type, constant and schema definitions
in the inherited class are merged with those declared explicitly in the inheriting class. Any
type or constant names which occur in both classes are semantically identified and must,
therefore, be associated with identical types. The state schemas, initial state schemas and
any operations with the same name are conjoined. (Operations defined as schema expres-
sions are first expanded to a semantically identical schema as discussed in Section 3.1.3.)
To ensure merging occurs without conflict, any variable names which occur in the state
schema or a common-named operation schema in both classes must be associated with
identical types.

Person/Student example

As a preliminary example, consider the following classes Person and Student based on the
Eiffel classes PERSON and STUDENT defined in Section 1.2.2. In this example, there
are no type, constant or operation names common to both the inherited and the inheriting
class and no common-named variables in the state schemas of the classes. Inheritance,
therefore, corresponds simply to including the attributes and operations of the inherited
class in the inheriting class.

Let Name denote the set of all names. The class Person is specified as follows.
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Person

name : Name

age : N

Birthday
∆(age)

age ′ = age + 1

The class Person has a constant name denoting the name of the person and a state
variable age denoting the person’s age. A person’s age is initially undefined1 and may be
incremented by the operation Birthday .

The class Student is an extension of the class Person which includes information about the
number of subjects studied and operations corresponding to enrolling in and completing
subjects.

Student

Person

nb subjects : N

Enrol
∆(nb subjects)

nb subjects < 8
nb subjects ′ = nb subjects + 1

Complete
∆(nb subjects)

nb subjects > 0
nb subjects ′ = nb subjects − 1

The class Student inherits the constant name, the state variable age and the operation
Birthday from Person. It also includes, explicitly, the state variable nb subjects denoting
the number of subjects studied and the operations Enrol and Complete corresponding to
enrolling in a new subject and completing a subject respectively. The operation Enrol
has a precondition restricting a student from enrolling in more than 8 subjects and the

1The class may be thought of as defining a set of records which may be created for people of various
ages.
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operation Complete has a precondition stating that the number of subjects studied is
greater than zero.

The class Student could be expanded, by explicitly including the inherited attributes and
operations of the class Person, to yield the following semantically identical class.

Student

name : Name

age : N

nb subjects : N

Birthday
∆(age)

age ′ = age + 1

Enrol
∆(nb subjects)

nb subjects < 8
nb subjects ′ = nb subjects + 1

Complete
∆(nb subjects)

nb subjects > 0
nb subjects ′ = nb subjects − 1

As well as addition of attributes and operations, inheritance in Object-Z also allows
addition of constraints to the state invariant, to the initial condition or to the predicate
of an operation schema. This idea is illustrated in the following section by the ‘shapes’
example. This example was inspired by the tutorial examples for the object-oriented
programming languages Eiffel and C++ in [80] and [112] respectively.

3.1.2 The ‘shapes’ example

There are various approaches to modelling shapes in a specification language such as
Object-Z. For example, the set of all points which make up the boundary of an ‘outline’
shape, or the set of all points which make up a ‘solid’ shape could be specified. Such
specifications allow operations on shapes to be defined at a high-level, but add complexities
that are not warranted here. Instead, a simple model of shapes is adopted to facilitate
discussion of the issues of inheritance.
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A class hierarchy of geometric shapes, starting with a class Shape from which subclasses
are derived by inheritance, is shown in Figure 3.1. Arrows indicate the relation ‘inherits’.

Circle

Parallelogram

Rectangle

Square

Rhombus

Polygon

Shape

Figure 3.1: The ‘shapes’ class hierarchy.

In this section, the class Shape and the classes derived from, and including, the class
Polygon will be specified. The class Circle will be specified in Section 3.2.

The Shape class

A shape is modelled as having a position in the cartesian plane and a perimeter. The
position is given by a vector which is defined in terms of its x- and y-components as
follows.

Vector
x , y : R

The unique zero vector with magnitude zero is defined as follows.
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0 : Vector

0.x = 0.y = 0

For convenience, the following functions are also defined for vectors.

| | -given a vector v returns the magnitude (length) of v .

rotate -given a vector v and a real number θ returns the vector obtained by rotating v
anti-clockwise through angle θ about the origin.

⊥ -given any two vectors v and w returns true if v is perpendicular to w otherwise
returns false.

+ -given any two vectors v and w returns the vector addition of v and w .

| |: Vector → R

rotate : Vector × R → Vector
⊥ : Vector ↔ Vector
+ : Vector × Vector → Vector

∀ v : Vector •
| v | = ((v .x )2 + (v .y)2)1/2

∀ θ : R •
rotate(v , θ).x = v .x ∗ cos(θ) − v .y ∗ sin(θ)
rotate(v , θ).y = v .x ∗ sin(θ) + v .y ∗ cos(θ)

∀w : Vector •
v ⊥ w ⇔ v .x ∗ w .x + v .y ∗ w .y = 0
(v+w).x = v .x + w .x
(v+w).y = v .y + w .y

The class Shape at the top of the hierarchy of Figure 3.1 is specified as follows.
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Shape

perim : R

position : Vector

perim > 0

Display
position! : Vector
perim! : R

position! = position
perim! = perim

Move
∆(position)
v? : Vector

position ′ = position+v?

Rotate
∆(position)
θ? : R

position ′ = rotate(position, θ?)

The class Shape has a constant perim denoting the strictly positive length of the perimeter
of the shape and a variable position denoting the position with respect to the origin of
some point of interest of the shape. No initial values of perim or position are specified.

The class also has three operations. The operation Display outputs the values of position
and perim in the output variables position! and perim! respectively. The operation Move
corresponds to a translation of the shape by an input vector v? and the operation Rotate
corresponds to a rotation of the shape about the origin by an input angle θ?. Rotation
of a shape about a given centre of rotation cr : Vector , not necessarily the origin, can
be realised by moving the shape by −cr , performing the rotation and then moving the
rotated shape by cr .

The Polygon class

A polygon is modelled by its position in the cartesian plane and a finite sequence (edges)
of at least three straight edges represented by non-zero vectors that sum to zero. Intu-
itively, the vertices of the polygon are given by the vectors position, position+edges(1),
position+edges(1)+edges(2), and so on, as shown in Figure 3.2.
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position

edges(1)

edges(2)

edges(3)

edges(4)

Figure 3.2: Representation of a polygon.

The class Polygon, therefore, inherits Shape and adds the state variable edges and its
associated state invariants2. The perimeter of a polygon can be determined specifically
as the sum of the magnitudes of the edges, and a state invariant is also added to specify
this. The operation Display is extended to output the sequence of edges of the polygon
in the additional output variable edges!. The operation Rotate is also extended to rotate
each edge of the polygon by the input angle θ?.

2The symbol
∑

is used to represent distributed addition and
∑

distributed vector addition.
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Polygon

Shape

edges : seq Vector

#edges > 3
0 6∈ ran edges

(
∑

i : dom edges • edges(i)) = 0

perim =
∑

i : dom edges • | edges(i) |

Display
edges! : seq Vector

edges! = edges

Rotate
∆(edges)

#edges ′ = #edges
∀ i : dom edges • edges ′(i) = rotate(edges(i), θ?)

The state schema for Polygon is the conjunction of the state schema inherited from Shape
and the state schema declared explicitly in Polygon. A semantically identical schema is
shown below.

position : Vector
edges : seq Vector

perim > 0
#edges > 3
0 6∈ ran edges

(
∑

i : dom edges • edges(i)) = 0

perim =
∑

i : dom edges • | edges(i) |

The predicate of this schema could be simplified as the predicate perim > 0 can be
deduced from the other predicates.

The operation Display for Polygon is defined similarly as the conjunction of the operation
Display inherited from Shape and the operation Display declared explicitly in Polygon.
A semantically identical operation is shown below.
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Display
position! : Vector
perim! : R

edges! : seq Vector

position! = position
perim! = perim
edges! = edges

Similarly, the operation Rotate for Polygon is the conjunction of the operation Rotate
inherited from Shape and the operation Rotate declared explicitly in Polygon. A seman-
tically identical operation is shown below.

Rotate
∆(position, edges)
θ? : R

position ′ = rotate(position, θ?)
#edges ′ = #edges
∀ i : dom edges • edges ′(i) = rotate(edges(i), θ?)

Redefinition of inherited operations as illustrated by Display and Rotate may involve the
addition of operation parameters and the strengthening of an operation’s precondition and
postcondition by the addition of constraints. Often, however, it is desirable to remove
operation parameters or to weaken an operation’s precondition or postcondition. A more
general method of redefinition which enables this is presented in Section 3.2.

The Polygon hierarchy

The class Parallelogram inherits Polygon and adds to the state invariant the condition
that the number of edges is four and that the first and third edges sum to zero, i.e. are
equal in magnitude but opposite in direction. Since, the condition that the sum of all
edges is zero is inherited from Polygon, it can be deduced that the second and fourth
edges must also sum to zero.

Parallelogram

Polygon

#edges = 4
edges(1)+edges(3) = 0

The classes Rhombus and Rectangle both inherit Parallelogram. The class Rhombus
consists of all shapes of type Parallelogram that have the first and second edges equal in
magnitude. It can be deduced that all four edges must have equal magnitude.
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Rhombus

Parallelogram

| edges(1) | = | edges(2) |

The class Rectangle consists of all shapes of type Parallelogram that have the first and
second edges perpendicular. It can be deduced that all adjacent edges are perpendicular.

Rectangle

Parallelogram

edges(1) ⊥ edges(2)

Multiple Inheritance

The class Square illustrates multiple inheritance in Object-Z. A square is a parallelogram
which has all edges equal in magnitude and all adjacent edges perpendicular. The class
Square, therefore, inherits both Rhombus and Rectangle.

Square
Rhombus
Rectangle

Multiple inheritance, as in the class Square, effects the merging of the type, constant and
schema definitions in each of the inherited classes with those declared explicitly in the
inheriting class. It is identical to progressively inheriting each of the inherited classes in
an arbitrary order. The class Square could, therefore, be expanded to yield the following
semantically identical class. Comparing this class with the previous definition highlights
the benefits of reuse obtained through inheritance.
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Square

perim : R

position : Vector
edges : seq Vector

perim > 0
#edges > 3
0 6∈ dom edges

(
∑

i : dom edges • edges(i)) = 0

perim =
∑

i : dom edges • | edges(i) |
#edges = 4
edges(1)+edges(3) = 0
| edges(1) | = | edges(2) |
edges(1) ⊥ edges(2)

Display
position! : Vector
perim! : R

edges! : seq Vector

position! = position
perim! = perim
edges! = edges

Move
∆(position)
v? : Vector

position ′ = position+v?

Rotate
∆(position, edges)
θ? : R

position ′ = rotate(position, θ?)
#edges ′ = #edges
∀ i : dom edges • edges ′(i) = rotate(edges(i), θ?)

The attributes perim, position and edges of the class Rhombus are semantically identified
with the identically-named attributes in the class Rectangle and the state invariants of
the inherited classes are conjoined. Also, the operations Move and Rotate of Rhombus
are conjoined with the identically-named operations in Rectangle.
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In general, common-named types or constants occurring in two or more inherited classes
are semantically identified and the state schemas, initial state schemas and common-
named operations are conjoined. If common-named attributes, operations or operation
parameters within common-named operations arise unintentionally, i.e. they are distinct
semantically, then renaming in at least one of the classes is required. Renaming of at-
tributes, operations and operation parameters is discussed in Section 3.2.

3.1.3 Inheriting classes with schema expressions

An operation in an inherited class which is defined by a schema expression, or by including
other operation schemas, is evaluated, i.e. expanded to a semantically identical schema,
before being inherited. For example, consider the class D which inherits the class C of
Section 2.1.1 and adds a precondition to the operation IncX stating that the variable x
is less than 10.

D

C

IncX
x < 10

The operations IncBoth and IncEither , which are defined by schema expressions involving
IncX , are unchanged in class D . That is, they are evaluated using the operation IncX
of class C and not the extended IncX operation of class D . This convention enables
inheritance to be defined semantically as inheriting class C is identical to inheriting a class
semantically identical to C but with the operations IncBoth and IncEither defined in full
as operation schemas rather than as schema expressions. The semantics of inheritance,
however, is not dealt with in this thesis.

3.2 Renaming and Redefinition

Inheritance, as defined in Section 3.1, enables the addition of attributes, operations, op-
eration parameters and constraints to an inherited class, but does not allow classes to be
reused as effectively as may be desired in many applications. In this section, renaming of
inherited attributes, operations and operation parameters, and arbitrary redefinition of
inherited operations is examined.

Renaming allows name clashes to be avoided when inheriting more than one class and
also allows attributes, operations and operation parameters in a subclass to be given more
meaningful names. Arbitrary redefinition of operations allows the removal, as well as the
addition, of operation parameters and constraints.
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3.2.1 Renaming

Renaming can be used to avoid name clashes by enabling the disassociation of common-
named, but semantically distinct, attributes and operations in two or more inherited
classes. It also enables more meaningful names to be given to inherited attributes and
operations when a class is specialised for a particular application.

In Object-Z, renaming is achieved syntactically by a rename list . A rename list is a list of
substitutions of the form new name/old name or operation name[new name/old name]
for renaming attributes and operations, and operation parameters respectively. The list
is in square brackets following the name of the inherited class in which the renaming is
to take place. Substitutions within a rename list are separated by commas and may be
in any order.

As an example, consider the class Circle of the ‘shapes’ hierarchy of Figure 3.1. A circle
can be modelled by the position of its centre in the cartesian plane and its radius as
shown in Figure 3.3. The perimeter of a circle is called its circumference and is equal to
the product of 2 π with its radius.

radius

centre

Figure 3.3: Representation of a circle.

The class Circle is specified as inheriting the class Shape with the state variable position
renamed to centre and the constant perim renamed to circum. A constant radius, repre-
senting the radius, is also introduced and related to circum by the state invariant. The
operation Display is extended to output the radius of the circle in the additional output
parameter radius!. The output parameters position! and perim! of Display are renamed
to centre! and circum! respectively.
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Circle

Shape[circum/perim, centre/position,Display [centre!/position!, circum!/perim!]]

radius : R

circum = 2 ∗ π ∗ radius

Display
radius! : R

radius! = radius

Each occurrence of the state variable position in Shape, either in the state invariant or
the ∆-list or predicate of an operation, is replaced with centre in class Circle. Similarly,
each occurrence of the constant perim is replaced with circum. Also, each occurrence of
the parameter position! in either the signature or predicate of the operation Display in
Shape is replaced by centre! in Circle and each occurrence of the parameter perim! with
circum!. The class Circle is, therefore, semantically identical to the following class.
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Circle

circum, radius : R

centre : Vector

circum > 0
circum = 2 ∗ π ∗ radius

Display
centre! : Vector
circum!, radius! : R

centre! = centre
circum! = circum
radius! = radius

Move
∆(centre)
v? : Vector

centre ′ = centre+v?

Rotate
∆(centre)
θ? : R

centre ′ = rotate(centre, θ?)

The substitutions in a rename list are not evaluated in any particular order. Each is
evaluated with respect to the original inherited class. Therefore, when both an inherited
operation and a parameter of that operation are renamed, the old name of the operation
is used in the substitution which renames the parameter.

As an example, consider a simple communications protocol which enables the transmission
of a sequences of messages. Messages are accepted by the protocol and then delivered in
the same order.

Let MSG denote the set of all possible messages that can be transmitted. The protocol
can be specified as inheriting the class Queue[T ] of Section 2.1.2 with the formal generic
parameter T instantiated with MSG . The operations Join and Leave are renamed to
Accept and Deliver respectively, and the operation parameters item? and item! of Join
and Leave are renamed, respectively, to msg? and msg !.

Protocol
Queue[MSG ][Accept/Join,Deliver/Leave, Join[msg?/item?],Leave[msg !/item!]]
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3.2.2 Redefinition

Inheritance, as defined in Section 3.1, allows inherited operations to be redefined by
conjoining them with common-named operations declared explicitly in the inheriting
class. This enables parameters and constraints to be added to an inherited operation
but does not enable the removal of parameters and constraints. Adding constraints to
an operation’s predicate corresponds to strengthening the operation’s precondition and
postcondition. Often, however, it is desirable to weaken an operation’s precondition or
postcondition. This is effected by the removal of constraints.

In Object-Z, arbitrary redefinition of an inherited operation is enabled by including the
name of the operation in a redefine list . A redefine list consists of a list of operation names
preceded by the keyword redef. The list is in square brackets following the name of the
inherited class and the rename list if it exists. The operations in the list are separated by
commas and may occur in any order.

As an example, consider the following class HonoursStudent based on the Eiffel class
HONOURS STUDENTS in Section 1.2.2. This class inherits the class Student of Sec-
tion 3.1.1 and redefines the operation Enrol so that a student can enrol in up to ten
subjects.

HonoursStudent

Student [redef Enrol ]

Enrol
∆(nb subjects)

nb subjects < 10
nb subjects ′ = nb subjects + 1

By including the operation name Enrol in the redefine list of the inherited class Student ,
the operation Enrol inherited from Student has an empty ∆-list and signature and no
predicate, i.e. its precondition and postcondition are true. Conjoining this operation with
the operation Enrol declared in HonoursStudent results in an operation semantically
identical to the latter. Therefore, an inherited operation which is included in a redefine
list can be totally and arbitrarily redefined in the inheriting class.

When both a rename and a redefine list follow the name of an inherited class, the rename
list is applied first. Therefore, if an inherited operation is to be renamed and also redefined,
the new name of the operation must appear in the redefine list.

3.2.3 Cancellation

Cancellation of attributes and operations allows a class to be a generalisation, rather
than a specialisation or extension, of a class which it inherits. Although this provides
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greater flexibility when reusing classes, it results in a less intuitive definition of inheritance.
Furthermore, inheritance hierarchies involving cancellation can usually be restructured so
that cancellation is not required. For example, Wegner and Zdonik[117] mention an
example of cancellation where a class of flightless birds can be defined as inheriting the
class of birds and cancelling the ‘fly’ attribute. The inheritance structure they suggest is
shown in Figure 3.4.

FlightlessBird

Bird

Figure 3.4: ‘Bird’ hierarchy with cancellation.

An alternative hierarchy is shown in Figure 3.5. The class Bird in this hierarchy is
equivalent to the class FlightlessBird in the hierarchy of Figure 3.4 in that it does not
have the attribute ‘fly’. The class FlyingBird inherits Bird and adds the attribute ‘fly’.

Bird

FlyingBird

Figure 3.5: ‘Bird’ hierarchy without cancellation.

Based on the above discussion, cancellation of attributes and operations is not supported
in Object-Z. This is in agreement with most popular object-oriented programming lan-
guages which also do not support cancellation.

3.3 Polymorphism

Polymorphism is a mechanism which allows a variable to be declared whose value can be an
object from any one of a given collection of classes. Within object-oriented programming
languages, it is usual for such a collection of classes to be all those classes that have been
derived by inheritance from some common class.

In Object-Z, a variable can be declared, explicitly, to be an object of any class in a
particular inheritance hierarchy. For example, if C is a class then the declaration c : ↓C
declares the object c to be of class C or any class derived from C by inheritance. Adopting
the history model of classes, the semantic representation of ↓C is the union of all classes
derived from, and including, C .
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Polymorphism in Object-Z is related to genericity in that it allows a variable to be declared
which can be associated with more than one type. Therefore, certain rules have to be
obeyed when using a polymorphic variable. Specifically, these rules require that any
expression involving the polymorphic variable be applicable to all possible objects to
which the variable may be assigned. The responsibility of the specifier to ensure these
rules are obeyed can be reduced if inheritance is restricted so that a given class is signature
compatible with the classes it inherits.

A class which is signature compatible with a given class can be used in any context in
which the given class could be used. That is, any operation invocation allowed for the
given class is also allowed for the signature compatible class. Therefore, if an inheritance
hierarchy maintains signature compatibility, the specifier has only to ensure that the
polymorphic variable is used in a way which an object of the class at the top of the
hierarchy could be used.

In Section 3.3.1, polymorphism in Object-Z is illustrated through the specification of a
figure consisting of a collection of arbitrary shapes. This example is used to discuss the
meaning of references to operations of a polymorphic variable when redefinition occurs
in the associated inheritance hierarchy. Rules for maintaining signature compatibility in
Object-Z are presented in Section 3.3.2.

3.3.1 Figure example

To illustrate the use of polymorphism in Object-Z consider the following specification of
a figure consisting of a collection of arbitrary shapes. Each shape in the figure can be
displayed, moved and rotated individually.

Let Id be a set of identifiers used to uniquely identify shapes in the figure. The class
Figure is specified as follows.
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Figure

shapes : Id 7→ ↓Shape

INIT

∀ id : dom shapes • (shapes, id).INIT

ΦSelectShape
∆(shapes)
id? : Id

id? ∈ dom shapes
{id?} −C shapes ′ = {id?} −C shapes

DisplayShape =̂ ΦSelectShape • (shapes, id?).Display

MoveShape =̂ ΦSelectShape • (shapes, id?).Move

RotateShape =̂ ΦSelectShape • (shapes, id?).Rotate

The class Figure has one state variable shapes which associates a set of objects of classes
in the ‘shapes’ hierarchy with a unique identifier from the set Id . Initially, each of these
objects is in its initial state, i.e. has not undergone any events.

The framing schema ΦSelectShape specifies that the single shape identified by the identifier
id? is updated and all the other shapes in the figure remain unchanged. It is used in the
definitions of the operations DisplayShape, MoveShape and RotateShape which display,
move and rotate the selected shape respectively.

The interpretation of the notation (shape, id?).Display in the definition of DisplayShape
depends on the actual class of the selected shape. The Display operation which is applied
to the selected shape is that from its actual class. This is not necessarily the Display
operation of Shape because the operation in the actual class of the selected shape may
have been redefined. For example, if the selected shape is assigned to an object of class
Polygon then (shapes, id?).Display can be represented semantically as follows.
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(shapes, id?).Display
∆(shapes)
position! : Vector
perim! : R

edges! : seq Vector
id? : Id

id? ∈ dom shapes ∩ dom shapes ′

shapes(id?).events ∈ seq Event
front shapes ′(id?).states = shapes(id?).states

shapes ′(id?).events = shapes(id?).eventsa

〈(‘Display ’, {‘position!’ 7→ position!, ‘perim!’ 7→ perim!, ‘edges!’ 7→ edges!})〉

On the other hand, if the selected shape is assigned to an object of class Circle then
(shapes, id?).Display can be represented semantically as follows.

(shapes, id?).Display
∆(shapes)
centre! : Vector
circum!, radius! : R

id? : Id

id? ∈ dom shapes ∩ dom shapes ′

shapes(id?).events ∈ seq Event
front shapes ′(id?).states = shapes(id?).states

shapes ′(id?).events = shapes(id?).eventsa

〈(‘Display ’, {‘centre!’ 7→ centre!, ‘circum!’ 7→ circum!, ‘radius!’ 7→ radius!})〉

The interpretations of the notations (shapes, id?).Move and (shapes, id?).Rotate, in the
definitions of the operations MoveShape and RotateShape respectively, similarly depend
on the actual class of the selected shape.

In some object-oriented programming languages, such as Eiffel[80], when an attribute or
operation is renamed in an inheritance hierarchy which is being used polymorphically,
any reference to the original name is interpreted as a reference to the new name if the
actual class of the polymorphic variable is a class in which renaming of the attribute or
operation occurs.

This leads to ambiguity, however, when inheriting more than one class belonging to the
same inheritance hierarchy. For example, consider the inheritance hierarchy shown in
Figure 3.6. (Arrows indicate the relation ‘inherits’.)

Assume A has an operation X which is renamed to Y in B and to Z in C . If a variable
is declared to be an object of any class in the hierarchy and its actual class is D then
a reference to the operation X will be ambiguous. That is, it may refer either to the
operation Y inherited from B or the operation Z inherited from C .
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B C

A

D

Figure 3.6: Inheritance hierarchy with multiple inheritance.

To avoid such ambiguity in Object-Z, such use of implicit aliases for renamed attributes
and operations is not allowed. Instead, aliases may be defined explicitly by the inclusion
in a subclass of an additional attribute or operation which is defined identically to the
original. In the case of an attribute, the value of the new attribute must always be the
same as the original attribute. This can be achieved by a state invariant of the form a = b
where a is the original attribute and b its alias.

3.3.2 Signature compatibility

A class is said to be signature compatible with another class if it can be used in any
context in which the other class could be used. Therefore, when signature compatibility
is maintained in an inheritance hierarchy, a polymorphic variable of that hierarchy can
be used in any way that an object of the class at the top of the hierarchy could be used.

Provided renaming does not occur, the rules for maintaining signature compatibility
through inheritance are as follows.

Rule 1 - A class must have at least all of the operations of any class it inherits.

Rule 2 - A redefined operation must have exactly the same parameters as the original
inherited operation.

Rule 1 is necessary so that any reference made to an operation of a given class is inter-
pretable for its subclasses. This rule is automatically ensured as cancellation of operations
is not supported in Object-Z.

Rule 2, however, does not always hold as redefinition of operations enables operation pa-
rameters to be added or removed. To illustrate the necessity of Rule 2, consider declaring
a variable s : ↓Shape and defining the following operations within a class. Both operations
are interpretable when the class of the object to which s is assigned is the class Shape.
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Display1

∆(s)
position! : Vector
perim! : R

s.Display

Display2

s.Display
out ! : R

out ! = perim!+ | position! |

The operation Display1 is not interpretable when s is assigned to an object of a class
where operation parameters are added to the operation Display . For example, if s is
assigned to an object of class Polygon then the output parameter edges!, which occurs in
the signature of the operation Display in Polygon and, hence, in the predicate of Display1,
is not declared in the signature of Display1.

On the other hand, the operation Display2 is not interpretable when s is assigned to an
object of a class where operation parameters are removed from the operation Display .
For example, if the output parameter position!, which occurs in the predicate of Display2,
is not declared in the operation Display of the actual class of s then it will also not be
declared in the signature of Display2. Similarly for the output parameter perim!.

To maintain signature compatibility in an inheritance hierarchy in Object-Z, therefore, a
specifier needs to limit the use of redefinition of operations so that there is no addition
or cancellation of operation parameters. A formal definition of signature compatibility
can be given using the definition of ClassStruct from Section 2.2.1. Intuitively, a class is
signature compatible with another if it can undergo any event which the other class can
undergo (and possibly more).

sig compat : ClassStruct ↔ ClassStruct

∀ c1, c2 : ClassStruct •
c2 sig compat c1 ⇔ dom c1.trans ⊆ dom c2.trans

To maintain the stronger notion of behavioural compatibility in an inheritance hierarchy,
the specifier needs also to restrict the way in which an operation’s predicate can be
redefined. A formal definition of behavioural compatibility and rules for maintaining
behavioural compatibility through inheritance in Object-Z are presented in Chapter 6.
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Chapter 4

Liveness

“The only way to predict the future is to have the power to shape
the future.”

— Eric Hoffer
The Passionate State of Mind , 1954.

Classes describe objects in terms of their state and associated operations. The properties
they can represent, therefore, are identical to the properties that can be represented by
a state transition system. These properties are referred to as safety properties. They
specify which state changes may occur but do not require that any state changes actually
do occur. Properties which state that a state change, or operation, must occur are referred
to as liveness properties.

Liveness properties include guaranteed occurrence of operations, fairness and termina-
tion. Fairness properties state that an operation which is either repeatedly or continuously
enabled must eventually occur. Termination properties state that a state from which no
further operations can occur, i.e. in which no operations are enabled, must eventually be
reached.

Although liveness properties can be expressed in ordinary predicate logic (e.g. see Duke
et al.[40]), the readability of such properties benefits from the use of temporal logic
notation[92, 84, 72]. Temporal logics include, in addition to the propositional opera-
tors in ordinary predicate logic, operators corresponding to temporal concepts such as
“eventually” and “always”.

Object-Z allows the specification of liveness properties by associating with each class a
temporal logic history invariant. The history invariant restricts the set of histories derived
from the state and operations of the class. A formal definition, in Z, of safety and liveness
properties is given in Section 4.1. Section 4.2 presents a temporal logic notation which
enables the specification of safety and liveness properties which refer to the occurrence
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of both states and operations. Section 4.3 looks at extending Object-Z classes to include
temporal logic history invariants, i.e. temporal logic predicates which describe an invariant
property of the histories of a class.

4.1 Formalising Safety and Liveness

In order to give a clear understanding of the concepts of safety and liveness, formal
definitions, in Z, of safety and liveness properties are presented in this section. The
definitions are based on definitions given by Alpern and Schneider in [6]. Alpern and
Schneider model a property as a set of sequences of states. The understanding is that
a property holds for a system when the possible sequences of states through which the
system can pass is a subset of the set of sequences of states representing the property.

In this section, an alternative model is presented which allows properties to be concerned
with the events a system undergoes, as well as the states through which it passes. Formal
definitions of safety and liveness properties are presented for this model in Section 4.1.1. A
proof that all properties are the intersection of safety and liveness properties is presented
in Section 4.1.2. The definitions and proof correspond precisely to the definitions and
proof given for the state sequence model by Alpern and Schneider.

4.1.1 Safety and liveness properties

Adopting the definition of History from Section 2.2.2, a property may be defined as a set
of histories as follows.

Property == PHistory

Intuitively, a property p : Property holds for a system when each possible sequence of
states the system can pass through, together with the associated sequence of events the
system undergoes, corresponds to a history in the set p.

Safety properties

Intuitively, a safety property states that something ‘bad’ does not happen. Therefore, if
a (possibly infinite) history satisfies a given safety property, nothing ‘bad’ has happened
in the history. Consequently, any pre-history of the history will also satisfy the safety
property. Let prehist be defined as in Section 2.2.2. The set of safety properties is defined
as follows.

Safety == {p : Property | ∀ h : p • prehist(h) ⊆ p}
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Liveness properties

A finite history is a history corresponding to a finite sequence of events (and, hence, a
finite sequence of states).

FiniteHistory == {f : History | f .events ∈ seq Event}

A liveness property states that something ‘good’ must eventually happen. Therefore,
any finite history can be extended to satisfy a liveness property. The set of all liveness
properties is defined as follows.

Liveness == {p : Property | ∀ f : FiniteHistory • ∃ h : p • f ∈ prehist(h)}

4.1.2 Other properties

All properties which are not safety or liveness properties may be expressed as the inter-
section of a safety and a liveness property. The following proof of this statement is based
on a similar proof by Alpern and Schneider in [6].

Theorem 4.1

Every property is the intersection of a safety and a liveness property.

∀ p : Property • ∃ s : Safety ; l : Liveness • p = s ∩ l

Proof
Let s be the set containing all pre-histories of histories in p.
That is, s = {ph : History | ∃ h : p • ph ∈ prehist(h)}. (1)
From (1), ∀ h : s • prehist(h) ⊆ s (2)
and p ⊆ s. (3)
From (2) and the definition of Safety , s ∈ Safety . (4)
Let l = {h : History | h 6∈ (s \ p)}. (5)
From (5), p ⊆ l . (6)
Let f ∈ FiniteHistory .
From (5), f 6∈ (s \ p) ⇒ f ∈ l . (7)
From (1), f ∈ (s \ p) ⇒ ∃ h : p • f ∈ prehist(h). (8)
From (6) and (8), f ∈ (s \ p) ⇒ ∃ h : l • f ∈ prehist(h). (9)
From (5), (7), (9) and the definition of Liveness, l ∈ Liveness. (10)
From (5), s ∩ l = s ∩ {h : History | h 6∈ (s \ p)}

= s ∩ ({h : History | h 6∈ s} ∪ p)
= (s ∩ {h : History | h 6∈ s}) ∪ (s ∩ p)
= s ∩ p. (11)

From (3) and (11), p = s ∩ l . �
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4.2 Temporal Logic

Temporal logics are extensions to ordinary predicate logic which include operators corre-
sponding to temporal, or time-dependent, concepts. Generally, they are used for writing
predicates which refer to sequences of states representing the evolution of a single state
over time. Such temporal logics are ideal for specifying liveness properties concerned with
the occurrence of states.

In this section, a temporal logic notation is presented which is used for writing predicates
which refer to histories corresponding to the sequences of states and corresponding se-
quences of events that a system can undergo. This enables the specification of properties
which are concerned with the occurrence of both states and events. The syntax of the
temporal logic is presented in Section 4.2.1 and its semantics in Section 4.2.2.

4.2.1 Introduction to temporal logic

In addition to the conventional logical operators, temporal logic notations include tem-
poral operators such as 2 meaning “always” and 3 meaning “eventually”. Predicates
may be constructed as in ordinary predicate logic or by using the temporal operators
as follows. If P is a predicate then 2P and 3P are also predicates. Intuitively, 2P
describes a system for which P is true now and is always true in the future. Similarly,

3P describes a system for which P is true now or is true at some time in the future.

Temporal operators are particularly useful for specifying the dynamic behaviour of sys-
tems. For example, consider describing a system where a variable i : N at some time
equals 1 and at some later time equals 2 in ordinary predicate logic. One solution would
be to model the time-dependent variable i as a function of time (modelled as natural
numbers) rather than simply as a natural number. The system could then be described
as follows.

∃ t , t ′ : N • t < t ′ ∧ i(t) = 1 ∧ i(t ′) = 2

A more elegant solution can be obtained using the temporal operator 3 as follows.

3(i = 1 ∧ 3(i = 2))

More complex expressions can also be represented by combining the temporal operators.
For example, given a predicate P , 32P states that after some time P is always true.
Similarly, 23P states that at all times, P must be true at that time or at some time in
the future.

The temporal logic notation presented in this section includes, in addition to the temporal
operators 2 and 3, notation which enables the expression of properties concerned with
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the occurrence of operations. The notation Op enabled describes a system for which
the operation Op is enabled, i.e. for which the precondition of Op is true. The notation
Op occurs describes a system which undergoes the operation Op as its next event. For
example, the following temporal logic predicate describes a system where after some time,
if the operation Op is always enabled then it always eventually occurs.

32(Op enabled) ⇒ 23(Op occurs)

This condition on Op is known as weak fairness. The condition that an operation which
is repeatedly enabled must always eventually occur is known as strong fairness. Strong
fairness can also be expressed in temporal logic as follows.

23(Op enabled) ⇒ 23(Op occurs)

The notations Op enabled and Op occurs can also be followed by an optional predicate in
ordinary predicate logic. This predicate may be used to restrict the value of the parameters
of the operation. For example, the following temporal logic predicate describes a system
where the operation Op is always enabled provided its input parameter x? is equal to 1.

2(Op enabled | x? = 1)

Similarly, the following temporal logic predicate describes a system where the operation
Op eventually occurs with input parameter x? equal to 1 and output parameter y ! equal
to 2.

3(Op occurs | x? = 1 ∧ y ! = 2)

A complete formal syntax of the temporal logic is presented below1. The non-terminals
Declaration, Predicate and OpnRef corresponding to declarations, predicates in ordinary
predicate logic and references to operations respectively, are defined in Appendix A.

TLPred ::= ∀Declaration [ | TLPred] • TLPred

| ∃Declaration [ | TLPred] • TLPred

| ∃1 Declaration [ | TLPred] • TLPred

| TLPred1

1The syntax is given using an extension to Backus-Naur Form (BNF) defined by Spivey in [108].
Optional phrases are enclosed in slanted square brackets. The binding power of each of the temporal
operators is the same as that of the logical operator ‘¬ ’.

69



4.2. TEMPORAL LOGIC

TLPred1 ::= Predicate

| OpnRef enabled [ | Predicate]
| OpnRef occurs [ | Predicate]
| 2TLPred1

| 3TLPred1

| ¬ TLPred1

| TLPred1 ∧ TLPred1

| TLPred1 ∨ TLPred1

| TLPred1 ⇒ TLPred1

| TLPred1 ⇔ TLPred1

| (TLPred1)

4.2.2 Semantics of temporal logic

The semantics of the temporal logic is given in terms of the semantics of ordinary (i.e non-
temporal) predicate logic. Let the type State be defined as in Section 2.2.1. The function
M gives the meaning of a predicate p in ordinary predicate logic as a partial function
which maps states to boolean values, i.e. M(p) ∈ State 7→ {true, false}. Intuitively, the
domain of M(p) is the set of states in which the predicate p is defined and for any state
s in the domain of M(p), the value of M(p) s is true when p is true in s and false when
p is false in s.

Let the type History be defined as in Section 2.2.2. The function M can be used to
define a function M′ which gives the meaning of a temporal logic predicate tl as a partial
function which maps histories to boolean values, i.e. M′(tl) ∈ History 7→ {true, false}.

Semantics of temporal logic without quantification

In this section, it is assumed temporal logic predicates do not involve universal or existen-
tial quantification. The semantics of temporal logic predicates involving quantification is
given in the following section.

To define the semantics of the temporal logic notation, it is necessary to first define
the domains, i.e. the sets of histories, on which the various temporal logic predicates are
defined2. The domain of the function M′ is defined in terms of the domain of the function
M as follows.

• A predicate p in ordinary predicate logic is defined on a history h if p is defined in the
first state of h.

2The approach in this thesis differs from most existing semantics of temporal logic (e.g. see [84, 72])
which model a state as a total, rather than partial, function from variables to values. While these
approaches are simpler, the use of partial functions provides a more intuitive and easily represented
model of objects (as illustrated by the VendingMachine example in Chapter 2).
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domM′(p) = {h : History | h.states(1) ∈ domM(p)}

Since all states within a history assign values to the same set of identifiers, if p is defined
on h, it follows that p is defined in all states of h.

∀ h : domM′(p) • ∀ i : dom h.states • h.states(i) ∈ domM(p)

Let the type Event and the associated functions op and params be defined as in Sec-
tion 2.2.1 and let the function E return the set of all events corresponding to an occurrence
of an operation Op, i.e. E(Op) ∈ P Event .

• A predicate of the form Op enabled | p, where Op is an operation and p is a predicate
in ordinary predicate logic, is defined on a history h if the conjunction of the precondition
of Op3 with p is defined in the first state of h when that state is extended with the
parameters of any event corresponding to an occurrence of Op.

domM′(Op enabled | p) =
{h : History | ∀ e : E(Op) • (h.states(1) ⊕ params(e)) ∈ domM(pre Op ∧ p)}

If Op enabled | p is defined on h, it follows that the conjunction of the precondition of
Op with p is defined in every state of h when that state is extended with the parameters
of any event corresponding to an occurrence of Op.

∀ h : domM′(Op enabled | p) •
∀ i : dom h.states; e : E(Op) • (h.states(i) ⊕ params(e)) ∈ domM(pre Op ∧ p)

• A predicate of the form Op occurs | p, where Op is an operation and p is a predicate in
ordinary predicate logic, is defined on a history h if p is defined in the first state of h when
that state is extended with the parameters of any event corresponding to an occurrence
of Op.

domM′(Op occurs | p) =
{h : History | ∀ e : E(Op) • (h.states(1) ⊕ params(e)) ∈ domM(p)}

• A temporal logic predicate formed by preceding the temporal logic predicate tl with a
unary operator is defined on any history on which tl is defined.

domM′(2tl) = domM′(3tl) = domM′(¬ tl) = domM′(tl)

• Similarly, any combination of the temporal logic predicates tl1 and tl2 with a binary
operator is defined on any history on which both tl1 and tl2 are defined.

3The Z notation preOp is used to denote the precondition of an operation Op.
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domM′(tl1 ∧ tl2) = domM′(tl1 ∨ tl2) =
domM′(tl1 ⇒ tl2) = domM′(tl1 ⇔ tl2) = domM′(tl1) ∩ domM′(tl2)

Any history whose sequences of states and events are suffixes of those of another history
is referred to as a post-history of that history. Intuitively, a post-history represents the
history of an object after a certain point in time.

posthist : History → PHistory

∀ h : History •
posthist(h) = {ph : History | ∃ i : 0 . . #(h.events) •

ph.states = squash(1..i −C h.states) ∧
ph.events = squash(1..i −C h.events)}

From the above definitions, it follows that if a temporal logic predicate tl is defined on a
history h then it is also defined on any post-history of h.

∀ h : domM′(tl) • ∀ ph : posthist(h) • ph ∈ domM′(tl)

The semantics of the temporal logic is as follows.

(1) A predicate p in ordinary predicate logic is true on a history h : domM′(p) if it is
true in the first state of h.

M′(p) h ⇔ M(p) h.states(1)

(2) A predicate of the form Op enabled | p, where Op is an operation and p is a
predicate in ordinary predicate logic, is true on a history h : domM′(Op enabled | p)
if the conjunction of the precondition of Op with p is true in the first state of h when
extended with the parameters of at least one event corresponding to an occurrence of Op.

M′(Op enabled | p) h ⇔ ∃ e : E(Op) • M(pre Op ∧ p) (h.states(1) ⊕ params(e))

(3) A predicate of the form Op occurs | p, where Op is an operation and p is a predicate
in ordinary predicate logic, is true on a history h : domM′(Op occurs | p) if the first
event of h is an event corresponding to an occurrence of Op and p is true in the first state
of h extended with the parameters of the first event in h.

M′(Op occurs | p) h ⇔ h.events 6= 〈 〉 ∧
h.events(1) ∈ E(Op) ∧ M(p) (h.states(1) ⊕ params(h.events(1)))

(4) A temporal logic predicate of the form 2tl , where tl is a temporal logic predicate, is
true on a history h : domM′(tl) if tl is true on all post-histories of h.
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M′(2tl) h ⇔ ∀ ph : posthist(h) • M′(tl) ph

(5) A temporal logic predicate of the form 3tl , where tl is a temporal logic predicate, is
true on a history h : domM′(tl) if tl is true on at least one post-history of h.

M′(3tl) h ⇔ ∃ ph : posthist(h) • M′(tl) ph

(6) When conventional logical operators occur in temporal logic expressions, they are
interpreted as follows.

If tl is a temporal logic predicate and h ∈ domM′(tl) then the following is true.

M′(¬ tl) h ⇔ ¬ M′(tl) h

Similarly, if tl1 and tl2 are temporal logic predicates and h ∈ domM′(tl1) ∩ domM′(tl2)
then the following are true.

M′(tl1 ∧ tl2) h ⇔ M′(tl1) h ∧ M′(tl2) h
M′(tl1 ∨ tl2) h ⇔ M′(tl1) h ∨ M′(tl2) h
M′(tl1 ⇒ tl2) h ⇔ M′(tl1) h ⇒ M′(tl2) h
M′(tl1 ⇔ tl2) h ⇔ (M(tl1) h ⇔ M′(tl2) h)

Semantics of temporal logic with quantification

In this section, the semantics of the previous section is extended to include temporal logic
predicates involving universal and existential quantification.

Any quantified variable occurring in a temporal logic predicate is considered constant
over the history on which the temporal logic predicate is interpreted. Such variables need
not be included in the states of the history. Therefore, to interpret the temporal logic
predicate on a history, the states of the history must be extended to include the quantified
variables as constants.

The function extend extends each state in a history to include a constant assignment of
values to a particular set of variables.

extend : History × State → History

∀ h1, h2 : History ; s : State •
h2 = extend(h1, s) ⇔

dom h2.states = dom h1.states
∀ i : dom h2.states • h2.states(i) = h1.states(i) ⊕ s
∀ i : dom h2.events • h2.events(i) = h1.events(i)
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Let S be a function which returns the set of all states that can be constructed from the
variables declared in a declaration d , i.e. S(d) ∈ PState.

• A temporal logic predicate which involves quantification of a set of variables over the
temporal logic predicate tl is defined on a history h if tl is defined on all histories which
extend the states of h to include a constant assignment of values to the quantified variables.

domM′(∀ d • tl) = domM′(∃ d • tl) = domM′(∃
1
d • tl) =

{h : History | ∀ s : S(d) • extend(h, s) ∈ domM′(tl)}

The semantics of the previous section can be extended as follows.

(7) When the variables in a declaration d are universally quantified over a temporal logic
predicate tl , the resulting predicate is true on a history h : domM′(∀ d • tl) if tl is true
on all histories which extend the states of h to include a constant assignment of values to
the quantified variables. (A predicate ∀ d | tl1 • tl2, where d is a declaration and tl1 and
tl2 are temporal logic predicates, is semantically identical to ∀ d • tl1 ⇒ tl2.)

M′(∀ d | tl1 • tl2) h ⇔ ∀ s : S(d) • M′(tl1 ⇒ tl2) extend(h, s)

(8) When the variables in a declaration d are existentially quantified over a temporal logic
predicate tl , the resulting predicate is true on a history h : domM′(∃ d • tl) if tl is true
on at least one history which extends the states of h to include a constant assignment of
values to the quantified variables. (A predicate ∃ d | tl1 • tl2, where d is a declaration and
tl1 and tl2 are temporal logic predicates, is semantically identical to ∃ d • tl1 ∧ tl2.)

M′(∃ d | tl1 • tl2) h ⇔ ∃ s : S(d) • M′(tl1 ∧ tl2) extend(h, s)

Temporal logic predicates involving the unique existence quantifier are interpreted simi-
larly.

M′(∃
1
d | tl1 • tl2) h ⇔ ∃

1
s : S(d) • M′(tl1 ∧ tl2) extend(h, s)

4.3 History Invariants

By incorporating the temporal logic notation of Section 4.2 into Object-Z classes, liveness
properties concerned with the occurrence of the states and operations of objects can be
specified. Syntactically, this is achieved by including an optional temporal logic history
invariant below a horizontal line which separates it from the other features of the class.
Conceptually, this separation is similar to the separation of predicates from declarations
in ordinary Z schemas since the history invariant constrains the set of histories derived
from the state and operations of a class.
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The syntactic structure of a class with a temporal logic history invariant is as follows.

ClassName[generic parameters]

inherited classes
type definitions
constant definitions
state schema
initial state schema
operations

history invariant

When a class inherits another class, the history invariants of the classes are conjoined. A
class with no explicit history invariant is assumed to have the default history invariant
true. Section 4.3.1 looks at incorporating history invariants into Object-Z classes and
Section 4.3.2 provides an example of their use through the specification of an alternating
bit protocol and the verification of its liveness properties. Section 4.3.3 discusses the issue
of realisability of Object-Z classes with history invariants.

4.3.1 Introduction to history invariants

As a preliminary example of the use of history invariants in Object-Z, consider extending
the class VendingMachine of Section 2.2.1 to ensure that a chocolate is always delivered
after a customer has inserted coins to the value of one dollar or more. This can be achieved
by inheriting VendingMachine and adding a history invariant as follows.

LiveVendingMachine
VendingMachine

2(credit > 100 ⇒ 3(Choc occurs))

The history invariant of the class LiveVendingMachine states that whenever the credit is
greater than or equal to one dollar, a chocolate will be delivered at that time or some
time in the future. This is not required of the class VendingMachine which may stop, i.e.
undergo no further operations, after the insertion of coins to the value of one dollar or
more.

Despite this difference, the history model does not distinguish between VendingMachine
and LiveVendingMachine as objects of both classes can undergo exactly the same histories.
To distinguish between such classes an alternative model based on the total histories, i.e.
the histories over all time, of a class is adopted.

Let ClassStruct0 refer to the definition of ClassStruct in Section 2.2.1. The structural
model of a class with a history invariant can be specified as follows. (Property is as
defined in Section 4.1.1.)
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ClassStruct
ClassStruct0
hist inv : Property

Intuitively, the property representing a history invariant consists of those histories on
which the temporal logic formula is defined and true according to the semantics given in
Section 4.2.2.

Let the function H be defined as in Section 2.2.2. The set of total histories of a class can
be derived from its structural model using the function T H defined below.

T H : ClassStruct → P History

∀ c : ClassStruct • T H(c) = H(c) ∩ c.hist inv

The set of total histories of the class are those histories which objects of the class can
undergo and which also satisfy the history invariant.

Given any history in the set of total histories of a class it is not necessarily true that
any pre-history of that history is also in the set. For example, the history corresponding
to the insertion of a one dollar coin and the delivery of a chocolate is a total history of
LiveVendingMachine, but the pre-history of this history corresponding to the insertion of
a one dollar coin only is not. Therefore, if the type of a class is chosen to be the set of total
histories, objects of the class cannot necessarily be initialised or have single operations
applied to them using the dot notation.

As an alternative, an object can be instantiated from the safety property of its class
consisting of all pre-histories of its total histories. This safety property can be defined in
terms of the set of total histories as follows.

T Hsafe : ClassStruct → PHistory

∀ c : ClassStruct • T Hsafe(c) = {h : History | ∃ h ′ : T H(c) • h ∈ prehist(h ′)}

To ensure the liveness property of an object, when adopting this approach, it is necessary
to ensure that the object progresses, i.e. continues to extend its history, until it has
undergone a history in the set of total histories of its class. This can be achieved by
introducing a history invariant into the class in which the object is instantiated.

This history invariant, by ensuring that the object only extends its history, also captures
the intuitive notion that an object within a system is a unique object and, hence, has a
unique past history. Without the history invariant, the past history of an object could be
changed if the class in which the object is instantiated has an operation which includes
the object in its ∆-list but does not constrain the object’s value in its post-state.
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To define the required history invariant, the notion of the closure of a sequence of histories
is required. Given a sequence of histories s, where each history in the sequence is a pre-
history of each history later in the sequence, the closure of s is the smallest history h
satisfying the condition that any history in s is a pre-history of h. The closure of a finite
sequence of histories will be identical to the final history in that sequence. The existence
and uniqueness of the closure of a given sequence s is assumed without formal proof4.

closure : seq
∞

History 7→ History

dom closure = {s : seq
∞

History | ∀ i , j : dom s • i 6 j ⇒ s(i) ∈ prehist(s(j ))}
∀ s : dom closure; h : History •

closure(s) = h ⇔
∀ i : dom s • s(i) ∈ prehist(h)
∀ j : dom h • ∃ i : dom s • #s(i) > j

Let A be the structural model of a class A and ‘a’ denote the identifier corresponding
to an object a : A. The temporal logic predicate

→

a is defined for a class in which a is
instantiated. It states that the history of a is continually extended, or after some time
remains unchanged, and that the closure of the sequence of successive histories of a is a
total history of A. It can be defined formally as follows.

M′(
→

a ) h ⇔ ∃ s : dom closure •
dom s = dom h.states ∧
∀ i : dom s • s(i) = h.states(i)(‘a’) ∧
closure(s) ∈ T H(A)

Such a predicate can be used in the specification of a system which includes an object of
class LiveVendingMachine as follows. (Details of the class not relevant to the instantiation
of the object are elided.)

System

vm : LiveVendingMachine
. . .

. . .
→

vm
. . .

To allow the instantiation of aggregates of objects with liveness properties, the temporal

logic predicate
−→

(f , id), where f : Id 7→ A is a function from a set of identifiers Id to a

4This definition assumes that History , which is defined in terms of Value, is a subset of Value. Such
recursive definitions involving infinite structures can lead to problems with well-definedness. This issue
needs to be addressed when developing a full formal semantics for Object-Z.
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set of objects of class A and id : Id is an identifier in the domain of f , is also defined as
follows. (A denotes the structural model of A and ‘f ’ denotes the identifier corresponding
to the function f .)

M′(
−→

(f , id)) h ⇔ ∃ s : dom closure •
dom s = dom h.states ∧
∀ i : dom s • (id , s(i)) ∈ h.states(i)(‘f ’)) ∧
closure(s) ∈ T H(A)

4.3.2 Alternating bit protocol example

The alternating bit protocol ensures the reliable transmission of an ordered sequence of
messages over an unreliable medium. Each message which is accepted for transmission
is tagged with a bit (either 1 or 0) and then periodically retransmitted until its tag is
returned as acknowledgement of its receipt at the receiving end of the medium.

In this section, the alternating bit protocol is specified as a collection of interacting objects.
Each object has a liveness property in the form of fairness conditions placed on particular
operations. A proof that the liveness properties of the constituent objects ensure the
desired liveness property of the protocol is also presented.

Specification of the alternating bit protocol

The alternating bit protocol can be modelled as consisting of four components: a transmit-
ter, a receiver, a message channel and an acknowledgement channel as shown in Figure 4.1.

messagestransmitter

channel
message

receiver

channel
acknowledgement

messages

Figure 4.1: Representation of the alternating bit protocol.

The message channel and the acknowledgement channel are unreliable in that they can
lose messages and acknowledgements respectively. However, it is assumed they do not
lose them indefinitely, i.e. some transmitted messages and acknowledgements must get
through.
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Let MSG denote the set of all messages. Each message is tagged with either a 0 or 1
before transmission. The type Tag and TaggedMSG are defined as follows.

Tag == {0, 1}
TaggedMSG == Tag × MSG

The auxiliary functions tag and msg are defined to enable access to a tagged message’s
tag and message components respectively.

tag : TaggedMSG → Tag
msg : TaggedMSG → MSG

∀ tm : TaggedMSG • tm = (tag(tm),msg(tm))

The class Trans denoting the transmitter has two state variables: buf denoting a buffer
which is either empty or contains a tagged message that has been transmitted but not
yet acknowledged and serial denoting the tag of the last message transmitted. Initially,
buf is empty and serial is set to 0.
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Trans

buf : seq TaggedMSG
serial : Tag

#buf 6 1
buf 6= 〈 〉 ⇒ tag(head buf ) = serial

INIT

buf = 〈 〉
serial = 0

TransMsg
∆(buf , serial)
msg? : MSG
tmsg ! : TaggedMSG

buf = 〈 〉
serial ′ = 1 − serial
tmsg ! = (msg?, serial ′)
buf ′ = 〈tmsg !〉

Retrans
tmsg ! : TaggedMSG

buf = 〈tmsg !〉

RecAck
∆(buf )
ack? : Tag

ack? = serial ⇒ buf ′ = 〈 〉
ack? 6= serial ⇒ buf ′ = buf

32(Retrans enabled) ⇒ 23(Retrans occurs)

The operation TransMsg corresponds to the transmitter accepting a message from the
environment and transmitting it with an appropriate tag. The tagged message is stored
in the transmitter’s buffer. The operation Retrans corresponds to retransmitting a tagged
message in the transmitter’s buffer and the operation RecAck corresponds to receiving an
acknowledgement and emptying the buffer if the acknowledgement is the same as the tag
of the last message transmitted.

The history invariant places a condition of weak fairness on the operation Retrans. That
is, if Retrans is continuously enabled it must eventually occur. This ensures the periodic
retransmission of any message which has not been acknowledged.
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The class Rec denoting the receiver has a single state variable exptag denoting the tag of
the next message the receiver is expecting to deliver. Initially, exptag is set to 1, the tag
of the first message expected at the receiver.

Rec

exptag : Tag

INIT

exptag = 1

RecMsg
∆(exptag)
tmsg? : TaggedMSG
msg ! : MSG

exptag = tag(tmsg?)
msg ! = msg(tmsg?)
exptag ′ = 1 − exptag

RejMsg
tmsg? : TaggedMSG

exptag 6= tag(tmsg?)

TransAck
ack ! : Tag

ack ! = 1 − exptag

32(TransAck enabled) ⇒ 23(TransAck occurs)

The operation RecMsg corresponds to receiving a message with the expected tag and
delivering it to the environment. The operation RejMsg corresponds to receiving a mes-
sage which does not have the expected tag and discarding it. The operation TransAck
corresponds to transmitting the tag of the last message delivered to the environment.

The history invariant places a condition of weak fairness on the operation TransAck . This
ensures the periodic retransmission of acknowledgement of the last message received.

As a preliminary to specifying the message and acknowledgement channels, consider ex-
tending the class Queue[T ] of Section 2.1.2 to specify a lossy queue as follows.
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LossyQueue[T ]

Queue[T ]

Lose
∆(items)

items 6= 〈 〉
items ′ = tail items

23(Leave enabled) ⇒ 23(Leave occurs)

The operation Lose allows the head of the queue to be lost at any time. This is equivalent
to allowing the loss of an element other then the head at some earlier time.

The history invariant places a condition of strong fairness on the operation Leave. This
ensures that there is no indefinite loss of items from the queue. Strong fairness is required
in this case, as opposed to weak fairness, as it is necessary that a Leave eventually occurs
if it is only repeatedly, and not necessarily continuously, enabled. For example, a his-
tory corresponding to an infinite sequence of events where the events correspond to the
operations Join and Lose alternatively never has Leave continuously enabled.

The class MsgChan denoting the message channel is specified as follows.

MsgChan

LossyQueue[TaggedMSG ][Join[tmsg?/item?],Leave[tmsg !/item!]]

The class AckChan denoting the acknowledgement channel is specified as follows.

AckChan

LossyQueue[Tag ][Join[ack?/item?],Leave[ack !/item!]]

The class Protocol denoting the protocol is specified as follows.

82



4.3. HISTORY INVARIANTS

Protocol

trans : Trans
rec : Rec
msgchan : MsgChan
ackchan : AckChan

INIT

trans.INIT

rec.INIT

msgchan.INIT

ackchan.INIT

AcceptMsg =̂ trans.TransMsg ‖ msgchan.Join

DeliverMsg =̂ msgchan.Leave ‖ rec.RecMsg

Retrans =̂ trans.Retrans ‖ msgchan.Join

RejMsg =̂ msgchan.Leave ‖ rec.RejMsg

TransAck =̂ rec.TransAck ‖ ackchan.Join

RecAck =̂ ackchan.Leave ‖ trans.RecAck

LoseMsg =̂ msgchan.Lose

LoseAck =̂ ackchan.Lose

−→

trans ∧
−→

rec ∧
−→

msgchan ∧
−→

ackchan

Objects of the classes Trans, Rec, MsgChan and AckChan are effectively instantiated by
instantiating objects which satisfy the safety properties of these classes and then ensuring
they also satisfy the liveness properties of the classes with a history invariant. Inter-object
communication is specified using the ‖ operator.

Verification of liveness

Intuitively, the alternating bit protocol progresses in cycles. Initially, the protocol is
ready to accept a message from the environment. If it receives a message, the message
is repeatedly retransmitted and, since the message channel does not allow indefinite loss,
will be received by the receiver and delivered to the environment. The receiver will then
repeatedly transmit an acknowledgement of the receipt of the message and, since the
acknowledgement channel does not allow indefinite loss, this acknowledgement will be

83



4.3. HISTORY INVARIANTS

received by the transmitter. The protocol is then ready to accept another message from
the environment and the cycle repeats.

The completion of a cycle means that the protocol has successfully delivered a message
and is ready to accept another message. To deliver a sequence of messages, therefore, the
protocol must always complete any cycle it begins. That is, it must be always eventually
true that the protocol is ready to accept a new message. A proof that this liveness property
holds for the class Protocol is given below. The proof assumes the safety properties of the
class hold (in particular, that the buf attribute of Trans is only changed by the operations
TransMsg and RecAck) and that the class has at least one total history.

Theorem 4.2

At any time, the protocol will be ready to accept a message at that time or some time in
the future.

23(AcceptMsg enabled)

Proof
Assume the theorem is false. That is, at some time the protocol will not be ready
to accept a message at that time or any future time.

That is, 32¬ (AcceptMsg enabled). (1)
From (1) and the definition of AcceptMsg ,

32¬ (trans.TransMsg enabled ∧ msgchan.Join enabled). (2)
Since msgchan.Join is always enabled, from (2),

32¬ (trans.TransMsg enabled). (3)
Consider the object trans.
From (3) and the precondition of TransMsg , 32(buf 6= 〈 〉). (4)
From (4) and the precondition of Retrans, 32(Retrans enabled). (5)
From (5) and the weak fairness condition on Retrans, 23(Retrans occurs). (6)
Next consider the object msgchan.
From (6), 23(Join occurs | tmsg? = head buf ). (7)
(The expression head buf , although strictly in the scope of the object trans only, is
used throughout the proof to denote a message whose value is equal to head buf .
Similarly, the expression tag(head buf ) is used to denote an acknowledgement whose
value is equal to tag(head buf ).)

From (7) and the definition of Join, 23(items ′ = items a 〈head buf 〉). (8)
From the fairness condition on Leave, any tagged message at the head of items will
eventually be removed. Hence, any tagged message in items will eventually reach
the head of items.

Therefore, from (8) and the precondition of Leave,

23(Leave enabled | tmsg ! = head buf ). (9)
Furthermore, since after some time TransMsg is not enabled (from (3)) any occur-
rence of Join after this time will correspond to trans undergoing a Retrans operation.
Therefore, from the definition of Retrans,
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32(Join occurs ⇒ (Join occurs | tmsg? = head buf )) (10)
Therefore, from (10) and the fact that any tagged message in items will eventually
reach the head of items,

32(Leave enabled ⇒ (Leave enabled | tmsg ! = head buf )). (11)
From (9) and the strong fairness condition on Leave, it is always true that Leave
will eventually occur. Since, (11) states that after some time Leave is only enabled
with tmsg ! = head buf , it is always true that Leave will eventually occur with
tmsg ! = head buf . That is,

23(Leave occurs | tmsg ! = head buf ). (12)

Now consider the object rec.
From (12), 23(RecMsg occurs | tmsg? = headbuf ∨

RejMsg occurs | tmsg? = headbuf ). (13)
From (13) and the definitions of RecMsg and RejMsg ,

23(exptag = 1 − tag(head buf )). (14)
From (13),(14) and the definitions of RecMsg and RejMsg ,

32(exptag = 1 − tag(head buf )). (15)
That is, after RecMsg has occurred, exptag = 1 − tag(head buf ) and only RejMsg ,
which does not change the value of exptag , is enabled.

From (15) and the precondition of TransAck ,

32(TransAck enabled | ack ! = tag(head buf )). (16)
Furthermore, from (15) and the precondition of TransAck ,

32(TransAck enabled ⇒ (TransAck enabled | ack ! = tag(head buf ))). (17)
From (16) and the weak fairness condition on TransAck , it is always true that
TransAck will eventually occur. Since, (17) states that after some time TransAck
is only enabled with ack ! = tag(head buf ), it is always true that TransAck will
eventually occur with ack ! = tag(head buf ). That is,

23(TransAck occurs | ack ! = tag(head buf )). (18)

Now consider the object ackchan.
From(18), 23(Join occurs | ack? = tag(head buf )). (19)

From (19) and the definition of Join, 23(items ′ = items a 〈tag(head buf )〉). (20)
From the fairness condition on Leave, any tagged message at the head of items will
eventually be removed. Hence, any tagged message in items will eventually reach
the head of items.

Therefore, from (20) and the precondition of Leave,

23(Leave enabled | ack ! = tag(head buf )). (21)
Furthermore, from (17),

32(Join occurs ⇒ (Join occurs | ack ! = tag(head buf ))). (22)
Therefore, from (22) and the fact that any tagged message in items will eventually
reach the head of items,

32(Leave enabled ⇒ (Leave enabled | ack ! = tag(head buf ))). (23)
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From (21) and the strong fairness condition on Leave, it is always true that Leave
will eventually occur. Since, (23) states that after some time Leave is only enabled
with ack ! = tag(head buf ), it is always true that Leave will eventually occur with
ack ! = tag(head buf ). That is,

23(Leave occurs | ack ! = tag(head buf )). (24)

Finally, consider the object trans again.
From (24), 23(RecAck occurs | ack? = tag(head buf )). (25)
From (25) and the state invariant of Trans,

23(RecAck occurs | ack? = serial). (26)
From (26) and the definition of RecAck , 23(buf = 〈 〉). (27)
Since (27) contradicts (4), the initial assumption is false. �

4.3.3 Realisability

A specification is realisable[1] if it does not place constraints on the environment in which
it is to operate. An unrealisable specification, which does constrain its environment, is
unimplementable.

Allowing the specification of arbitrary liveness properties in Object-Z may lead to spec-
ifications which are unrealisable. For example, consider adding the history invariant

3(Coin occurs | coin? = 50) to the class VendingMachine of Section 2.2.1. The result-
ing unrealisable specification is unimplementable as it requires the environment, i.e. the
user of the vending machine, to eventually insert a 50 cent coin.

Although such specifications cannot be used in the practical development of a system,
they are not disallowed in Object-Z as this would decrease the expressibility, and also
the simplicity, of the language. It is not uncommon for a specification language to allow
specifications to be written which are not implementable. For example, many specification
languages, including Z, allow the specification of noncomputable functions.

In general, an object is realisable if it does not constrain, through liveness properties, the
occurrence of those operations controlled by its environment. The notion of realisability
could, therefore, be formalised in Object-Z if the operations within an object’s class were
partitioned into those controlled by the environment of the object and those controlled
by the object itself. This notion of unilateral control of operations forms the basis of the
specification techniques proposed by Abadi and Lamport[1], Lam and Shankar[69] and
Lynch and Tuttle[76].

86



Chapter 5

Full Abstraction

“The utmost abstractions are the true weapons with which to control
our thought of concrete fact.”

— Alfred North Whitehead
Science and the Modern World , 1925.

A fundamental concept of object orientation is that an object itself may be composed of
other objects. The full benefits of such an approach are only realised when the properties
of such composite objects can be derived from the properties of their components. This is
only possible if the semantic denotation of a class is derivable from the denotations of the
classes of the objects of which it is composed. A semantics with this property is described
as being compositional .

Another desirable property of a semantics of classes is that the denotation of any class is
only as detailed as necessary for the semantics to be compositional. A semantics with this
property is described as being fully-abstract [90, 111, 79]. Intuitively, the denotation of a
class in a fully-abstract semantics contains no unnecessary implementational details and,
therefore, describes only the external behaviour of its objects. Consequently, only objects
of classes with equal denotations in such a semantics will be behaviourally equivalent , i.e.
will behave identically in any context, or environment1.

Full abstraction has both theoretical and practical significance. Theoretically, a fully-
abstract semantics of classes captures the precise meaning of a class independent of its
syntactic representation. Practically, a fully-abstract semantics of classes enables sim-
pler definitions of behavioural compatibility, and hence subtyping and refinement, to be
developed.

1This notion of behavioural equivalence is often referred to as observational equivalence in the
literature.
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Section 5.1 reviews existing approaches to proving that a semantics is fully-abstract and
presents an alternative approach for object-oriented languages. This approach can be
used to show that a model of classes in Object-Z is fully-abstract. Section 5.2 presents
some preliminary models of classes in Object-Z which are not fully-abstract but are used
to motivate the definition of a fully-abstract model. Section 5.3 presents the fully-abstract
model of classes along with associated proofs of compositionality and full abstraction.

5.1 Introduction to Full Abstraction

A language may be thought of as consisting of components which may be used to con-
struct programs, or systems, in the language, e.g. assignment statements in a sequential
programming language or classes in an object-oriented language. A semantics of a lan-
guage is fully-abstract precisely when any two such components with identical semantic
denotations are behaviourally equivalent.

To prove a semantics is fully-abstract, it is necessary to have another semantics of the
language from which a definition of behavioural equivalence can be derived. Tradition-
ally, this semantics describes the input/output behaviour of programs, or systems, in the
language. Classes in an object-oriented language, however, cannot always be easily de-
scribed as a relation between input and output. Alternative means of proving a semantics
is fully-abstract, therefore, have had to be developed (e.g. see [123]).

Section 5.1.1 examines existing approaches to proving that a semantics is fully-abstract.
Section 5.1.2 presents an alternative approach for object-oriented languages and outlines
how this approach may be used to show that a model of classes in Object-Z is fully-
abstract.

5.1.1 Existing approaches to full abstraction

The most common approach to proving that a semantics of a language is fully-abstract
relies on the existence of another semantics of the language which describes the observable
behaviour of programs, or systems, in the language. The observable behaviour describes
only what the system can be observed to do. The external behaviour, as described by a
fully-abstract semantics, describes also what the system can refuse to do.

Traditionally, this semantics describes the input/output behaviour of programs, or sys-
tems, in the language. Two language components c1 and c2 are said to be behaviourally
equivalent if the input/output behaviour of the program, or system, formed by placing c1

in any context C is identical to the input/output behaviour of the program, or system,
formed by placing c2 in C .

To state this more formally, let the notation C [c] represent the program, or system,
formed by placing the language component c in the context C . Given a semantics IO
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which describes the input/output behaviour of programs, or systems, in a language, two
language components c1 and c2 are said to be behaviourally equivalent if, for any context
C , the following holds.

IO(C [c1]) = IO(C [c2])

A semantics D is said to be fully-abstract with respect to IO if, for any language com-
ponents c1 and c2 and any context C , the following holds.

D(c1) = D(c2) ⇔ IO(C [c1]) = IO(C [c2])

This approach has been used for many languages. For example, it has been used to define
fully-abstract models of nondeterministic dataflow networks in [67] and [97]. It is not,
however, applicable for object-oriented languages as it is not always easy to describe a
class in terms of a relation between input and output. Classes do not necessarily have
any inputs or outputs, in the traditional sense, nor do they necessarily have a final state
which could be regarded as an ‘output’ state. Classes, in fact, fall into the category of
reactive systems defined by Pnueli in [91]. Such systems are best described in terms of
their interaction with their environment.

Yelland[123] proposes a method of proving that a semantics of an object-oriented lan-
guage is fully-abstract. The approach relies on the existence of another semantics of
the language which is compositional but not necessarily fully-abstract. A notion of be-
havioural equivalence of systems, where systems are collections of interacting objects, is
defined in terms of this semantics. This notion is based on the idea that a system can
be observed by a “new” object introduced into the system. An observation is made by
initialising the variables of the new object with a set of values, executing a sequence of
statements and examining the resulting contents of the variables. Two systems are said
to be behaviourally equivalent when no observation can distinguish them.

This approach can only be used to develop a semantics which gives fully-abstract deno-
tations to systems and, unlike the approach presented in Section 5.1.2, not necessarily to
the classes of the objects of which those systems are composed2. Yelland briefly describes
an extension to the approach which would allow classes to also be given fully-abstract
denotations. This extension relies on having classes identified with systems within the
existing semantics.

5.1.2 An alternative approach to full abstraction

This section presents an alternative approach for proving a semantics of an object-oriented
language is fully-abstract. The approach is based on the approach presented in Sec-

2Yelland’s understanding of full abstraction is similar to that of Stoughton[111] which, as pointed
out by Meyer in [79], is actually equivalent to compositionality. Stoughton’s notion of contextual full

abstraction is equivalent to the definition of full abstraction adopted in this thesis.
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tion 5.1.1 which relies on the existence of another semantics describing observable be-
haviour.

Adopting the point of view that an object’s state is hidden, its observable behaviour
consists of the sequence of events it can undergo. Such a sequence of events is referred to
as a trace of the object. Let C [c] denote the class formed by instantiating an object of
the class c in the context, or environment, C . Given a semantics T which denotes a class
by the set of traces its objects can undergo, a semantics D is fully-abstract with respect
to T if, for any context C , the following holds.

D(c1) = D(c2) ⇔ T (C [c1]) = T (C [c2])

This approach can be used to show that a model of classes in Object-Z is fully-abstract.
Adopting the definition of Event from Section 2.2.1, a trace can be defined as a possibly
infinite sequence of events as follows.

Trace == seq
∞

Event

Let ClassStruct and the function T H be defined as in Section 4.3.1. The set of traces of
a class can be derived from its total histories as defined below.

T : ClassStruct → P Trace

∀ c : ClassStruct • T (c) = {h : T H(c) • h.events}

A context in Object-Z can be thought of as an incomplete class schema with all occurrences
of a class, used in the declaration of one or more objects, elided. To represent a context, a
notation similar to the notation used for specifying Object-Z classes is adopted but with
occurrences of the elided class represented by the symbol �. For example, the following
is a possible context.

C

a, b : �

INIT

a.INIT

b.INIT

Aop =̂ a.Op

Bop =̂ b.Op

→

a ∧
→

b
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A class can be placed in a context to form a new class by replacing all occurrences of �

with the class. For example, a class A, which includes an operation Op, can be placed in
the above context to yield the class C [A] defined below.

C [A]

a, b : A

INIT

a.INIT

b.INIT

Aop =̂ a.Op

Bop =̂ b.Op

→

a ∧
→

b

If a class A can be placed within a particular context C then any class which is signature
compatible with A can also be placed in C . If a class B is signature compatible with
class A and class A is also signature compatible with class B then A and B are said to
be signature equivalent . Classes which are signature equivalent can be placed in exactly
the same contexts.

Let the relation sig compat be defined as in Section 3.3.2. A definition of signature
equivalence can be given in terms of the structural model of classes as follows.

sig equiv : ClassStruct ↔ ClassStruct

∀ c1, c2 : ClassStruct •
c1 sig equiv c2 ⇔

c1 sig compat c2

c2 sig compat c1

Given a class A whose structural model is denoted by A, let the structural model of the
class C [A], where C is a context, be denoted by C [A]. A model D of classes is fully-
abstract with respect to the trace model if, for all structural models c1 and c2 such that
c1 sig equiv c2, the following holds for all contexts C in which the classes corresponding
to c1 and c2 can be placed.

D(c1) = D(c2) ⇔ T (C [c1]) = T (C [c2])

5.2 Preliminary Models

Intuitively, the total history model of classes presented in Section 4.3.1 is not fully-abstract
with respect to the trace model of Section 5.1.2 as it contains information about the
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internal state of objects which cannot be accessed within any context. For example, two
classes which are identical except for the name of a particular state variable could not be
distinguished by any context but would be given different semantic denotations under the
total history model.

The total history model is, however, compositional with respect to the trace model. The
ways in which a component object can be referred to in a class are limited by the syntax
of Object-Z to a.INIT , pre a.op, a.op and

→

a where a refers to the object and op is an
operation. Since each of these constructs are defined only in terms of the total histories
of the object’s class (as detailed in Sections 2.3.1 and 4.3.1), the set of total histories, and
hence the set of traces, of any class can be derived from the sets of total histories of its
components.

A fully-abstract model of classes, therefore, can be derived from the total history model
by removing exactly that internal state information not required for composition. In
this section, two models of classes derived from the total history model are presented as
motivation for a fully-abstract model of classes presented in Section 5.3. The first model,
presented in Section 5.2.1, is the trace model of Section 5.1.2. It is shown, by means of a
counter-example, that this model is not compositional for classes with nondeterministic
operations. The second model, presented in Section 5.2.2, attempts to overcome this
problem by associating with each trace the operations which are enabled immediately
after an object has undergone the sequence of events of the trace. This model is similar
to the readiness model of Olderog and Hoare[87] and the closely related failures model
of Brookes et al.[22] which has been adopted as the semantics of CSP[61]. It is shown,
however, that this model is also not compositional with respect to the trace model for
Object-Z classes.

5.2.1 Trace model

A model D of classes is defined to be compositional if, for all structural models c1 and
c2 such that c1 sig equiv c2, the following holds for all contexts C in which the classes
corresponding to c1 and c2 can be placed.

D(c1) = D(c2) ⇒ D(C [c1]) = D(C [c2])

A model D of classes is defined to be compositional with respect to the trace model of
classes if, for all structural models c1 and c2 such that c1 sig equiv c2, the following holds
for all contexts C in which the classes corresponding to c1 and c2 can be placed.

D(c1) = D(c2) ⇒ T (C [c1]) = T (C [c2])

Equivalently, the following two predicates must hold (see [67]).
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D(c1) = D(c2) ⇒ D(C [c1]) = D(C [c2])
D(c1) = D(c2) ⇒ T (c1) = T (c2)

The first predicate states that the model D is compositional. The second predicate states
that the model D is at least as distinguishing as the trace model T . Therefore, a model
of classes which is fully-abstract with respect to the trace model must be at least as
distinguishing as the trace model. The trace model itself, therefore, provides the minimum
candidate for a fully-abstract model.

The trace model, however, can be shown not to be compositional when nondeterminism is
allowed within classes. For example, consider the following signature equivalent Object-Z
classes. The operations X and Y in class B are nondeterministic as they have more than
one post-state for a given pre-state.

A

s : {0}

INIT

s = 0

X
∆(s)

s = 0
s ′ = 0

Y
∆(s)

s = 0
s ′ = 0

B

s : {1, 2}

INIT

s = 1

X
∆(s)

s = 1
s ′ ∈ {1, 2}

Y
∆(s)

s ∈ {1, 2}
s ′ ∈ {1, 2}

State transition diagrams of these classes are shown in Figure 5.1.

Y

X,Y

X,Y

s=1 s=2

X,Y

s=0

YA B

Figure 5.1: State transition diagrams of classes A and B .

The trace models of these classes are identical. That is, each class is represented by the
set of all traces made up of events corresponding to the operations X and Y . Let A and
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B denote the structural models of classes A and B respectively. The traces of A and B
can be defined formally as follows3.

T (A) = T (B) = {t : Trace | ran t ⊆ {(‘X ’, ∅), (‘Y ’, ∅)}}

The operation X , however, is always enabled for objects of class A and only sometimes
enabled for objects of class B . Therefore, a context which allows, for example, operation Y
to occur only when operation X is not enabled and allows operation X to occur otherwise
can be used to distinguish classes A and B . This context can be represented as follows.

C

a : �

INIT

a.INIT

OpX =̂ a.X

OpY
a.Y

¬ pre OpX

The traces of the class C [A] consist of events corresponding to the operation OpX only.

T (C [A]) = {t : Trace | ran t ⊆ {(‘OpX ’, ∅)}}

The traces of the class C [B ], however, begin with an event corresponding to the operation
OpX and then continue with events corresponding to either OpX or OpY .

T (C [B]) = {t : Trace | t 6= 〈 〉 ⇒ head t = (‘OpX ’, ∅) ∧
ran t ⊆ {(‘OpX ’, ∅), (‘OpY ’, ∅)}}

Since A and B can be distinguished by the context C , the trace model of classes is not
compositional.

3The events corresponding to the operations X and Y are represented as tuples consisting of the
operation’s name and an assignment of values to the operation’s parameters (as detailed in Section 2.2.1).
Since X and Y have no parameters, the associated assignment of values is denoted by the empty set.
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5.2.2 Readiness model

The model of classes presented in this section represents an object by the sequence of
events it has undergone together with the set of events that it is now ready to perform.
The inclusion of this set of events, called the ready set of the object, allows the model to
distinguish between classes such as A and B of Section 5.2.1.

The model is similar to the readiness model of Olderog and Hoare[87] and the closely
related failures model of Brookes et al.[22]. The failures model, however, associates with
a trace a set of events which can be refused after the trace, rather than the set of events
which are enabled after the trace. It is also less distinguishing then the readiness model
of Olderog and Hoare and the model presented in this section as it associates with each
trace of an object (or process, using the terminology of [22]) not only the set of events
it can next refuse, but all subsets of this set. Therefore, while the failures model of an
object can be derived from its readiness model, the readiness model of an object cannot
necessarily be derived from its failures model.

The failures model and the readiness model of Olderog and Hoare do not include traces
corresponding to infinite sequences of events4 and cannot, therefore, distinguish between
systems whose finite behaviour is the same, but whose liveness properties are different.
The readiness model presented in this section, however, does include infinite traces.

A ready-behaviour is modelled as a (possibly infinite) sequence of events es and a set of
events r representing the events which an object is ready to perform after undergoing the
events in es. If es is infinite then r is the empty set. Adopting the definition of Event
from Section 2.2.1, a ready-behaviour can be specified as follows.

ReadyBehaviour
events : seq

∞
Event

ready : PEvent

events 6∈ seq Event ⇒ ready = ∅

The set of events which are ready to occur after an object of a class with structural model
c has undergone a history h is given by the function next defined below.

4The failures model has been extended to include a component of infinite traces by Roscoe and
Barrett[95].
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next : ClassStruct × History 7→ P Event

dom next = {(c, h) : ClassStruct × History | h ∈ T Hsafe(c)}
∀(c, h) : dom next •

h.events 6∈ seq Event ⇒ next(c, h) = ∅

h.events ∈ seq Event ⇒
next(c, h) = {e : Event | ∃ h ′ : T Hsafe(c) •

front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉}

The set of ready-behaviours representing a class can be derived from the total histories
of the class using the function R defined below.

R : ClassStruct → PReadyBehaviour

∀ c : ClassStruct •
R(c) = {r : ReadyBehaviour | ∃ h : T H(c) •

r .events = h.events ∧
r .ready = next(c, h)}

The ready-behaviours of the class A of Section 5.2.1 can be defined formally as follows.
(A denotes the structural model of class A.)

R(A) = {r : ReadyBehaviour | ran r .events ⊆ {(‘X ’, ∅), (‘Y ’, ∅)} ∧
r .events ∈ seq Event ⇒

r .ready = {(‘X ’, ∅), (‘Y ’, ∅)}}

This is different to the ready-behaviours of class B of Section 5.2.1 which can be defined
formally as follows. (B denotes the structural model of class B .)

R(B) = {r : ReadyBehaviour | ran r .events ⊆ {(‘X ’, ∅), (‘Y ’, ∅)} ∧
r .events ∈ seq Event ⇒

r .ready ∈ {{(‘X ’, ∅), (‘Y ’, ∅)}, {(‘Y ’, ∅)}} ∧
r .events = 〈 〉 ⇒ r .ready = {(‘X ’, ∅), (‘Y ’, ∅)}}

Hence, the readiness model can distinguish between these classes as desired. The readi-
ness model, however, can be shown not to be compositional. For example, consider the
following signature equivalent Object-Z classes.
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D

s : {0, 1, 2}

INIT

s = 0

X
∆(s)

s ∈ {0, 2}
s = 0 ⇒ s ′ ∈ {0, 1}
s = 2 ⇒ s ′ = 2

Y
∆(s)

s ∈ {0, 1, 2}
s = 0 ⇒ s ′ = {0, 1}
s ∈ {1, 2} ⇒ s ′ = 2

E

s : {3, 4}

INIT

s = 3

X
∆(s)

s = 3
s ′ = {3, 4}

Y
∆(s)

s ∈ {3, 4}
s ′ ∈ {3, 4}

State transition diagrams of these classes are shown in Figure 5.2.

X,Y

s=0

X,Y

X,Y Y

s=1 s=2

Y

Y

X,Y

X,Y

s=3 s=4

D E

Figure 5.2: State transition diagrams of classes D and E .

The readiness models of these classes are identical. That is, initially an object of either
class is ready to perform an X and a Y operation and, after performing any sequence of
events, is ready to perform either an X and a Y operation or just a Y operation. Let D

and E denote the structural models of classes D and E respectively. The ready-behaviours
of D and E can be defined formally as follows.

R(D) = R(E) = {r : ReadyBehaviour |
ran r .events ⊆ {(‘X ’, ∅), (‘Y ’, ∅)} ∧
r .events ∈ seq Event ⇒

r .ready ∈ {{(‘X ’, ∅), (‘Y ’, ∅)}, {(‘Y ’, ∅)}} ∧
r .events = 〈 〉 ⇒ r .ready = {(‘X ’, ∅), (‘Y ’, ∅)}}

The operation X , however, can only be refused at most once for an object of class D
but can be refused many times for an object of class E . Therefore, the context C of

97



5.3. FULLY-ABSTRACT MODEL

Section 5.2.1, which allows operation Y to occur only when operation X is not enabled
and allows operation X to occur otherwise, can be used to distinguish classes D and E .

The traces of C [D ] begin with an event corresponding to an occurrence of the operation
OpX and may have at most one subsequent event corresponding to an occurrence of the
operation OpY .

T (C [D]) = {t : Trace | t 6= 〈 〉 ⇒ head t = (‘OpX ’, ∅) ∧
ran t ⊆ {(‘OpX ’, ∅), (‘OpY ’, ∅)} ∧
#(t B {(‘OpY ’, ∅)}) 6 1}

The traces of C [E ], however, begin with an event corresponding to the occurrence of the
operation OpX and may have (possibly infinitely) many subsequent events corresponding
to occurrences of the operation OpY .

T (C [E]) = {t : Trace | t 6= 〈 〉 ⇒ head t = (‘OpX ’, ∅) ∧
ran t ⊆ {(‘OpX ’, ∅), (‘OpY ’, ∅)}}

Since D and E can be distinguished by the context C , the readiness model of classes is
not compositional with respect to the trace model.

5.3 Fully-Abstract Model

A fully-abstract model of classes describes a class in terms of the external behaviour
of its objects. It therefore captures the meaning of a class independent of its syntactic
representation. In this section, a model of classes in Object-Z is presented which is fully-
abstract with respect to the trace model of Section 5.1.2.

The model, called the complete-readiness model, represents an object by the sequence
of events it has undergone together with the sequence of ready sets at each stage of its
evolution. The inclusion of the past ready sets, as well as the current ready set, of the
object allows the model to distinguish between classes such as D and E of Section 5.2.2.

The model is presented in Section 5.3.1. It is proved, in Section 5.3.2, to be compositional
with respect to the trace model and, in Section 5.3.3, to be fully-abstract with respect to
the trace model.

5.3.1 Complete-readiness model

The complete-readiness model represents a class by a set of behaviours. A behaviour
represents the sequence of events an object has undergone together with the sequence of
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ready sets at each stage of its evolution. It can be modelled as a sequence of events es
and a non-empty sequence of ready sets rs such that the number of ready sets in rs is
one more than the number of events in es unless rs is infinite in which case es is also
infinite. Adopting the definition of Event from Section 2.2.1, a behaviour can be specified
as follows.

Behaviour
events : seq

∞
Event

readys : seq
∞

PEvent

readys 6= 〈 〉
∀ i : N1 • i ∈ dom events ⇔ i + 1 ∈ dom readys
∀ i : dom events • events(i) ∈ readys(i)

Let prehist be defined as in Section 2.2.2 and the function next as in Section 5.2.2. The
behaviour of an object of a class with structural model c can be derived from its history
using the function behav(c) defined below.

behav : ClassStruct → (History 7→ Behaviour)

∀ c : ClassStruct •
dom behav(c) = T Hsafe(c)
∀ h : dom behav(c); b : Behaviour •

behav(c)(h) = b ⇔
b.events = h.events
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(c, ph)

The set of behaviours representing a class can be derived from the total histories of the
class using the function CR defined below.

CR : ClassStruct → P Behaviour

∀ c : ClassStruct • CR(c) = behav(c)(| T H(c) |)

The behaviours of the class D of Section 5.2.2 can be defined formally as follows. (D
denotes the structural model of class D .)

CR(D) = {b : Behaviour | ran b.events ⊆ {(‘X ’, ∅), (‘Y ’, ∅)} ∧
ran b.readys ⊆ {{(‘X ’, ∅), (‘Y ’, ∅)}, {(‘Y ’, ∅)}} ∧
b.readys(1) = {(‘X ’, ∅), (‘Y ’, ∅)} ∧
#(b.readys B {(‘Y ’, ∅)}) 6 1}

This is different to the behaviours of class E of Section 5.2.2 which can be defined formally
as follows. (E denotes the structural model of class E .)
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CR(E) = {b : Behaviour | ran b.events ⊆ {(‘X ’, ∅), (‘Y ’, ∅)} ∧
ran b.readys ⊆ {{(‘X ’, ∅), (‘Y ’, ∅)}, {(‘Y ’, ∅)}} ∧
b.readys(1) = {(‘X ’, ∅), (‘Y ’, ∅)}}

That is, an object of class D can refuse to perform an X operation only once whereas an
object of class E can refuse to perform an X operation (possibly infinitely) many times.
Hence, the complete-readiness model can distinguish these classes as desired.

The proof of full abstraction of the complete-readiness model in the following sections
relies on the fact that the precondition of an operation op in Object-Z can be tested at
any time, i.e. by a statement of the form pre op. This ability, inherited from Z, allows the
specification of a much wider range of systems than would otherwise be possible.

For example, Object-Z allows an object to be placed in an environment which operates it
according to some priority. The context C of Section 5.2.1 which allows operation Y to
occur only when operation X is not enabled and allows operation X to occur otherwise
is an example of such an environment. Since priority constructs are included in some
programming languages, such as occam[66], it is desirable to be able to capture the notion
of priority in a specification language. Indeed, alternatives to the failures semantics of
CSP have been proposed for this purpose (see e.g. [48]).

The ability to test the precondition of an operation also allows the specification of sys-
tems in which an object can perform an operation at any time but must perform it in
synchronisation with another object performing an operation whenever that other object
can also perform its operation. This notion of composition has been suggested as an al-
ternative to the standard parallel composition operator of process algebras by Pnueli[91].
Pnueli shows that the failures model is not compositional when this type of composition
is allowed and suggests a model similar to the complete-readiness model as an alternative.

5.3.2 Proof of compositionality

The complete-readiness model of classes is compositional with respect to the trace model
if, for all structural models c1 and c2 such that c1 sig equiv c2, the following holds for all
contexts C in which the classes corresponding to c1 and c2 can be placed.

CR(c1) = CR(c2) ⇒ T (C [c1]) = T (C [c2])

In this section, a proof of compositionality is given for any context C which includes a
single object a of its elided class as a state variable. The proof could be generalised to also
include contexts with multiple objects of the elided class or with aggregates of objects of
the elided class. These generalisations are not, however, discussed in this thesis.

The proof relies on the fact that the traces of C [A], for any class A, can be derived from
the set of behaviours of A. The ways in which the object a can be referred to within
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C [A] are limited by the syntax of Object-Z to a.INIT , pre a.op, a.op and
→

a where op is
an operation of class A. The proof, therefore, requires the meanings of these notations to
be defined in terms of the complete-readiness model in such a way that the set of traces
of C [A] can be derived.

Proof of compositionality for classes without history invariants

In this section, the complete-readiness model is shown to be compositional with respect
to the trace model for Object-Z classes without an explicit history invariant, i.e. with an
implicit history invariant true. The proof is extended in the following section to include
classes with explicit history invariants.

Schema definitions of the notations a.INIT and a.op are given in Section 2.3.1. Based on
these definitions, the meanings of the notations a.INIT , pre a.op and a.op in terms of the
total history model are as follows.

• An object a of a class with structural model c satisfies the predicate of a.INIT if and
only if its history is in the set h init(c) defined below.

h init(c) = {h : T Hsafe(c) | h.events = 〈 〉}

• An object a of a class with structural model c satisfies the predicate pre a.op, for a
particular assignment of values to the parameters of the operation op, if and only
if its history is in the set h pre(c, e), where e is the event corresponding to the
occurrence of op given the parameter values.

h pre(c, e) = {h : T Hsafe(c) | h.events ∈ seq Event ∧
∃ h ′ : T Hsafe(c) •

front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉}

• The objects a and a ′ of a class with structural model c satisfy the pre-state and
associated post-state of an operation a.op, for a particular assignment of values to
the parameters of the operation op, if and only if the tuple consisting of the histories
of a and a ′ is in the set h trans(c, e), where e is the event corresponding to the
occurrence of op given the parameter values.

h trans(c, e) = {(h, h ′) : T Hsafe(c) × T Hsafe(c) | h.events ∈ seq Event ∧
front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉}

The meanings of the notations a.INIT , pre a.op and a.op can also be defined in terms
of the complete-readiness model of classes. Adopting the complete-readiness model, an
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object is instantiated from the safe behaviours of its class, i.e. the set of all behaviours
corresponding to a history in the set of safe total histories of the class.

CRsafe : ClassStruct → PBehaviour

∀ c : ClassStruct • CRsafe(c) = behav(c)(| T Hsafe(c) |)

The notation a.INIT , where a is an object, can be represented semantically by the following
schema.

a.INIT

a.events = 〈 〉

Similarly the notation a.op, where a is an object and op an operation in a’s class with
an input parameter in? : In and an output parameter out ! : Out , can be represented
semantically by the following schema.

a.op
∆(a)
in? : In
out ! : Out

a.events ∈ seq Event
front a ′.readys = a.readys

a ′.events = a.events a 〈(‘op’, {‘in?’ 7→ in?, ‘out !’ 7→ out !})〉

Therefore, the meanings of the notations a.INIT , pre a.op and a.op in terms of the
complete-readiness model are as follows.

• An object a of a class with structural model c satisfies the predicate of a.INIT if and
only if its behaviour is in the set b init(c) defined below.

b init(c) = {b : CRsafe(c) | b.events = 〈 〉}

• An object a of a class with structural model c satisfies the predicate pre a.op, for a
particular assignment of values to the parameters of the operation op, if and only
if its behaviour is in the set b pre(c, e), where e is the event corresponding to the
occurrence of op given the parameter values.

b pre(c, e) = {b : CRsafe(c) | b.events ∈ seq Event ∧
∃ b ′ : CRsafe(c) •

front b ′.readys = b.readys ∧

b ′.events = b.events a 〈e〉}
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• The objects a and a ′ of a class with structural model c satisfy the pre-state and
associated post-state of an operation a.op, for a particular assignment of values
to the parameters of the operation op, if and only if the tuple consisting of the
behaviours of a and a ′ is in the set b trans(c, e), where e is the event corresponding
to the occurrence of op given the parameter values.

b trans(c, e) = {(b, b ′) : CRsafe(c) × CRsafe(c) | b.events ∈ seq Event ∧
front b ′.readys = b.readys ∧

b ′.events = b.events a 〈e〉}

Given a class A with structural model A and a context C which includes a single object a
of its elided class as a state variable, consider the following two methods for interpreting
constructs in C [A].

Method 1 All component objects of C [A], including a, are instantiated from the set
of safe total histories of their classes. All constructs involving these objects are
interpreted using the meanings of the constructs in terms of the total history model.

Method 2 The object a is instantiated from the set of safe behaviours of its class. All
other component objects of C [A] are instantiated from the set of safe total histories
of their classes. All constructs involving a are interpreted using the meanings of the
constructs in terms of the complete-readiness model. All constructs involving other
component objects are interpreted using the meanings of the constructs in terms of
the total history model.

Notice that the set of total histories of C [A] derived using Method 1 will be T H(C [A])
and, hence, the set of traces of C [A] derived using Method 1 will be T (C [A]). To show that
the complete-readiness model is compositional with respect to the trace model, therefore,
it is sufficient to show that the set of traces of C [A] derived using Method 2 is identical
to the set of traces of C [A] derived using Method 1. In order to do this, consider the
following preliminary definitions which allow a history of C [A] derived using Method 1
to be related to a history of C [A] derived using Method 2.

Given a state s of C [c], where c is the structural model of a class, the state which is
identical to s but with the history of a replaced with the behaviour of a can be derived
using the function s map(c) defined below.

s map : ClassStruct → (State 7→ State)

∀ c : ClassStruct •
dom s map(c) = {s : State | ‘a’ ∈ dom s ∧ s(‘a’) ∈ T Hsafe(c)}
∀ s : dom s map(c) •

s map(c)(s) = s ⊕ {‘a’ 7→ behav(c)(s(‘a’))}
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Given a history h of C [c], the history which is identical to h but with the history of a in
each state replaced with the behaviour of a can be derived using the function h map(c)
defined below.

h map : ClassStruct → (History 7→ History)

∀ c : ClassStruct •
dom h map(c) = {h : History | ran h.states ⊆ dom s map(c)}
∀ h : dom h map(c) •

h map(c)(h).events = h.events
∀ i : dom h.states • h map(c)(h).states(i) = s map(c)(h.states(i))

To prove that the complete-readiness model is compositional with respect to the trace
model, it is sufficient to prove that for every history h1 of C [A] derived using Method 1,
the history h map(A)(h1) is a history of C [A] derived using Method 2 and, for every
history h2 ofC [A] derived using Method 2, there exists a history in h map(A)∼(| {h2} |)
which is a history of C [A] derived using Method 1. Since h map(A) preserves the trace,
i.e the sequence of events, of a history, it follows that the set of traces derived using
Method 2 are the same as those derived using Method 1.

A proof of compositionality for classes without explicit history invariants is given below.

Theorem 5.1

Let A be a class and A denote its structural model. Let C be a context which includes a
single object a of its elided class as a state variable such that A can be placed in C . Let
H1 be the set of histories of C [A] derived using Method 1, i.e. H1 = T Hsafe(C [A]), and
H2 be the set of histories of C [A] derived using Method 2.

The following predicates are true.

(a) ∀ h1 : H1 • h map(A)(h1) ∈ H2

(b) ∀ h2 : H2 • ∃ h1 : H1 • h1 ∈ h map(A)∼(| {h2} |)

Proof

(a) The proof is by induction over the length of h1.events.

(i) If #h1.events = 0 then h1.states(1) satisfies the predicate of the initial state schema of
C [A] using Method 1. Hence, s map(A)(h1.states(1)) satisfies the predicate of the initial
state schema of C [A] using Method 2 by Lemma C.35. Hence, there exists a history
h2 in H2 such that #h2.events = 0 and h2.states(1) = s map(A)(h1.states(1)). That is,
h map(A)(h1) ∈ H2.

5The lemmas required for this proof and that of Theorem 5.2 in the next section are included in
Appendix C.
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(ii) Assume h map(A)(h1) ∈ H2 for all h1 such that #h1.events = n for some n > 0.

If #h1.events = n + 1 then the state transition (h1.states(n + 1), h1.states(n + 2)) is
a transition of the event h1.events(n + 1) using Method 1. Hence, the state transition
(s map(A)(h1.states(n+1)), s map(A)(h1.states(n+2))) is a transition of h1.events(n+1)
using Method 2 by Lemma C.6(a).

Since all pre-histories of h1 are in H1, there exists a ph1 in H1 such that ph1 ∈ prehist(h1)
and #ph1.events = n. Therefore, there exists a ph2 in H2 such that ph2 = h map(A)(ph1)
by the above assumption. Therefore, there exists a h2 (which extends ph2) in H2 such that
h2 = h map(A)(h1). Hence, h map(A)(h1) ∈ H2 for all h1 such that #h1.events = n + 1.

(b) The proof is by induction over the length of h2.events.

(i) If #h2.events = 0 then h2.states(1) satisfies the predicate of the initial state schema
of C [A] using Method 2. Hence, all states in s map(A)∼(| {h2.states(1)} |) satisfy the
predicate of the initial state schema of C [A] using Method 1 by Lemma C.3. Also, since
CRsafe(A) = behav(A)(| T Hsafe |) and the behaviour of a in h2.states(1) is in CRsafe(A),
s map(A)∼(| {h2.states(1)} |) is not the empty set. Therefore, there exists a h1 in H1 such
that #h1.events = 0 and h1.states(1) is in s map(A)∼(| {h2.states(1)} |). That is, there is
a h1 in H1 such that h1 ∈ h map(A)∼(| {h2} |).

(ii) Assume there is a h1 in H1 such that h1 ∈ h map(A)∼(| {h2} |) for all h2 such that
#h2.events = n for some n > 0.

If #h2.events = n + 1 then the state transition (h2.states(n + 1), h2.states(n + 2)) is
a transition of the event h2.events(n + 1) using Method 2. Hence, for a given s ′ in
s map(A)∼(| {h2.states(n + 2)} |), there exists an s in s map(A)∼(| {h2.states(n + 1)} |)
such that (s, s ′) is a transition of h2.events(n+1) using Method 1 by Lemma C.6(b). Also,
since the behaviour of a in h2.states(n+2) is in CRsafe(A), s map(A)∼(| {h2.states(n+2)} |)
is not the empty set.

Since all pre-histories of h2 are in H2, there exists a ph2 in H2 such that ph2 ∈ prehist(h2)
and #ph2.events = n. Therefore, by the assumption, there exists a ph1 in H1 such that
ph1 ∈ h map(A)∼(| {ph2} |). Hence, by Lemma C.7, there exists a ph ′

1 in H1 such that
ph ′

1.states(n + 1) = s and h map(A)(ph ′

1) = h map(A)(ph1). Therefore, there exists a h1

(which extends ph ′

1) in H1 such that h1 ∈ h map(A)∼(| {h2} |). Therefore, there is a h1 in
H1 such that h1 ∈ h map(A)∼(| {h2} |) for all h2 such that #h2.events = n + 1. �

Proof of compositionality for classes with history invariants

In this section, the proof of the previous section is extended to include classes with explicit
history invariants. Based on the definition presented in Section 4.3.1, the meaning of the
notation

→

a in terms of the total history model is as follows.
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• A history h of C [c], where c is the structural model of a class and C is a context
including an object a of its elided class as a state variable, satisfies the history
invariant

→

a if and only if the sequence of histories of a in h is in the set h seq(c)
defined below.

h seq(c) = {s : seq
∞

History | s ∈ dom closure ∧ closure(s) ∈ T H(c)}

To define the meaning of
→

a in terms of the complete-readiness model, the notion of
the closure of a sequence of behaviours is required. The function b closure takes as an
argument a sequence of behaviours s, where each behaviour in the sequence is a pre-
behaviour of each behaviour later in the sequence (i.e. its sequences of ready sets and
events are are prefixes of those of behaviours later in the sequence). It returns the smallest
behaviour b satisfying the condition that any behaviour in s is a pre-behaviour of b. The
existence and uniqueness of the closure of a given sequence s is assumed without formal
proof.

b closure : seq
∞

Behaviour 7→ Behaviour

dom b closure = {s : seq
∞

Behaviour | ∀ i , j : dom s • i 6 j ⇒
s(i).events ⊆ s(j ).events ∧
s(i).readys ⊆ s(j ).readys}

∀ s : dom b closure; b : Behaviour •
b closure(s) = b ⇔

∀ i : dom s •
s(i).events ⊆ b.events
s(i).readys ⊆ b.readys

∀ j : dom b • ∃ i : dom s • #s(i) > j

Using this definition, the meaning of the notation
→

a in terms of the complete-readiness
model is as follows.

• A history h of C [c], where c is the structural model of a class and C is a context
including an object a of its elided class as a state variable, satisfies the history
invariant

→

a if and only if the sequence of behaviours of a in h is in the set b seq(c)
defined below.

b seq(c) = {s : seq
∞

Behaviour | s ∈ dom b closure ∧ b closure(s) ∈ CR(c)}

To prove that the complete-readiness model of classes is compositional with respect to the
trace model, it is necessary to extend the proof of the previous section to show that for
every history h1 of C [A] which satisfies the history invariant of C [A] using Method 1, the
history h map(A)(h1) satisfies the history invariant using Method 2 and for every history
h2 of C [A] which satisfies the history invariant of C [A] using Method 2, there exists a
history in h map(A)∼(| {h2} |) which satisfies the history invariant using Method 1.
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A proof of compositionality for classes with explicit history invariants is given below.

Theorem 5.2

Let A be a class and A denote its structural model. Let C be a context which includes a
single object a of its elided class as a state variable such that A can be placed in C . Let
H ′

1 denote the set of histories of C [A] derived using Method 1, i.e. H ′

1 = T H(C [A]), and
H ′

2 denote the set of histories of C [A] derived using Method 2.

The following predicates are true.

(a) ∀ h1 : H ′

1 • h map(A)(h1) ∈ H ′

2

(b) ∀ h2 : H ′

2 • ∃ h1 : H ′

1 • h1 ∈ h map(A)∼(| {h2} |)

Proof

Let H1 and H2 denote the sets of safe histories of C [A] derived using Methods 1 and 2
respectively.

(a) If h1 is in H ′

1 then h1 ∈ H1 and satisfies the the history invariant of C [A] using
Method 1. Therefore, h map(A)(h1) is in H2 by Theorem 5.1(a) and satisfies the the
history invariant of C [A] using Method 2 by Lemma C.10(a). Hence, h map(A)(h1) ∈ H ′

2.

(b) If h2 is in H ′

2 then h2 ∈ H2 and satisfies the history invariant of C [A] using Method 2.
Therefore, there exists a history h1 in h map(A)∼(| {h2} |) which is in H1 and satisfies the
history invariant of C [A] using Method 1 by Lemma C.10(b). Therefore, there exists a
h1 in H ′

1 such that h1 ∈ h map(A)∼(| {h2} |). �

5.3.3 Proof of full abstraction

Given that the complete-readiness model is compositional with respect to the trace model,
it is also fully-abstract with respect to the trace model if, for all structural models c1 and
c2 such that c1 sig equiv c2, the following holds for all contexts C in which the classes
corresponding to c1 and c2 can be placed.

T (C [c1]) = T (C [c2]) ⇒ CR(c1) = CR(c2)

This property states that the complete-readiness model only distinguishes classes when
that distinction is necessary for compositionality. Its proof relies on the fact that given
any two signature equivalent classes A and B with structural models A and B respectively,
if CR(A) 6= CR(B) then a context C can be constructed such that the traces of C [A] are
different to those of C [B ].

To motivate the following proof, consider again the classes D and E of Section 5.2.2. An
object of class E can undergo particular behaviours which an object of class D cannot
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undergo. One such behaviour is the behaviour b whose sequences of events and ready sets
are as follows.

b.events = 〈(‘Y ’, ∅), (‘Y ’, ∅)〉
b.readys = 〈{(‘X ’, ∅), (‘Y ’, ∅)}, {(‘Y ’, ∅)}, {(‘Y ’, ∅)}〉

Consider constructing a context C which has an operation corresponding to each event
in b.events and each ready set in b.readys as follows.

C

a : �

INIT

a.INIT

OP1 =̂ a.Y

OP2
pre a.X ∧ pre a.Y

OP3
pre a.Y ∧ ¬ pre a.X

The operation OP1 corresponds to the occurrence of the events in b.events. The operation
OP2 is enabled when the object a (assumed to be of class D or E ) is ready to perform
exactly those events in the first ready set of b.readys. Similarly, the operation OP3 is
enabled when a is ready to perform exactly those events in the second and third ready
sets of b.readys.

The trace 〈(‘OP2’, ∅), (‘OP1’, ∅), (‘OP3’, ∅), (‘OP1’, ∅), (‘OP3’, ∅)〉 is a possible trace
of C [E ] since an object of class E can undergo the behaviour b. The trace is not, however,
a possible trace of C [D ]. The context C can, therefore, be used to distinguish classes D
and E .

This method can be generalised for any signature equivalent classes with different complete-
readiness models as shown in Theorem 5.3 below.

Theorem 5.3

Given two signature equivalent classes A and B with structural models A and B respec-
tively, if CR(A) 6= CR(B) then there exists a context C such that T (C [A]) 6= T (C [B]).
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Proof

1) Let C have a single state variable a which is an object of its elided class and which
is initialised in its initial state schema.

2) Without loss of generality, assume there is a behaviour b in CR(A) which is not in
CR(B).

3) For each event e in the range of b.events, let C have an operation which corresponds
to a undergoing that event.

4) For each ready set r in the range of b.readys, let C have an operation which has a
true postcondition and a precondition that states that each event in r is enabled
and each event of A not in r is not enabled.

Let t be a trace such that

• if b.events is finite then t is finite and #t = #b.readys + #b.events, otherwise t is
infinite, and

• for all i : dom t , if i is odd then t(i) is the event corresponding to the operation
associated with b.readys((i + 1)/2) (as described in step 4 above) and if i is even
then t(i) is the event corresponding to the operation associated with b.events(i/2)
(as described in step 3 above).

The trace t will be in T (C [A]) but will not be in T (C [B]). �
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Chapter 6

Behavioural Compatibility

“A stander-by may sometimes, perhaps, see more of the game than
he that plays it.”

— Jonathan Swift
A Tritical Essay Upon the Faculties of the Mind , 1707.

The final step in the formal development of a software system is the refinement of its
specification towards an executable implementation. To take advantage of the modular
structure of an object-oriented specification, it is desirable to refine the specification by
separately refining the classes of each of its component objects. This will result in a valid
refinement of the overall specification if each class which refines another class is also a
subtype of the other class.

Subtyping is related to object substitutability. A class is a subtype of another class if
objects of that class can be substituted for objects of the other class in any system so that
the system, after the substitution has occurred, can only behave in ways that it could
have behaved before the substitution. The external behaviour of a subtype of a given
class is a specialisation of the external behaviour of that class. Subtyping is, therefore,
also referred to as behavioural compatibility (e.g. see [117]).

The definition of behavioural compatibility for a particular object-oriented language de-
pends on the method of interaction of an object and its environment. In particular, it
depends on whether an object is regarded as an active entity which undergoes operations
autonomously or a passive entity which undergoes operations only when directed to do
so by its environment. In the former situation, the environment can be thought of as an
observer and a notion of observational compatibility is required. In the latter situation,
the environment can be thought of as an operator and a notion of operational compatibility
is required.

Object-Z allows the specification of both active and passive objects. The notion of be-
havioural compatibility must, therefore, be strong enough to allow for both situations.
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Weaker notions of behavioural compatibility are relevant, however, when the environments
in which an object can be placed are limited to reflect a particular programming paradigm.
Section 6.1 reviews existing definitions of behavioural compatibility in object-oriented lan-
guages and shows that such definitions cannot always be used to find all classes which
are behaviourally compatible with a given class. An alternative approach to behavioural
compatibility is outlined and a definition of behavioural compatibility in Object-Z, based
on this approach, is presented. Section 6.2 examines notions of observational and opera-
tional compatibility in Object-Z and Section 6.3 looks at rules for maintaining behavioural
compatibility through inheritance.

6.1 Introduction to Behavioural Compatibility

Behavioural compatibility is most often referred to in the literature as subtyping. The
use of subtyping as a design methodology for modelling conceptual hierarchies in object-
oriented programming languages is discussed by Halbert and O’Brien in [54]. Subtyping
can also form the basis of a theory of class refinement in object-oriented specification
languages.

Traditionally, subtyping has been strongly linked with inheritance in many object-oriented
programming languages. In more recent languages and theories of object orientation,
however, subtyping and inheritance have been regarded as orthogonal issues (e.g. see
[7, 30, 105]). The motivation for this point of view is that inheritance is concerned with
the sharing of internal structure between classes whereas subtyping is concerned with the
specialisation of external behaviour.

Section 6.1.1 examines existing definitions of behavioural compatibility and shows that
such definitions are, in some cases, stronger than necessary. Section 6.1.2 outlines an
alternative approach to behavioural compatibility and presents a definition of behavioural
compatibility in Object-Z based on this approach.

6.1.1 Existing approaches to behavioural compatibility

Many early object-oriented programming languages associated subtyping, or behavioural
compatibility, with inheritance under the assumption that the sharing of internal structure
would lead to the specialisation of external behaviour. However, this assumption is, in
general, too restrictive. It is possible for classes with identical behaviour to have unrelated
internal structure. For example, a class which behaves like a queue may be modelled
internally as an array or, alternatively, as a linked list. Furthermore, if redefinition of
operations is allowed through inheritance then a class may behave very differently to
the classes it inherits. Definitions of behavioural compatibility which are independent of
inheritance have, therefore, been developed.
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Most of these definitions of behavioural compatibility are based on relationships between
the individual operations of the related classes. According to these definitions, a class B
is behaviourally compatible with a class A if it has at least all of the operations of A and
there exists a function φ between the states of A and the states of B such that for each
operation op in A the following hold1.

• If a state s is a pre-state of op in A then φ(s) is a pre-state of op in B .

• For a given pre-state s of op in A, if a state t ′ is a post-state of op in B when applied
in state φ(s) then all s ′ such that φ(s ′) = t ′ are post-states of op in A when applied
in state s.

The above relation on operations, referred to as a contravariance relation, ensures that
an object of class B can perform a particular operation of class A whenever an object of
class A could have performed it. Furthermore, the result of performing the operation at
any such instant is a possible result of an object of class A performing the same operation
at that instant. The approach is, therefore, applicable for languages where objects are
regarded as passive entities which are operated by their environment.

The contravariance approach to behavioural compatibility is widely accepted. Formal
definitions of subtyping by America[8] and Utting and Robinson[114] are based on this
approach, as is the work on the refinement of objects in the object-oriented extension
to Z proposed by Whysall and McDermid[119]. Inheritance in the object-oriented pro-
gramming language Eiffel[80] is also restricted to maintain behavioural compatibility by
adopting a contravariant redefintion rule on the pre-conditions and post-conditions of
operations.

The approach, being based on a relationship between individual operations, is not, how-
ever, complete. That is, not all classes which are behaviourally compatible with a given
class can be found using such definitions. For example, consider the following Object-Z
classes.

1The definition assumes the pre-state of an operation includes its input parameters and the post-state
of an operation includes its output parameters.
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F

s : {0, 1, 2}

INIT

s = 0

X
∆(s)

s ∈ {0, 2}
s = 0 ⇒ s ′ = 1
s = 2 ⇒ s ′ = 0

Y
∆(s)

s ∈ {1, 2}
s = 1 ⇒ s ′ = 0
s = 2 ⇒ s ′ = 1

G

s : {0, 1}

INIT

s = 0

X
∆(s)

s = 0
s ′ = 1

Y
∆(s)

s = 1
s ′ = 0

State transition diagrams of these classes are shown in Figure 6.1.

s=0
Y

s=1 s=0 s=1

X X

Y

X Y

F G
s=2

Figure 6.1: State transition diagrams of classes F and G .

An object of class G can perform a particular operation in F whenever an object of class
F could have performed it. Furthermore, the result of performing the operation at any
such instant is identical to an object of class F performing the same operation at that
instant. Therefore, the classes satisfy the notion of behavioural compatibility captured
by the contravariance approach. The operations in F are not, however, related by the
contravariance relation to the operations in G .

The discrepancy arises because the state s = 2, which is a pre-state of both operations in
F , is not reachable from the initial state of F . That is, the state s = 2 never occurs in any
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history of the class F and, therefore, transitions beginning in this state do not need to be
considered when determining whether another class is behaviourally compatible with F .

Although classes such as F which have unreachable states would not arise intentionally,
they may arise unintentionally through the use of inheritance. For example, the postcon-
dition of an operation could be strengthened during inheritance removing access to a state
which previously only occurred as a post-state of that operation. A complete definition of
behavioural compatibility, which identifies all classes which are behaviourally compatible
with a given class, needs to account for the possibility of unreachable states and cannot,
therefore, be based on an approach which examines the operations of a class individually.

6.1.2 An alternative approach to behavioural compatibility

This section presents an alternative approach to behavioural compatibility which can
be shown to be complete. That is, the approach can be used to find all classes which
are behaviourally compatible with a given class. The approach, based on relating the
external behaviours of classes (as described by a fully-abstract semantics) rather than
their individual operations, is used to define behavioural compatibility in Object-Z.

A class B is behaviourally compatible with a class A if objects of B can be substituted
for objects of A in any system, or environment in which A can be placed. Therefore, for
a class B to be behaviourally compatible with a class A it must be, at least, signature
compatible with A. Behavioural compatibility can be defined, therefore, by considering
the following two cases.

(1) The class B is signature equivalent with the class A, i.e. an object of B is capable of
undergoing exactly the same events as an object of A and, therefore, B can be placed in
exactly the same environments as A.

In this case, B will be behaviourally compatible with A if its external behaviours are a
subset of the external behaviours of A. If the external behaviours of B are a subset of
the external behaviours of A then objects of B will only behave in ways that objects of
A could have behaved in the same environment.

If the external behaviours of B are not a subset of the external behaviours of A then
there will be a behaviour that an object of B is capable of undergoing which an object
of A cannot undergo. Hence, the definition of behavioural compatibility, in this case, is
complete.

(2) The class B is not signature equivalent with the class A, i.e. since B is signature
compatible with A, an object of B is capable of undergoing any event which an object of
A could undergo and, therefore, can be placed in any environment in which an object of
A can be placed.

In this case, the information that can be derived about B in any environment in which
an object of A could be placed is identical to the information that could be derived about
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a class B ′ which is the same as B but with the operations not common to A removed. B
is, therefore, behaviourally compatible with A if B ′ is behaviourally compatible with A.
Since B ′ will be signature equivalent with A, behavioural compatibility can be determined
as in case (1).

This approach can be used to define behavioural compatibility in Object-Z. As a prelim-
inary, the following function restrict which restricts a class by removing those operations
which are not common to another class with which the original class is signature compati-
ble is defined. (The function op is defined as in Section 2.2.1, sig compat as in Section 3.3.2
and ClassStruct as in Section 4.3.1.)

restrict : ClassStruct × ClassStruct 7→ ClassStruct

dom restrict = {(c2, c1) : ClassStruct × ClassStruct | c2 sig compat c1}
∀(c2, c1) : dom restrict ; c3 : ClassStruct •

restrict(c2, c1) = c3 ⇔
c3.attr = c2.attr
c3.ops = c1.ops
c3.op params = c1.ops C c2.op params
c3.states = c2.states
c3.initial = c2.initial
c3.trans = {e : dom c2.trans | op(e) ∈ c1.ops} C c2.trans
c3.hist inv = c2.hist inv

Notice that if c2 sig equiv c1, where c1 and c2 are the structural models of classes, then
restrict(c2, c1) = c2.

The external behaviours of a class in Object-Z are given by its complete-readiness model.
A class is behaviourally compatible with a given class, therefore, if it is signature com-
patible with the given class and the behaviours of the class restricted to the operations
in the given class is a subset of the behaviours of the given class. This can be formalised
using the complete-readiness model CR of Section 5.3.1 as follows.

behav compat : ClassStruct ↔ ClassStruct

∀ c1, c2 : ClassStruct •
c2 behav compat c1 ⇔ c2 sig compat c1 ∧ CR(restrict(c2, c1)) ⊆ CR(c1)

Notice that a class which has no possible behaviours is behaviourally compatible with any
class with which it is signature compatible. Such a class would have no possible initial
states and would, hence, be unimplementable.

The definition of behav compat is complete. Given two signature compatible classes with
structural models c1 and c2, if CR(restrict(c2, c1)) is not a subset of CR(c1) then there ex-
ists a behaviour in CR(restrict(c2, c1)) which is not in CR(c1) and, therefore, a context C
which can distinguish between objects of the classes can be constructed as in Theorem 5.3
of Section 5.3.3. The simplicity of the definition, i.e. the fact that it is simply a subset
relation on behaviours, is a direct result of using the fully-abstract model of classes.
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Dispenser example

As an example of the use of behavioural compatibility in Object-Z, consider refining the
following specification of a dispenser which could be used to deliver chocolates and candy
to the customers of a vending machine.

Dispenser

mode : {choc, candy}

Choc
∆(mode)

mode = choc

Candy
∆(mode)

mode = candy

The class Dispenser has a single state variable mode representing the next treat to be
delivered to a customer and two operations Choc and Candy representing the delivery of
a chocolate and a candy respectively. Initially, and after each operation, the next treat
to be delivered is chosen nondeterministically.

A state transition diagram of Dispenser is shown in Figure 6.2.

candychoc

Choc

Candy

CandyChoc

Figure 6.2: State transition diagram of the class Dispenser .

The behaviours of the class Dispenser consist of all sequences of events corresponding to
the operations Choc and Candy with exactly one event enabled at any time. Therefore,
any class which is signature compatible with Dispenser and has exactly one event from the
set {Choc,Candy} enabled at any time will be behaviourally compatible with Dispenser .

For example, consider the following class which inherits Dispenser .
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AltDispenser
Dispenser

Choc
mode ′ = candy

Candy
mode ′ = choc

The operations Choc and Candy in the class AltDispenser are redefined so that the next
treat to be delivered after a chocolate is a candy and the next treat to be delivered after
a candy is a chocolate.

A state transition diagram of the class AltDispenser is shown in Figure 6.3.

candychoc

Choc

Candy

Figure 6.3: State transition diagram of the class AltDispenser .

The behaviours of the class AltDispenser consist of all alternating sequences of events
corresponding to the operations Choc and Candy with exactly one event enabled at any
time. Intuitively, an object of class AltDispenser could be substituted for an object of
class Dispenser in any system.

The type of refinement illustrated above is procedural refinement (e.g. see [82]) since
only the procedures, i.e. the operations, of the class are refined. As an example of data
refinement (e.g. see [57]) where the data, i.e. the state, on which the operations are defined
is also refined consider the following class.

118



6.2. OBSERVATIONAL AND OPERATIONAL COMPATIBILITY

FairDispenser

nb choc, nb candy : N

INIT

nb choc = nb candy = 0

Choc
∆(nb choc)

nb choc < 2 ∗ nb candy
nb choc ′ = nb choc + 1

Candy
∆(nb candy)

nb choc ≥ 2 ∗ nb candy
nb candy ′ = nb candy + 1

The class FairDispenser has two state variables nb choc representing the number of choco-
lates already delivered and nb candy representing the number of candies already deliv-
ered. The operations Choc and Candy are defined so that Choc occurs when the number
of chocolates already delivered is less than double the number of candies already delivered
and Candy occurs otherwise. The behaviours of the class FairDispenser , therefore, con-
sist of sequences of events corresponding to the operations Choc and Candy with exactly
one event enabled at any time. Once again an object of class FairDispenser could be
substituted for an object of class Dispenser in any system.

6.2 Observational and Operational Compatibility

Most object-oriented programming languages regard objects as passive entities which
undergo operations only when they are sent messages by the encompassing environment.
Such objects can be thought of as being operated by their environment. Intuitively, a
class will be behaviourally compatible with a given class if an ‘operator’ of an object of
the class cannot deduce that the object is not an object of the given class. This notion
of behavioural compatibility is referred to in this thesis as operational compatibility .

Some object-oriented programming languages. however, regard objects as active entities
which can undergo operations autonomously. A review of such languages as well as a
discussion of the use of active objects in object-oriented programming can be found in
[47]. Active objects can be thought of as being observed by their environment. Intuitively,
a class will be behaviourally compatible with a given class if an ‘observer’ of an object of
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the class cannot deduce that the object is not an object of the given class. This notion
of behavioural compatibility is referred to in this thesis as observational compatibility .

In Object-Z, objects may be regarded as either active or passive allowing the refinement
of a specification towards an implementation in a wide variety of programming languages.
The definition of behavioural compatibility presented in Section 6.1.2 is strong enough
to allow for either situation. Often, however, the language in which a system is to be
implemented is known early in the software development process. In such cases, it is
desirable to use a weaker notion of behavioural compatibility, based on the particular
mode of interaction of an object and its environment in the implementation language, to
allow for greater flexibility during refinement.

Section 6.2.1 looks at observational compatibility in Object-Z. This type of compatibility
may be used when the specified system is to be implemented in a programming language
which supports only active objects. Section 6.2.2 looks at operational compatibility in
Object-Z. This type of compatibility may be used when the specified system is to be im-
plemented in a programming language which supports only passive objects. Section 6.2.3
discusses the possibility of integrating observational and operational compatibility. This
would be useful if the implementation language supported both active and passive ob-
jects or if it supported objects which are partly active (i.e. undergo some operations
autonomously) and partly passive (i.e. undergo other operations only when directed to
do so by their environment).

6.2.1 Observational compatibility

A class is observationally compatible with a given class if objects of the class cannot be
distinguished from objects of the given class by an external observer. The observer is
assumed to have no control over the objects which freely undergo any enabled event.

A formal definition of observational compatibility needs to make assumptions about what
the observer can and cannot see. This may vary depending on the type of interaction
allowed in the language for which the notion of compatibility is being defined. The notion
of observational compatibility presented in this section is based on the assumption that
an observer can only see the events which an object undergoes. As an example, consider
the following Object-Z specification of a bounded queue class which inherits the class
Queue[T ] of Section 2.1.2.

Let max : N be a global constant denoting the upper limit on the number of items in any
bounded queue.
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BoundedQueue[T ]

Queue[T ]

#items 6 max

Join
#items < max

The class BoundedQueue[T ] adds to Queue[T ] a state invariant which prevents more
than max items being joined to a queue. An observer who can only see the events
an object undergoes could not distinguish an object of class BoundedQueue[T ] from an
object of Queue[T ] since each sequence of events that the former class can undergo is also
a sequence of events that the latter class can undergo. Therefore, BoundedQueue[T ] may
be considered to be observationally compatible with Queue[T ].

This notion of observational compatibility can be formalised for Object-Z using the trace
model T of Section 5.1.2 as follows.

obs compat : ClassStruct ↔ ClassStruct

∀ c1, c2 : ClassStruct •
c2 obs compat c1 ⇔ c2 sig compat c1 ∧ T (restrict(c2, c1)) ⊆ T (c1)

The definition of obs compat is complete. Given two signature compatible classes with
structural models c1 and c2, if T (restrict(c2, c1)) is not a subset of T (c1) then there exists
a trace which an object of c2 could undergo in an environment in which an object of c1

could be placed which an object of c1 could not undergo in the same environment.

Since CR(restrict(c2, c1)) ⊆ CR(c1) ⇒ T (restrict(c2, c1)) ⊆ T (c1), the relation obs compat
is weaker than the relation behav compat of Section 6.1.2. Thus, any two classes which
are behaviourally compatible are also observationally compatible.

To use this notion of observational compatibility as a basis for refinement in Object-Z, the
environments in which an object could be placed would need to be restricted to reflect
an observer’s view of an object. That is, references to an object a would be limited
to a.INIT , a.op and

→

a where op is an operation in a’s class. Since an observer cannot
deduce whether or not a particular operation is enabled, the notation pre a.op would not
be allowed. Similarly, since an observer cannot force an object to undergo operations,
liveness properties which restrict the possible behaviours of a would also not be allowed.

6.2.2 Operational compatibility

A class is operationally compatible with a given class if objects of the class cannot be
distinguished from objects of the given class by an external operator. The operator
controls the objects by selecting the events they undergo.
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A formal definition of operational compatibility needs to make assumptions about which
events the operator can select at any stage. The notion of operational compatibility
presented in this section is based on the assumption that after the object has undergone
any sequence of events, the operator, expecting an object of a particular class, will only
select events that an object of that class could not refuse after that sequence of events.
If, after a particular sequence of events, an object cannot be guaranteed to be able to
undergo any operation then an operator of that object is assumed to make no further
selections.

As an example, consider again the classes Queue[T ] and BoundedQueue[T ]. An operator,
expecting an object of class BoundedQueue[T ], would select Join and Leave operations
with the following restrictions.

• Whenever the difference between the total number of Join and Leave operations
already performed was equal to max (i.e. the queue was full), the operator would
not select a Join operation.

• Whenever the difference between the total number of Join and Leave operations
already performed was zero (i.e. the queue was empty), the operator would not
select a Leave operation.

If this operator was given an object of class Queue[T ] instead of BoundedQueue[T ] then
the substitution would not be able to be detected as an object of Queue[T ] can be op-
erated in the same way. That is, an object of class Queue[T ] will not refuse any event
that an object of class BoundedQueue[T ] is guaranteed to be able to perform after any
sequence of events. Therefore, Queue[T ] may be considered to be operationally compati-
ble with BoundedQueue[T ]. Notice that operational compatibility between Queue[T ] and
BoundedQueue[T ] is in the reverse direction to observational compatibility between these
classes.

In general, a class B is operationally compatible with a class A if, after any trace of class
B which an object of class A can be guaranteed to perform, an object of class B can only
refuse those events of class A which an object of class A could have refused. This notion of
operational compatibility can be formalised using the definition of Trace of Section 5.1.2
and the readiness model R of Section 5.2.2 as follows.
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op compat : ClassStruct ↔ ClassStruct

∀ c1, c2 : ClassStruct •
c2 op compat c1 ⇔

c2 sig compat c1

∀ r2 : R(restrict(c2, c1)) •

(∩{r1 : R(c1) | r1.events = r2.events • r1.ready} ⊆ r2.ready

∨
∃ t : Trace •

t ⊂ r2.events

r2.events(#t + 1) 6∈∩{r1 : R(c1) | r1.events = t • r1.ready})

The definition of op compat relies on the assumption that a class has no liveness prop-
erties and, hence, there is a ready behaviour corresponding to the trace at each stage in
an object’s evolution. This is always true for passive objects which cannot force their
environment to select operations.

The definition of op compat is complete. Given two signature compatible classes with
structural models c1 and c2, assume there exists an r in R(restrict(c2, c1)) such that an
object of c1 can be guaranteed to perform the trace of r . If there exists an event e such
that e is in the intersection of the ready sets of all ready-behaviours in R(c1) with the
same sequence of events as r but e is not in r .ready then, after performing the sequence
of events in r , an object of c1 would not be able to refuse the event e but an object of c2

would. Therefore, an operator expecting an object of c1 would be able to detect that an
object of c2 had been substituted.

The relation op compat is also weaker than the relation behav compat of Section 6.1.2.
That is, since CR(restrict(c2, c1)) ⊆ CR(c1) ⇒ R(restrict(c2, c1)) ⊆ R(c1), if indeed
CR(restrict(c2, c1)) ⊆ CR(c1) then, for all r in R(restrict(c2, c1)), r is also in R(c1) and,
therefore, the intersection of the ready sets of all ready-behaviours in R(c1) with the same
sequence of events as r must be a subset of the ready set of r . Thus, any two classes
which are behaviourally compatible are also operationally compatible.

To use this notion of operational compatibility as a basis for refinement in Object-Z, the
environments in which an object could be placed would need to be restricted to reflect
the way an operator would control an object. This may vary depending on the possible
behaviours of the object which the operator expects. In general, the environment would
need to model the operator’s understanding of the state of the object so that operations
on the object could only occur when they could be selected by the operator. This can
be achieved by an auxiliary state variable. For example, consider the following Object-Z
context which models a possible operator of the class BoundedQueue[T ] of Section 6.2.1.
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System[T ]

s : 1 . . max
q : �

INIT

s = 0
q .INIT

Join
∆(s)
q .Join

s < max
s ′ = s + 1

Leave
∆(s)
q .Leave

s > 0
s ′ = s − 1

The auxiliary state variable s of System[T ] denotes the number of items in the queue
denoted by the object q . The operations Join and Leave represent the operator performing
a Join and a Leave event on q respectively.

6.2.3 Unifying observational and operational compatibility

Observational compatibility can provide a basis for refinement in Object-Z when the
environments in which an object can be placed are restricted to reflect an observer’s view
of the object. Similarly, operational compatibility can provide a basis for refinement
in Object-Z when the environments in which an object can be placed are restricted to
reflect the way an operator would control the object. It may be possible, however, that
an implementation language allows both active and passive objects or objects which are
partly active and partly passive. Specification techniques designed to capture this latter
notion of objects have been proposed by Abadi and Lamport[1], Lam and Shankar[69]
and Lynch and Tuttle[76].

Adopting the terminology of Lam and Shankar and Lynch and Tuttle, operations un-
der the control of the environment are referred to as input operations and those under
the control of the object as output operations. If the environments in which an object
in Object-Z could be placed were limited so that each operation was treated in a way
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that both an input and an output operation could be treated then a complete defini-
tion of behavioural compatibility could be obtained by conjoining the predicates defining
operational and observational compatibility.

If, on the other hand, the environments in which an object could be placed were limited
so that particular operations were treated as though they were input operations and
others as though they were output operations then a complete definition of behavioural
compatibility would not be possible unless input and output operations were explicitly
identified in Object-Z.

6.3 Behavioural Compatibility and Inheritance

To reason about classes which contain polymorphic variables (see Section 3.3), it is nec-
essary to consider the behaviours of all classes to which the polymorphic variables can be
assigned. In Object-Z, the set of classes to which a polymorphic variable can be assigned
are those derived by inheritance from some common class.

Reasoning about classes in Object-Z is simplified, therefore, if an inheritance hierarchy
which is to be used polymorphically is restricted so that a given class is behaviourally
compatible with the classes it inherits. Under this restriction, a polymorphic variable
can only behave in ways that an object of the class at the top of the associated inher-
itance hierarchy can behave. Section 6.3.1 presents rules for maintaining behavioural
compatibility in Object-Z inheritance hierarchies and Section 6.3.2 presents similar rules
for maintaining observational and operational compatibility.

6.3.1 Maintaining behavioural compatibility

A class which is behaviourally compatible with a given class must be signature compatible
with the given class. Therefore, the rules for maintaining signature compatibility through
inheritance must hold if behavioural compatibility is to be maintained. These rules,
presented in Section 3.3.2 state that a class must have at least all the operations of any
class it inherits and that each redefined operation must have exactly the same parameters
as the original inherited operation.

To maintain behavioural compatibility through inheritance, additional rules restricting
the redefinition of operations and the addition of initial conditions and history invariants
must also hold2. To simplify the definition of these rules it will be assumed that no
attributes are added to a class during inheritance. The rules could be generalised to allow
addition of attributes by introducing a relation between the states of classes along the

2Since the state invariant is a conjunct of each operation’s precondition and postcondition, the addition
of state invariants will be restricted by the rules restricting the redefinition of operations.
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lines of the representation relation in Hayes[57]. The extra complexity involved, however,
is not warranted here.

Given two classes with structural models c1 and c2, if c2 is signature compatible with c1

then c2 is also behaviourally compatible with c1 if the following rules hold. (A proof is
given in Theorem 6.1 below.)

Rule 1 - Every initial state of c2 is an initial state of c1.

c2.initial ⊆ c1.initial

Rule 2 - For all events e which an object of c1 can undergo, and all states s, e is enabled
in s in c1 if and only if e is enabled in s in c2

3.

∀ e : dom c1.trans •
dom c1.trans(e) = dom c2.trans(e)

Rule 3 - For all events e which an object of c1 can undergo, if e is enabled in a state
s in both c1 and c2 then any state resulting from performing e in s for c2 can also
result from performing e in s for c1.

∀ e : dom c1.trans • ∀ s : dom c1.trans(e) ∩ dom c2.trans(e) •
c2.trans(e)(| {s} |) ⊆ c1.trans(e)(| {s} |)

Rule 4 - Any total history satisfying the history invariant of c2 also satisfies the history
invariant of c1.

c2.hist inv ⊆ c1.hist inv

Rules 1 and 4 are automatically ensured in Object-Z as the initial condition and history
invariant of a class can only be strengthened through inheritance.

Rules 2 and 3, however, do not always hold. To maintain behavioural compatibility in an
inheritance hierarchy, therefore, a specifier needs to limit the use of redefinition so that
the precondition of a redefined operation is the same as the precondition of the inherited
operation (to satisfy Rule 2) and the postcondition of a redefined operation is no weaker
than the postcondition of the inherited operation (to satisfy Rule 3). While Rule 3 allows
the postcondition of an operation to be be strengthened, the possible values that can
be assigned to any output parameter in the redefined operation must be the same as
the possible values that can be assigned to the same output parameter in the inherited
operation. This requirement is necessary as Object-Z does not semantically distinguish

3If c2 is signature compatible with c1 then an object of c2 can undergo at least the same events as an
object of c1.
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between input and output parameters and allows output parameters to be restricted in
an object’s environment.

The classes Dispenser and AltDispenser of Section 6.1.2 satisfy the above rules as the
operations in AltDispenser are derived from the corresponding operations in Dispenser by
strengthening their postconditions. Note, however, that not all behaviourally compatible
classes need satisfy the rules. For example, the classes Dispenser and FairDispenser of
Section 6.1.2 are behaviourally compatible but are not related by inheritance. A proof
that Rules 1, 2, 3 and 4 ensure behavioural compatibility is given below.

Theorem 6.1

Given two classes with structural models c1 and c2, if c2 is signature compatible with c1

and Rules 1, 2, 3 and 4 hold then c2 is behaviourally compatible with c1.

Proof

Since c2 sig compat c1, c2 behav compat c1 if CR(restrict(c2, c1)) ⊆ CR(c1). Since the
events enabled in any state are identical for c1 and c2 by Rule 2, this will be true if
T H(restrict(c2, c1)) ⊆ T H(c1). By Rule 4, c2.hist inv ⊆ c1.hist inv . Therefore, it is
sufficient to prove that T Hsafe(restrict(c2, c1)) ⊆ T Hsafe(c1).

The proof is by induction over the length of h.events where h ∈ T Hsafe(restrict(c2, c1)).

(i) If #h.events = 0 then the state of h will be in c2.initial . By Rule 1, this state is also
in c1.initial . Therefore, h is in T Hsafe(c1).

(ii) Given n > 0, assume for all h such that #h.events = n, h ∈ T Hsafe(c1).

Since T Hsafe(restrict(c2, c1)) contains all pre-histories of its histories, if #h.events = n+1
then there exists a history h0 in T Hsafe(restrict(c2, c1)), where h0.events = front h.events
and h0.states = front h.states. By the assumption, h0 is also in T Hsafe(c1) and, by Rule 2,
the event h.events(n +1) is enabled in the final state of h0 for c1. Furthermore, by Rule 3,
h.states(n + 2) is a possible post-state of h.events(n + 1) in c1 when the pre-state is
h.states(n + 1), i.e. last h0.states. Therefore, h is in T Hsafe(c1). �

6.3.2 Maintaining observational and operational compatibility

In this section, rules for maintaining observational and operational compatibility through
inheritance are presented. These rules can be used to restrict inheritance in a hierarchy
of classes representing either active or passive objects. As in Section 6.3.1, it will be
assumed the attributes of a class and the classes it inherits are identical.
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Observational compatibility

Since observational compatibility is weaker than behavioural compatibility, given two
classes with structural models c1 and c2, c2 will be observationally compatible with c1

if it is signature compatible with c1 and Rules 1, 2, 3 and 4 of Section 6.3.1 hold. It is
possible, however, to strengthen Rule 2 as follows.

Rule 2′ - For all events e which an object of c1 can undergo, and all states s, if e is
enabled in s in c2 then e is enabled in s in c1.

∀ e : dom c1.trans •
dom c2.trans(e) ⊆ dom c1.trans(e)

This rule allows the specifier to strengthen the precondition of an inherited operation.
In combination with Rule 3, it also allows the possible values that can be assigned to
any input or output parameter in a redefined operation to be a subset of the possible
values that can be assigned to the same parameter in the inherited operation. The class
Queue[T ] of Section 2.1.2 and the class BoundedQueue[T ] of Section 6.2.1 satisfy the
above rule as the operations in BoundedQueue[T ] are derived from the corresponding
operations in Queue[T ] by strengthening their preconditions. A proof that Rules 1, 2′, 3
and 4 ensure observational compatibility is given below.

Theorem 6.2

Given two classes with structural models c1 and c2, if c2 is signature compatible with c1

and Rules 1, 2′, 3 and 4 hold then c2 is observationally compatible with c1.

Proof

Since c2 sig compat c1, c2 obs compat c1 if T (restrict(c2, c1)) ⊆ T (c1). This will be true
if T H(restrict(c2, c1)) ⊆ T H(c1). By Rule 4, c2.hist inv ⊆ c1.hist inv . Therefore, it is
sufficient to prove that T Hsafe(restrict(c2, c1)) ⊆ T Hsafe(c1).

The proof is similar to that in Theorem 6.1 of Section 6.3.1 except that Rule 2′ replaces
Rule 2. �

The above relation on operations is referred to as a covariance relation as the precondi-
tion and the postcondition of an operation may be changed in the same way, i.e. they
can both be strengthened. Most existing approaches to behavioural compatibility (e.g.
[8, 114, 119]), however, suggest a contravariance relation where the precondition can be
weakened and the postcondition strengthened. The discrepancy arises because these ap-
proaches assume that an object is a passive, rather than an active, entity which only
behaves correctly when its environment operates it by offering it operations which it can
be guaranteed to perform. The existing approaches are, therefore, similar to the notion
of operational compatibility defined in Section 6.2.2.
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Operational compatibility

Since operational compatibility is weaker than behavioural compatibility, given two classes
with structural models c1 and c2, c2 will be operationally compatible with c1 if it is
signature compatible with c1 and Rules 1, 2, 3 and 4 of Section 6.3.1 hold4. It is possible,
however, to strengthen Rule 2 as follows.

Rule 2′′ - For all events e which an object of c1 can undergo, and all states s, if e is
enabled in s in c1 then e is enabled in s in c2.

∀ e : dom c1.trans •
dom c1.trans(e) ⊆ dom c2.trans(e)

This rule allows the specifier to weaken the precondition of an inherited operation. In
combination with Rule 3, the relation on operations is, therefore, a contravariant re-
lation agreeing with the existing approaches to behavioural compatibility. The class
BoundedQueue[T ] of Section 6.2.1 and the class Queue[T ] of Section 2.1.2 satisfy the
above rule as the operations in Queue[T ] could be derived from the corresponding opera-
tions in BoundedQueue[T ] by weakening their preconditions. A proof that Rules 1, 2′′, 3
and 4 ensure operational compatibility is given below.

Theorem 6.3

Given two classes with structural models c1 and c2, if c2 is signature compatible with c1

and Rules 1, 2′′, 3 and 4 hold then c2 is operationally compatible with c1.

Proof

Since c2 sig compat c1, c2 obs compat c1 if the following is true.

∀ r2 : R(restrict(c2, c1)) •

(∩{r1 : R(c1) | r1.events = r2.events • r1.ready} ⊆ r2.ready

∨
∃ t : Trace •

t ⊂ r2.events

r2.events(#t + 1) 6∈∩{r1 : R(c1) | r1.events = t • r1.ready})

By Rule 2′′, the events enabled in any state of c1 are a subset of the events enabled in
the same state in c2. Therefore, the above relationship will be true if, for all histories h
in T H(restrict(c2, c1)), either

(1) h is in T H(c1) or

4The history invariant in this case is assumed to consist of only safety, and not liveness, properties.
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(2) there exists a history h1 in T H(c1) such that h1 is a pre-history of h and
the event h.events(#h1.events + 1) is not enabled in last h1.states.

By Rule 4, c2.hist inv ⊆ c1.hist inv . Therefore, it is sufficient to prove that, for all
histories h in T Hsafe(restrict(c2, c1)), either

(1) h is in T Hsafe(c1) or

(2) there exists a history h1 in T Hsafe(c1) such that h1 is a pre-history of h and
the event h.events(#h1.events + 1) is not enabled in last h1.states.

The proof is by induction over the length of h.events where h ∈ T Hsafe(restrict(c2, c1)).

(i) If #h.events = 0 then the state of h will be in c2.initial . By Rule 1, this state is also
in c1.initial . Therefore, h is in T Hsafe(c1) and (1) is true.

(ii) Given n > 0, assume for all h such that #h.events = n, either (1) or (2) is true.

Since T Hsafe(restrict(c2, c1)) contains all pre-histories of its histories, if #h.events = n+1
then there exists a history h0 in T Hsafe(restrict(c2, c1)), where h0.events = front h.events
and h0.states = front h.states. By the assumption, h0 is either in T Hsafe(c1) or there exists
a history h1 in T Hsafe(c1) such that h1 is a pre-history of h0 and h0.events(#h1.events +1)
is not enabled in last h1.events.

If h0 is in T Hsafe(c1) and the event h.events(n + 1) is enabled in the final state of h0 for
c1 then, by Rule 3, h.states(n + 2) is a possible post-state of h.events(n + 1) in c1 when
the pre-state is h.states(n + 1), i.e. last h0.states. Therefore, h is in T Hsafe(c1) and (1) is
true.

If h0 is in T Hsafe(c1) and the event h.events(n + 1) is not enabled in the final state of h0

for c1 then, since h0 is a pre-history of h, (2) is true.

If there exists a history h1 in T Hsafe(c1) such that h1 is a pre-history of h0 and the
event h0.events(#h1.events + 1) is not enabled in last h1.states then, since h0 and h1 are
pre-histories of h, (2) is true. �
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Chapter 7

Conclusions

“Action will remove the doubt that theory cannot solve.”

— Tehyi Hsieh
Chinese Epigrams Inside Out and Proverbs, 1948.

Formal methods for software development are becoming increasingly necessary as software
becomes an important part of everyday life. To handle the complexities inherent in large-
scale software systems these methods need to be combined with a sound development
methodology which supports modularity and reusability. Object orientation, based on the
concept that systems are composed of collections of interacting objects whose behaviours
are specified by classes, is such a methodology.

This thesis has presented the formal specification language Object-Z which is an extension
of the formal specification language Z to facilitate specification in an object-oriented style.
The major extension in Object-Z is the introduction of the class schema which captures
the object-oriented notion of a class by encapsulating a single state schema with all the
operation schemas which may affect its variables. The class schema is not simply a
syntactic extension but also defines a type whose instances are objects. Object-Z also
supports single and multiple inheritance allowing classes to be reused in the definition
of other classes and polymorphism allowing a variable to be assigned to objects of more
than one class.

The thesis has also presented a set-theoretic model of classes in Object-Z which could
form the basis of a full formal semantics. The model, based on the histories of a class, i.e.
the sequences of states and operations which an object of the class can undergo, facilitates
the specification of liveness properties using a temporal logic notation. A fully-abstract
model of classes in Object-Z, derived from the history model, was also presented. This
model was used to formally define a notion of behavioural compatibility in Object-Z which
could form the basis of a theory of class refinement.
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While other versions of Object-Z have already had some application outside academia[103,
43], before the language can be successfully applied to each stage of the development
of large-scale software systems, a complete formal semantics and theory of refinement
need to be completed and integrated with the existing semantics and refinement rules of
Z. This will enable the development of semi-automatic tools to aid in the processes of
specification, verification and refinement. Section 7.1 presents a summary of the work
presented in this thesis and Section 7.2 discusses the contributions with respect to related
work. Section 7.3 indicates future research directions including possible extensions to the
Object-Z language.

7.1 Thesis Summary

Object-Z is an extension of Z in that the full syntax and semantics of Z are retained.
Hence, any Z specification is also an Object-Z specification. The extensions in Object-
Z support both an object-oriented style of specification and the specification of liveness
properties such as fairness, termination and the guaranteed occurrence of operations.

Chapter 2 of this thesis introduced the notion of class schemas in Object-Z. A class
schema, or class, encapsulates a single state schema with its initial state schema and all
the operations which can affect its variables. This encapsulation, by explicitly grouping
related schemas, improves both the clarity and opportunity for reuse of specifications.

The meaning of a class is a set of values corresponding to potential objects of the class
at some stage of their evolution. The value chosen to represent an object is the object’s
history, i.e. the sequence of states it has passed through together with the sequence of
events it has undergone.

A class, therefore, defines a type. An object may be declared as an instance of a class
within another class enabling the specification of composite objects or systems contain-
ing aggregates of objects of the same class. The state of an object is hidden from its
environment which may only initialise the object or apply operations to it.

Chapter 3 presented inheritance in Object-Z. Through inheritance, new classes can be
specified as extensions or specialisations of one or more existing classes without the need
to re-specify the common state variables or operations. When a class inherits another
class in Object-Z, the schema definitions of the classes are merged. A class which inherits
a given class may, therefore, have additional state variables and operations and additional
constraints on the state and the precondition and postcondition of each operation.

A class may, however, also rename any state variable or operation it inherits and arbitrar-
ily redefine any operation. Renaming allows name clashes to be avoided during multiple
inheritance and also allows more meaningful or appropriate names to be given to state
variables and operations when a class is specialised for a particular application. Redefini-
tion allows the specification of classes which share the structure, but not the behaviour,
of a given class.
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Inheritance in Object-Z also provides the basis for polymorphism. A variable may be
declared to be an object of a particular class or any class derived from that class by
inheritance. If a variable is to be used polymorphically then this must be explicitly
declared, i.e. not all object-valued variables are polymorphic.

A variable which is declared to be polymorphic can only be placed in an environment in
which an object of any class within the associated inheritance hierarchy can be placed. The
responsibility of the specifier to ensure this can be reduced if inheritance is restricted so
that a given class is signature compatible with the classes it inherits. Rules for maintaining
signature compatibility through inheritance were presented in Section 3.3.2.

Chapter 4 discussed the specification of liveness properties in Object-Z. A full formal
syntax and semantics of a temporal logic notation was presented which enables the spec-
ification of liveness properties concerned with the occurrence of both states and events.
This notation can be used in Object-Z classes to specify history invariants which restrict
the set of histories derived from the state and operations of the class.

When an object of a class with a liveness property is instantiated within another class,
the value of the object is, at any time, a history satisfying the safety property of its class.
A history invariant of the class in which it is instantiated ensures that the object’s history
progresses until it also satisfies the liveness property of its class.

Chapter 5 presented a fully-abstract model of classes in Object-Z. This model contains the
minimum amount of information required to enable the denotation of a class to be derived
from the denotations of the classes of the objects of which it is composed. Intuitively,
the model describes the external behaviour of a class, and, hence, captures the precise
meaning of a class independent of its syntactic representation.

The model, called the complete-readiness model, represents an object by the sequence
of events it has undergone together with the sequence of sets of events representing the
enabled events at each stage of its evolution. The model was proved to be fully-abstract
with respect to an observational model of classes which represents objects by the sequence
of events, or traces, they have undergone.

Chapter 6 used the fully-abstract model of Chapter 5 to define a notion of behavioural
compatibility in Object-Z. This definition could be used as the basis for a theory of class
refinement enabling specifications to be refined by separately refining the classes of each
of their component objects. The definition is also complete allowing all classes which are
behaviourally compatible with a given class to be identified.

Notions of observational and operational compatibility were also defined. Observational
compatibility is relevant when an object is assumed to be an active entity which undergoes
events autonomously. Operational compatibility, on the other hand, is relevant when an
object is assumed to be a passive entity which is controlled by its environment. These
weaker notions of behavioural compatibility could form the basis of a theory of class
refinement when the environments in which an object can be placed are restricted to
reflect the appropriate mode of object/environment interaction.
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Rules for maintaining behavioural compatibility through inheritance were also presented.
These rules restrict the way in which operations can be redefined. General behavioural
compatibility, holds if each redefined operation has an identical precondition with the
inherited operation and a postcondition which is possibly stronger than that of the in-
herited operation. Observational compatibility allows a covariant redefinition rule where
both the precondition and postcondition of a redefined operation may be strengthened,
and operational compatibility a contravariant redefinition rule where the precondition of
a redefined operation may be weakened and the postcondition strengthened.

7.2 Related Work

In this section, the work in this thesis is compared to related work in the field. In particu-
lar, other approaches to object-oriented Z, modelling objects and behavioural equivalence
and compatibility are examined.

7.2.1 Object-oriented Z

Object-Z is not the only object-oriented adaptation of Z. It has, however, been developed
independently of all other approaches. Some of these other approaches have been reviewed
in Section 1.3.2 and will be briefly compared to Object-Z here. A more comprehensive
comparative study of object orientation in Z can be found in [110].

According to Wegner[116], a language is object-oriented if it supports the notions of
objects, classes and inheritance. Object-Z supports all these notions as well as a notion
of polymorphism and an ability to specify liveness properties. Other approaches to object
orientation in Z, however, do not support the three basic concepts. The approach of
Hall[55] does not extend Z and so has no explicit notion of class or inheritance. Also,
the approach of Schuman and Pitt[98, 99] only approximates the notion of a class with
naming conventions and has no way of implicitly inheriting all the operations along with
the state schema of a class.

The approaches of Whysall and McDermid[118, 119] and Lano[73], while supporting the
fundamental concepts of object orientation, are less general, and arguably more difficult
to use, than Object-Z as they have been designed with a particular purpose in mind.
The approach of Whysall and McDermid was designed specifically to aid the process of
refinement. It requires each class to be specified both in standard Z and as an algebraic
export specification. The approach of Lano was developed as part of the ESPRIT REDO
project on reverse-engineering. It is particularly concerned with separating the imple-
mentational details of data structures from the high-level details of system functionality.
A class is not specified using a Z-like notation but using constructs similar to those found
in object-oriented programming languages.
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The approach of Cusack[35, 34], being based on Object-Z, is very similar to it. It is the
only other approach which currently supports a notion of polymorphism. This notion is
quite different to that in Object-Z, however, as it is based on subtype, rather than subclass
(or inheritance), hierarchies and object-valued variables are always treated polymorphi-
cally. While the notions of inheritance and polymorphism have been formally defined for
this approach, many other aspects, including the formal syntax of classes, are far less
developed than in Object-Z.

The final approach reviewed in Section 1.3.2 was the OOZE approach of Alencar and
Goguen[4]. This approach is similar syntactically to Object-Z but has the advantage
that it has a full formal semantics as it adopts the semantics of the object-oriented pro-
gramming language FOOPS[50]. This approach, however, is still in an early stage of
development and has not been successfully applied to any significant case studies.

Object-Z is the only object-oriented adaptation of Z which currently allows the specifica-
tion of liveness properties. While the ability to specify such properties is not important
when modelling systems of passive objects, it is important in the specification of active
object systems. The ability to specify liveness properties allows the specifier to abstract
away from implementational mechanisms which ensure those liveness properties hold.

7.2.2 Modelling objects

Two main approaches to modelling objects are found in the literature. The first is based on
modelling an object in terms of its (implementational) structure. This approach, adopted
by Wolczko[122], Kamin[68] and Reddy[94] among others, models objects as records whose
fields are state variables and operations. The structural model of Section 2.2.1 is such a
model. While these models have an intuitive appeal, they are not very abstract and are
not suited to modelling general liveness properties of objects.

The second approach is based on modelling an object in terms of its behaviour. This
approach, adopted by Goguen[49] and Ehrich and Sernadas[45] among others, models
objects by the sequences of states and/or sequences of events that they undergo. The
history model of Section 2.2.2 and the complete-readiness model of Section 5.3.1 are
such models. These models are, in general, more abstract as they represent a canonical
form of the object in which unreachable states and state transitions are ignored. This is
necessary for a complete notion of behavioural compatibility to be defined as was seen in
Section 6.1.1. General liveness properties can also be captured by restricting the sequences
of states and/or events which an object can undergo.

These two approaches are not peculiar to modelling objects. They have also been used
as the basis of the semantics of process algebras and to model modules in techniques
for specifying concurrent systems. The semantics of CCS[81] is based on the structural
approach modelling a process in terms of its possible states and transitions. The semantics
of CSP[61], on the other hand, models a process in terms of the sequences of events it
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can undergo and the possible sets of events it can refuse at any time. Similarly, modules
are specified in terms of states and transitions by Lam and Shankar[69] and Lynch and
Tuttle[76] and in terms of sequences of states by Abadi and Lamport[1].

7.2.3 Behavioural equivalence

The fully-abstract model of classes in Section 5.3.1 defines the notion of behavioural
equivalence of classes in Object-Z. That is, two classes are behaviourally equivalent when
they have exactly the same complete-readiness model. This was shown to be a stronger
form of behavioural equivalence than that of CSP which is based on processes having the
same failures model. This enables Object-Z to capture notions of priority and alternative
notions of composition which cannot be captured in CSP.

The notion of behavioural equivalence is, however, weaker than bisimulation which is the
primitive notion of equivalence between processes in CCS. To detect that two processes
are not bisimilar, it may be necessary for the environment to make multiple copies of a
process at some stage of its evolution and to ‘force’ the copies to undergo every possible
transition which the process could have undergone as its next transition. For example,
the processes P and Q in Figure 7.1 are not bisimilar. They are, however, equivalent in
terms of the complete-readiness model.

b b

a

P
a a

a

b b

c d

b b

Q

c ddc

Figure 7.1: Processes P and Q .

Whether bisimulation provides an intuitive notion of behavioural equivalence has been
the subject of some debate. The notion of ‘forcing’ a process to exhibit every possible
transition has been criticised by Bloom et al.[16] as it assumes the environment of a
process can control its internal nondeterminism. On the other hand, Larsen and Skou[74]
argue that non-bisimilar processes can be detected using a notion of probabilistic testing.

An alternative notion of behavioural equivalence is proposed by Bloom et al. which allows
multiple copies to be made of processes but does not allow the internal nondeterminism of
a process to be controlled. Bloom and Meyer[17] argue that this equivalence is the finest
“reasonable” process equivalence. The notion of behavioural equivalence in terms of the
complete-readiness model is, however, still weaker than this equivalence. For example,
consider the processes R and S in Figure 7.2.

These processes are not equivalent according to the notion of behavioural equivalence of
Bloom et al. but are equivalent in terms of the complete-readiness model. The discrepancy
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a

b b

c dc

b

SR
aa

b

d

Figure 7.2: Processes R and S .

arises because the environment of an object in Object-Z cannot make copies of the object.
Allowing the environment in Object-Z to do this would violate the notion that an object’s
state is hidden.

Therefore, classes corresponding to the processes R and S need to be semantically identi-
fied in a fully-abstract semantics of Object-Z. This is precisely the reason why expressions
such as a = b and a ∈ A, where a and b are objects and A is a set of objects, are not
allowed in Object-Z. It is also the reason why schema expressions involving the Z schema
operator o

9 are not allowed in Object-Z classes. Allowing such expressions enables the
following contexts, which distinguish classes corresponding to the processes R and S , to
be constructed.

C

x , y : �

INIT

x .INIT

y .INIT

OP1 =̂ x .a

OP2 =̂ y .a

OP3
¬ (x = y)

D

x : �

INIT

x .INIT

OP1 =̂ x .a

OP2 =̂ x .b o
9 x .c

OP3
¬ pre OP2

When an object of a class corresponding to the process R is placed in the context C the
trace 〈(‘OP1’, ∅), (‘OP2’, ∅), (‘OP3’, ∅)〉 is possible1. This trace is not possible, however,
when a class corresponding to the process S is placed in C .

Similarly, the trace 〈(‘OP1’, ∅), (‘OP3’, ∅)〉 is possible when a class corresponding to the

1Since OP1, OP2 and OP3 have no parameters, the associated assignment of values is denoted by
the empty set.
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process R is placed in the context D but not when a class corresponding to the process
S is placed in D .

7.2.4 Behavioural compatibility

Most existing definitions of behavioural compatibility in the literature on object orienta-
tion are based on the contravariance approach reviewed in Section 6.1.1. It was shown
that such definitions are not complete and, hence, cannot necessarily be used to identify
all classes which are behaviourally compatible with a given class. Furthermore, it was
shown that while the contravariance approach is appropriate for passive objects which
are operated by their environment, a covariance approach is required for active objects.

Alternative approaches to behavioural compatibility can be found in the literature on
process algebras. In general, these approaches assume a process is passive and operated
by its environment. Of particular interest is the notion of conformance[21]. A process P
is said to conform to a process Q if P can be operated as if it were Q and not deadlock
unless Q could have also deadlocked. This notion is similar to the notion of operational
compatibility defined in Section 6.2.2. However, in the case of conformance the operator
can select any sequence of events that the expected process can undergo even if, due
to nondeterminism, the process may deadlock. In the case of operational compatibility,
the operator can only select those sequences of events which can be guaranteed not to
deadlock. As was shown in Section 6.3.2, this view of an operator allows operational com-
patibility to capture a similar notion of behavioural compatibility as the widely accepted
contravariance approach.

7.3 Future Work

In this section, possible areas of future work are described. In particular, possible exten-
sions to the Object-Z language are discussed. One such extension is the introduction of
the notion of internal operations which are hidden from an object’s environment. Such
operations may correspond to the interactions between the components of a composite
object, e.g. the operation Transfer of the class Channel in Section 2.3.1. Explicitly declar-
ing such operations to be internal would prevent them being further constrained by the
environment of the composite object.

The notion of internal operations has been widely used (e.g. [61, 81, 1, 69, 76]). The notion
could be incorporated syntactically into Object-Z using a list similar to the redefine list
discussed in Section 3.2.2. Indeed an earlier version of Object-Z[27] included such a list.
Semantically, the notion could be incorporated by removing from the histories of a class
those transitions corresponding to internal operations. This approach is similar to that
adopted in CSP.

Another possible extension is the explicit identification of input and output operations
which are controlled by the environment of an object and the object itself respectively.
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This would enable a specifier to verify that a particular specification is realisable using
a method similar to that of Abadi and Lamport[1]. It would also enable a complete
definition of behavioural compatibility for classes when the environments in which an
object could be placed were limited so that particular operations were regarded as input
operations and others as output operations.

The notion of input and output operations have been discussed by Lam and Shankar[69]
and Lynch and Tuttle[76] and a similar notion of agents by Abadi and Lamport[1]. The
notion could also be incorporated syntactically into Object-Z using input and output lists.
The possibility of making an operation’s inclusion in an input or output list optional would
enable a specifier to abstract away from the notion of how the operation is controlled.
Such an operation could, at some later stage, be refined to be either an input or an output
operation.

Object-Z introduces a new type of schema, namely the class schema, but does not in-
troduce any operators for these schemas apart from inclusion, i.e. inheritance. Other
operators, possibly based on the schema operators of Z, could be introduced allowing
more flexible means of incrementally modifying and combining classes. It may also be
possible to introduce operators between objects rather than their operations. In particu-
lar, a concurrency operator similar to those found in process algebras could be defined.

Before Object-Z can be used in the development of software a full formal semantics map-
ping constructs in the language to some semantic domain needs to be defined. This would
enable the development of a proof system for the language and the possibility of semi-
automatic tools to aid in the software development process. The history model of classes
presented in Section 2.2.2 could form the basis of such a semantics.

Since Object-Z is an extension to Z, a natural approach to developing its formal semantics
would be to extend the formal semantics of Z[107]. Such an approach has been adopted
by Duke and Duke in [39]. The abstract syntax of types in Z is extended to include a class
type and a ‘class variety’ similar to the notion of a schema variety in [107] is introduced.

Finally, an important area of future work is the application of Object-Z to the development
of real systems. Only in this way can the expected benefits of object orientation in the
development of such systems be ascertained. Such application would also highlight the
need, or otherwise, of the proposed extensions to the language and, possibly, suggest other
more useful extensions and conventions.
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In J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors, Proceedings Eu-
ropean Conference on Object-Oriented Programming (ECOOP’87), volume 276 of
Lecture Notes in Computer Science, pages 20–31. Springer-Verlag, 1987.

[55] A. Hall. Using Z as a specification calculus for object-oriented systems. In
D. Bjørner, C.A.R. Hoare, and H. Langmaack, editors, VDM’90: VDM and Z!,
volume 428 of Lecture Notes in Computer Science, pages 290–318. Springer-Verlag,
1990.

[56] I. Hayes, editor. Specification Case Studies. Series in Computer Science. Prentice-
Hall International, 1987.

[57] I. Hayes. Bias in VDM: Full abstraction and the functional retrieve rules for data
refinement. Technical Report 162, Department of Computer Science, University of
Queensland, Australia, May 1990.

[58] I. Hayes and C. Jones. Specifications are not (necessarily) executable. Software
Engineering Journal, 4(6):330–339, November 1989.

[59] I. Hayes, M. Mowbray, and G. Rose. Signalling system No.7: The network layer. In
Protocol Specification, Testing, and Verification, IX. North-Holland, 1989.

[60] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580,583, 1969.

[61] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, 1985.

[62] D. Hoffman and R. Snodgrass. Trace specifications: Methodology and models. IEEE
Trans. Software Engineering, 14(9):1243–1252, September 1988.

[63] ISO TC97/SC21. Estelle – A Formal Description Technique Based on an Extended
State Transition Model, 1988. International Standard 9074.

145



BIBLIOGRAPHY

[64] ISO TC97/SC21. LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour, 1988. International Standard 8807.

[65] C. Jones. Systematic Software Development Using VDM. Series in Computer Sci-
ence. Prentice-Hall International, 1986.

[66] G. Jones and M. Goldsmith. Programming in occam 2. Series in Computer Science.
Prentice-Hall International, 1988.

[67] B. Jonsson. A fully abstract trace model for dataflow networks. In Proceedings 16th
ACM Symposium on Principles of Programming Languages, pages 155–165, 1989.

[68] S. Kamin. Inheritance in Smalltalk-80: a denotational definition. In Proceedings
15th ACM Symposium on Principles of Programming Languages, pages 80–87, 1988.

[69] S. Lam and A.U. Shankar. Understanding interfaces. In K. Parker and G. Rose,
editors, Formal Description Techniques, IV (FORTE’91), pages 165–184, 1991.

[70] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Engineering, 3(2):125–143, 1977.

[71] L. Lamport. An axiomatic semantics of concurrent programming languages. In
K. Apt, editor, Proceedings NATO Advanced Course on Logics and Models of Con-
current Systems, pages 77–122. Springer-Verlag, 1985.

[72] L. Lamport. A temporal logic of actions. Technical Report 57, Digital Systems
Research Centre, April 1990.

[73] K. Lano. Z++. In J.E. Nicholls, editor, Z User Workshop Oxford 1990. Springer-
Verlag, 1990.

[74] K. Larsen and A. Skou. Bisimulation through probabilistic testing (preliminary
report). In Proceedings 16th ACM Symposium on Principles of Programming Lan-
guages, pages 344–352, 1989.

[75] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. Schaffert, R. Scheifler, and A. Snyder.
CLU Reference Manual. Springer-Verlag, 1981.

[76] N. Lynch and M. Tuttle. An introduction to Input/Output Automata. CWI Quar-
terly, 2(3):219–246, September 1989.

[77] T. Mayr. Specification of object-oriented systems in LOTOS. In K. Turner, editor,
Formal Description Techniques (FORTE’88), pages 107–119. North-Holland, 1989.

[78] A. Mazurkiewicz. Trace theory. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Advances in Petri Nets 1986 (part II), volume 255 of Lecture Notes in Computer
Science, pages 279–324. Springer-Verlag, 1987.

146



BIBLIOGRAPHY

[79] A. Meyer and S. Cosmadakis. Semantical paradigms: Notes for an invited lecture.
In Proceedings 3rd IEEE Symposium on Logic in Comp. Science, pages 236–253,
1988.

[80] B. Meyer. Object-Oriented Software Construction. Series in Computer Science.
Prentice-Hall International, 1988.

[81] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-
Hall International, 1989.

[82] C. Morgan. Programming from Specifications. Series in Computer Science. Prentice-
Hall International, 1990.

[83] C. Morgan and B. Sufrin. Specification of the Unix filing system. IEEE Trans.
Software Engineering, SE-10(2):128–142, 1984. (An updated version appears in
[56]).

[84] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press,
1986.

[85] K. Narfelt. SYSDAX - an object oriented design methodology based on SDL. In
SDL’87: State of the Art and Future Trends. North-Holland, 1987.

[86] C. Nix and B. Collins. The use of software engineering, including the Z notation in
the development of CICS. IBM Technical Report TR12.266, IBM United Kingdom
Laboratories Ltd., Hursley Park, April 1989.

[87] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicat-
ing processes. Acta Informatica, 23:9–6, 1986.

[88] D. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

[89] J. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall Interna-
tional, 1981.

[90] G. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5(3):223–256, 1977.

[91] A. Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. In W. Brauer, editor, Proceedings 12th International Colloquium on Au-
tomata, Languages and Programming (ICALP’85), volume 194 of Lecture Notes in
Computer Science, pages 15–32. Springer-Verlag, 1985.

[92] A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In Current Trends in Concurrency,
volume 224 of Lecture Notes in Computer Science, pages 510–584. Springer-Verlag,
1986.

147



BIBLIOGRAPHY

[93] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and Z.
Series in Computer Science. Prentice-Hall International, 1990.

[94] U. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In
Proceedings ACM Conference on Lisp and Functional Programming, pages 289–297,
1988.

[95] A. Roscoe and G. Barrett. Unbounded nondeterminism in CSP. In M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings 5th International Con-
ference on the Mathematical Foundations of Programming Semantics, volume 442
of Lecture Notes in Computer Science, pages 160–193. Springer-Verlag, 1990.

[96] S. Rudkin. Inheritance in LOTOS. In K. Parker and G. Rose, editors, Formal
Description Techniques, IV (FORTE’91), pages 415–430, 1991.

[97] J. Russell. Full abstraction for nondeterministic dataflow networks. Technical Re-
port TR 89-1022, Department of Computer Science, Cornell University, Ithaca, NY,
1989.

[98] S. Schuman and D. Pitt. Object-oriented subsystem specification. In L. Meertens,
editor, Program Specification and Transformation, pages 313–341. North-Holland,
1987.

[99] S. Schuman, D. Pitt, and P. Byers. Object-oriented process specification. Technical
report, University of Surrey, 1989.

[100] A. Sernadas and C. Sernadas. Object-oriented specification of databases: An al-
gebraic approach. In Proceedings 13th ACM Conference on Very Large Databases,
1987.

[101] R. Sijelmassi and P. Gaudette. An object-oriented model for Estelle. In K. Turner,
editor, Formal Description Techniques (FORTE’88), pages 91–105. North-Holland,
1989.

[102] L. Simon and L. Marshall. Using VDM to specify OSI managed objects. In K. Parker
and G. Rose, editors, Formal Description Techniques, IV (FORTE’91), pages 15–29,
1991.

[103] G. Smith and R. Duke. Modelling a cache coherence protocol using Object-Z. In
Proceedings 13th Australian Computer Science Conference (ACSC-13), pages 352–
361, 1990.

[104] G. Smith and R. Duke. Specifying concurrent systems using Object-Z. In Pro-
ceedings 15th Australian Computer Science Conference (ACSC-15), pages 859–871,
January 1992.

148



BIBLIOGRAPHY

[105] A. Snyder. Inheritance and development of encapsulated software components. In
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Appendix A

Concrete Syntax of Object-Z

The following concrete syntax of Object-Z is an extension of the concrete syntax of Z
presented by Spivey[108]. It is given in an extension to Backus-Naur Form (BNF) defined
in [108]. Optional phrases are enclosed in slanted square brackets. NL denotes new line.

Specification ::= Paragraph NL . . .NL Paragraph

Paragraph ::= [Ident, . . . , Ident]
| AxiomaticBox

| SchemaBox

| GenericBox

| ClassBox

| SchemaName [ GenFormals] =̂ SchemaExp

| ClassName [ GenFormals] =̂ ClassRef

| DefLhs == Expression

| Predicate

AxiomaticBox ::=
DeclPart

[
AxiomPart ]

SchemaBox ::=
SchemaName [ GenFormals]
DeclPart

[
AxiomPart ]

GenericBox ::=
[ GenFormals]
DeclPart

[
AxiomPart ]
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ClassBox ::=
ClassName [ GenFormals]
[ LocalDefs]
[ State]
[ Init]
[ Opn

...
Opn]

[
HistPred ]

LocalDefs ::= LocalDef
...

LocalDef

LocalDef ::= InheritedClass

| [Ident, . . . , Ident]
| AxiomaticBox

| DefLhs == Expression

State ::= [DeclPart [ | AxiomPart] ]
| [AxiomPart ]
| StateBox0

| StateBox1

StateBox0 ::=
DeclPart

[
AxiomPart ]

StateBox1 ::=
AxiomPart

Init ::= INIT =̂ [AxiomPart ]
| InitBox

InitBox ::=
INIT

AxiomPart

Opn ::= OpnName =̂ OpnExp

| OpnBox0

| OpnBox1
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OpnBox0 ::=
OpnName

OpnDeclPart
[

AxiomPart ]

OpnBox1 ::=
OpnName

AxiomPart

DeclPart ::= BasicDecl Sep . . .Sep BasicDecl

OpnDeclPart ::= ∆(DeltaList) [ Sep DeclPart]
| DeclPart

AxiomPart ::= Predicate Sep . . .Sep Predicate

Sep ::= ; | NL

DefLhs ::= VarName [ GenFormals]
| PreGen Ident

| Ident InGen Ident

SchemaExp ::= ∀ SchemaText • SchemaExp

| ∃ SchemaText • SchemaExp

| ∃1 SchemaText • SchemaExp

| SchemaExp1

SchemaExp1 ::= [ SchemaText ]
| SchemaRef

| ¬SchemaExp1

| pre SchemaExp1

| SchemaExp1∧ SchemaExp1

| SchemaExp1∨ SchemaExp1

| SchemaExp1 ⇒ SchemaExp1

| SchemaExp1 ⇔ SchemaExp1

| SchemaExp1 � SchemaExp1

| SchemaExp1 \ (DeclName, . . . , DeclName)
| SchemaExp1 o

9 SchemaExp1

| (SchemaExp)

OpnExp ::= ∀ SchemaText • OpnExp

| ∃ SchemaText • OpnExp

| ∃1 SchemaText • OpnExp

| OpnExp1
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OpnExp1 ::= [OpnText ]
| OpnRef

| ¬OpnExp1

| pre OpnExp1

| OpnExp1∧OpnExp1

| OpnExp1∨OpnExp1

| OpnExp1 ‖ OpnExp1

| OpnExp1 ⇒ OpnExp1

| OpnExp1 ⇔ OpnExp1

| OpnExp1 � OpnExp1

| OpnExp1 \ (DeclName, . . . , DeclName)
| OpnExp1 • OpnExp1

| (OpnExp)

SchemaText ::= Declaration [ | Predicate]

OpnText ::= OpnDeclaration [ | Predicate]
| Predicate

SchemaRef ::= SchemaName Decoration [ GenActuals]

InheritedClass ::= ClassRef [ RenameList] [ RedefList]

ClassRef ::= ClassName [ GenActuals]

OpnRef ::= OpnName

| ObjRef.OpnName

Declaration ::= BasicDecl; . . . ; BasicDecl

OpnDeclaration ::= ∆(DeltaList) [ ; Declaration]
| Declaration

BasicDecl ::= DeclName, . . . , DeclName : Type

| SchemaRef

| OpnRef

Type ::= Expression

| ClassRef

| ↓ClassRef
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Predicate ::= ∀ SchemaText • Predicate

| ∃ SchemaText • Predicate

| ∃1 SchemaText • Predicate

| Predicate1

Predicate1 ::= Expression Rel Expression Rel . . .Rel Expression

| PreRel Expression

| SchemaRef

| OpnRef

| ObjRef.INIT

| pre SchemaRef

| pre OpnRef

| true
| false
| ¬ Predicate1

| Predicate1 ∧ Predicate1

| Predicate1 ∨ Predicate1

| Predicate1 ⇒ Predicate1

| Predicate1 ⇔ Predicate1

| (Predicate)

Rel ::= =|∈| InRel

Expression0 ::= λ SchemaText • Expression

| Expression

Expression ::= Expression InRel Expression

| Expression1 × Expression1 × . . . × Expression1

| Expression1

Expression1 ::= Expression1 InFun Expression1

| P Expression3

| PreGen Expression3

| −Expression3

| Expression3 PostFun

| Expression3Expression

| Expression3(| Expression0 |)
| Expression2

Expression2 ::= Expression2 Expression3

| Expression3
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Expression3 ::= VarName [ GenActuals]
| Number

| SchemaRef

| SetExp

| 〈 [ Expression, . . . , Expression] 〉
| [[ [ Expression, . . . , Expression] ]]
| (Expression, . . . , Expression)
| θSchemaName Decoration

| Expression3.VarName

| (Expression0)

HistPred ::= ∀Declaration [ | HistPred] • HistPred

| ∃Declaration [ | HistPred] • HistPred

| ∃1 Declaration [ | HistPred] • HistPred

| HistPred1

HistPred1 ::= Predicate

|
−→

ObjRef

| OpnRef enabled [ | Predicate]
| OpnRef occurs [ | Predicate]
| 2HistPred1

| 3HistPred1

| ¬ HistPred1

| HistPred1 ∧ HistPred1

| HistPred1 ∨ HistPred1

| HistPred1 ⇒ HistPred1

| HistPred1 ⇔ HistPred1

| (HistPred1)

RenameList ::= [RenItem, . . . , RenItem]

RenItem ::= FeatureRen | ParamRen

FeatureRen ::= Ident/Ident

ParamRen ::= OpnName[FeatureRen, . . . , FeatureRen]

RedefList ::= [redef OpnName, . . . , OpnName]

DeltaList ::= Ident, . . . , Ident
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SetExp ::= { [ Expression, . . . , Expression] }
| {SchemaText [ • Expression] }

ObjRef ::= Ident | (Ident, Ident)

Ident ::= Word Decoration

DeclName ::= Ident | OpName

VarName ::= Ident | (OpName)

OpName ::= InSym | PreSym | PostSym | (| |) | −

InSym ::= InFun | InGen | InRel

PreSym ::= PreGen | PreRel

PostSym ::= PostFun

Decoration ::= [ Stroke . . . Stroke]

GenFormals ::= [Ident, . . . , Ident]

GenActuals ::= [Expression, . . . , Expression]

Word Undecorated name or special symbol
Stroke Single decoration: ′, ?, ! or a subscript digit
SchemaName Same as Word, but used to name a schema
OpnName Same as Word, but used to name an operation
ClassName Same as Word, but used to name a class
InFun Infix function symbol

7→ . . + − ∪ \ a ∗ div mod ∩ � o
9 ◦ ⊕ C B −C −B

InRel Infix relation symbol
6= 6∈ ⊆ ⊂ < 6 > > partitions

InGen Infix generic symbol
↔ 7→ → 7� � 7→→ →→ �→ 7 7→ 7 7�

PreRel Prefix relation symbol
disjoint

PreGen Prefix generic symbol
P1 id F F1 seq seq1 seq

∞
bag

PostFun Postfix function symbol
∼ ∗ +

Number Unsigned decimal integer
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Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesis. The glossary is
based on the glossary of Z notation presented in Hayes[56] with modifications to reflect
more closely the more recent Z notation of Spivey[108].

Mathematical Notation

Definitions and declarations

Let x , xk be identifiers and let T ,Tk be non-empty, set-valued expressions.

LHS == RHS Definition of LHS as syntactically equivalent to RHS .

LHS [X1,X2, . . . ,Xn ] == RHS
Generic definition of LHS , where X1,X2, . . . ,Xn are variables de-
noting formal parameter sets.

x : T A declaration, x : T , introduces a new variable x of type T.

x1 : T1; x2 : T2; . . . ; xn : Tn

List of declarations.

x1, x2, . . . , xn : T == x1 : T ; x2 : T ; . . . ; xn : T

[X1,X2, . . . ,Xn ] Introduction of free types named X1,X2, . . . ,Xn .
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Logic

Let P ,Q be predicates and let D be a declaration or a list of declarations.

true, false Logical constants.

¬ P Negation: “not P”.

P ∧ Q Conjunction: “P and Q”.

P ∨ Q Disjunction: “P or Q or both”.

P ⇒ Q == (¬ P) ∨ Q
Implication: “P implies Q” or “if P then Q”.

P ⇔ Q == (P ⇒ Q) ∧ (Q ⇒ P)
Equivalence: “P is logically equivalent to Q”.

∀ x : T • P Universal quantification: “for all x of type T , P holds”.

∃ x : T • P Existential quantification: “there exists an x of type T such that
P holds”.

∃
1
x : T • P Unique existence: “there exists a unique x of type T such that P

holds”.

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P
“For all x1 of type T1, x2 of type T2, . . . , and xn of type Tn , P
holds.”

∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P
Similar to ∀.

∃
1
x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to ∀.

∀D | P • Q ⇔ ∀D • P ⇒ Q

∃D | P • Q ⇔ ∃D • P ∧ Q

t1 = t2 Equality between terms.

t1 6= t2 ⇔ ¬ (t1 = t2)
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Sets

Let X be a set; S and T be subsets of X ; t , tk terms; P a predicate; and D declarations.

t ∈ S Set membership: “t is a member of S”.

t 6∈ S ⇔ ¬ (t ∈ S )

S ⊆ T ⇔ (∀ x : S • x ∈ T )
Set inclusion.

S ⊂ T ⇔ S ⊆ T ∧ S 6= T
Strict set inclusion.

∅ The empty set.

{t1, t2, . . . , tn} The set containing the values of terms t1, t2, . . . , tn .

{x : T | P} The set containing exactly those x of type T for which P holds.

(t1, t2, . . . , tn) Ordered n-tuple of t1, t2, . . . , tn .

T1 × T2 × . . . × Tn

Cartesian product: the set of all n-tuples such that the kth com-
ponent is of type Tk .

first(t1, t2, . . . , tn)
== t1
Similarly, second(t1, t2, . . . , tn) == t2, etc.

{x1 : T1; x2 : T2; . . . ; xn : Tn | P}
The set of all n-tuples (x1, x2, . . . , xn) with each xk of type Tk such
that P holds.

{D | P • t} The set of values of the term t for the variables declared in D
ranging over all values for which P holds.

{D • t} == {D | true • t}

PS Powerset: the set of all subsets of S .

P
1
S == PS \ {∅}

The set of all non-empty subsets of S .

FS == {T : P S | T is finite }
Set of finite subsets of S .
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F
1
S == F S \ {∅}

Set of finite non-empty subsets of S .

S ∩ T == {x : X | x ∈ S ∧ x ∈ T}
Set intersection.

S ∪ T == {x : X | x ∈ S ∨ x ∈ T}
Set union.

S \ T == {x : X | x ∈ S ∧ x 6∈ T}
Set difference.

⋂
SS == {x : X | (∀ S : SS • x ∈ S )}

Intersection of a set of sets; SS is a set containing as its members
subsets of X , i.e. SS : P(PX ).

⋃
SS == {x : X | (∃ S : SS • x ∈ S )}

Union of a set of sets; SS : P(PX ).

#S Size (number of distinct members) of a finite set.

Numbers

R The set of real numbers.

Z The set of integers (positive, zero and negative).

N == {n : Z | n ≥ 0}
The set of natural numbers (non-negative integers).

N1 == N \ {0}
The set of strictly positive natural numbers.

m . . n == {k : Z | m ≤ k ∧ k ≤ n}
The set of integers between m and n inclusive.

min S Minimum of a set; for S : P
1
Z,

min S ∈ S ∧ (∀ x : S • x ≥ min S ).

max S Maximum of a set; for S : P
1
Z,

max S ∈ S ∧ (∀ x : S • x ≤ max S ).
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Relations

A binary relation is modelled by a set of ordered pairs hence operators defined for sets
can be used on relations. Let X , Y , and Z be sets; x : X ; y : Y ; S be a subset of X ; T
be a subset of Y ; and R a relation between X and Y .

X ↔ Y == P(X × Y )
The set of relations between X and Y .

x R y == (x , y) ∈ R
x is related by R to y .

x 7→ y == (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}
== {(x1, y1), (x2, y2), . . . , (xn , yn)}
The relation relating x1 to y1, x2 to y2, . . . , and xn to yn .

dom R == {x : X | (∃ y : Y • x R y)}
The domain of a relation: the set of x components that are related
to some y.

ranR == {y : Y | (∃ x : X • x R y)}
The range of a relation: the set of y components that some x is
related to.

R1
o
9 R2 == {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z )}

Forward relational composition; R1 : X ↔ Y ; R2 : Y ↔ Z .

R1 ◦ R2 == R2
o

9
R1

Relational composition. This form is primarily used when R1 and
R2 are functions.

R∼ == {y : Y ; x : X | x R y}
Transpose of a relation R.

id S == {x : S • x 7→ x}
Identity function on the set S .

Rk The homogeneous relation R composed with itself k times: given
R : X ↔ X ,
R0 = id X and Rk+1 = Rk o

9 R.

R+ ==
⋃
{n : N1 • Rn}

=
⋂
{Q : X ↔ X | R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Transitive closure.
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R∗ ==
⋃
{n : N • Rn}

=
⋂
{Q : X ↔ X | id X ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Reflexive transitive closure.

R(| S |) == {y : Y | (∃ x : S • x R y)}
Image of the set S through the relation R.

S C R == {x : X ; y : Y | x ∈ S ∧ x R y}
Domain restriction: the relation R with its domain restricted to
the set S .

S −C R == (X \ S ) C R
Domain subtraction: the relation R with the elements of S re-
moved from its domain.

R B T == {x : X ; y : Y | x R y ∧ y ∈ T}
Range restriction to T .

R −B T == R B (Y \ T )
Range subtraction of T .

R1 ⊕ R2 == (dom R2 −C R1) ∪ R2

Overriding; R1,R2 : X ↔ Y .

Functions

A function is a relation with the property that each member of its domain is associated
with a unique member of its range. As functions are relations, all the operators defined
above for relations also apply to functions. Let X and Y be sets, and T be a subset of
X (i.e. T : P X ).

f t The function f applied to t .

X 7→ Y == {f : X ↔ Y | (∀ x : dom f • (∃
1
y : Y • x f y))}

The set of partial functions from X to Y .

X → Y == {f : X 7→ Y | dom f = X }
The set of total functions from X to Y .

X 7� Y == {f : X 7→ Y | (∀ y : ran f • (∃
1
x : X • x f y))}

The set of partial one-to-one functions (partial injections) from X
to Y .
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X � Y == {f : X 7� Y | dom f = X }
The set of total one-to-one functions (total injections) from X to
Y .

X 7→→ Y == {f : X 7→ Y | ran f = Y }
The set of partial onto functions (partial surjections) from X to
Y .

X →→ Y == (X 7→→ Y ) ∩ (X → Y )
The set of total onto functions (total surjections) from X to Y .

X �→ Y == (X →→ Y ) ∩ (X � Y )
The set of total one-to-one onto functions (total bijections) from
X to Y .

X 7 7→ Y == {f : X 7→ Y | f ∈ F(X × Y )}
The set of finite partial functions from X to Y .

X 7 7� Y == {f : X � Y | f ∈ F(X × Y )}
The set of finite partial one-to-one functions from X to Y .

(λ x : X | P • t) == {x : X | P • x 7→ t}
Lambda-abstraction: the function that, given an argument x of
type X such that P holds, gives a result which is the value of the
term t .

(λ x1 : T1; . . . ; xn : Tn | P • t)
== {x1 : T1; . . . ; xn : Tn | P • (x1, . . . , xn) 7→ t}

disjoint[I ,X ] == {S : I 7→ P X | ∀ i , j : dom S • i 6= j ⇒ S (i) ∩ S (j ) = ∅}
Pairwise disjoint; where I is a set and S an indexed family of
subsets of X (i.e. S : I 7→ PX ).

S partitions T == S ∈ disjoint ∧
⋃

ranS = T

Sequences

Let X be a set; A and B be sequences with elements taken from X ; and a1, . . . , an terms
of type X .

seq X == {A : N1 7→ X | (∃ n : N • domA = 1..n)}
The set of finite sequences whose elements are drawn from X .
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seq
∞

X == {A : N1 7→ X | A ∈ seq X ∨ dom A = N1}
The set of finite and infinite sequences whose elements are drawn
from X .

#A The length of a finite sequence A. (This is just ‘#’ on the set
representing the sequence.)

〈〉 == {}
The empty sequence.

seq
1
X == {s : seq X | s 6= 〈〉}

The set of non-empty finite sequences.

〈a1, . . . , an〉 = {1 7→ a1, . . . , n 7→ an}

〈a1, . . . , an〉
a 〈b1, . . . , bm〉

= 〈a1, . . . , an , b1, . . . , bm〉
Concatenation.
〈〉 a A = A a 〈〉 = A.

head A The first element of a non-empty sequence:
A 6= 〈〉 ⇒ head A = A(1).

tail A All but the head of a non-empty sequence:

tail (〈x 〉 a A) = A.

last A The final element of a non-empty finite sequence:
A 6= 〈〉 ⇒ last A = A(#A).

front A All but the last of a non-empty finite sequence:

front (A a 〈x 〉) = A.

rev 〈a1, a2, . . . , an〉
= 〈an , . . . , a2, a1〉
Reverse of a finite sequence; rev 〈〉 = 〈〉.

a/AA = AA(1) a . . . a AA(#AA)

Distributed concatenation; where AA : seq(seq(X )). a/〈〉 = 〈〉.

A ⊆ B ⇔ ∃C : seq
∞

X • A a C = B
A is a prefix of B . (This is just ‘⊆’ on the sets representing the
sequences.)

squash f Convert a finite function, f : N 7 7→ X , into a sequence by squashing
its domain. That is, squash{} = 〈〉, and if f 6= {} then squash f =

〈f (i)〉 a squash({i} −C f ), where i = min(dom f ). For example,
squash{2 7→ A, 27 7→ C , 4 7→ B} = 〈A,B ,C 〉.

A � T == squash(A B T )
Restrict the range of the sequence A to the set T .
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Bags

bag X == X 7→ N1

The set of bags whose elements are drawn from X . A bag is
represented by a function that maps each element in the bag onto
its frequency of occurrence in the bag.

[[ ]] The empty bag ∅.

[[x1, x2, . . . , xn ]] The bag containing x1, x2, . . . , xn , each with the frequency that it
occurs in the list.

items s == {x : ran s • x 7→ #{i : dom s | s(i) = x}}
The bag of items contained in the sequence s.

Axiomatic definitions

Let D be a list of declarations and P a predicate.

The following axiomatic definition introduces the variables in D with the types as declared
in D. These variables must satisfy the predicate P. The scope of the variables is the whole
specification.

D

P

Generic definitions

Let D be a list of declarations, P a predicate and X1,X2, . . .Xn variables.

The following generic definition is similar to an axiomatic definition, except that the
variables introduced are generic over the sets X1,X2, . . .Xn .

[X1,X2, . . .Xn ]
D

P

The declared variables must be uniquely defined by the predicate P .
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Schema Notation

Schema definition

A schema groups together a set of declarations of variables and a predicate relating the
variables. If the predicate is omitted it is taken to be true, i.e. the variables are not further
restricted. There are two ways of writing schemas: vertically, for example,

S
x : N

y : seq N

x ≤ #y

and horizontally, for the same example,

S == [x : N; y : seq N | x ≤ #y ]

Schemas can be used in signatures after ∀, λ, {...}, etc.:

(∀ S • y 6= 〈〉) ⇔ (∀ x : N; y : seq N | x ≤ #y • y 6= 〈〉)

{S} Stands for the set of objects described by schema S . In declarations
w : S is usually written as an abbreviation for w : {S}.

Schema operators

Let S be defined as above and w : S .

w .x == (λ S • x )(w)
Projection functions: the component names of a schema may be
used as projection (or selector) functions, e.g. w .x is w ’s x compo-
nent and w .y is its y component; of course, the predicate ‘w .x ≤
#w .y ’ holds.

θS The (unordered) tuple formed from a schema’s variables, e.g. θS
contains the named components x and y .

Compatibility Two schemas are compatible if the declared sets of each variable
common to the declaration parts of the two schemas are equal. In
addition, any global variables referenced in predicate part of one of
the schemas must not have the same name as a variable declared
in the other schema; this restriction is to avoid global variables
being captured by the declarations.

168



Appendix B. Glossary of Z Notation

Inclusion A schema S may be included within the declarations of a schema
T , in which case the declarations of S are merged with the other
declarations of T (variables declared in both S and T must have
the same declared sets) and the predicates of S and T are con-
joined. For example,

T
S
z : N

z < x

is equivalent to

T
x , z : N

y : seq N

x ≤ #y ∧ z < x

The included schema (S) may not refer to global variables that have
the same name as one of the declared variables of the including
schema (T).

Decoration Decoration with subscript, superscript, prime, etc: systematic re-
naming of the variables declared in the schema. For example, S ′

is
[x ′ : N; y ′ : seq N | x ′ ≤ #y ′].

¬ S The schema S with its predicate part negated. For example,
¬ S is [x : N; y : seq N | ¬ (x ≤ #y)].

S ∧ T The schema formed from schemas S and T by merging their decla-
rations and conjoining (and-ing) their predicates. The two schemas
must be compatible (see above).
Given T == [x : N; z : P N | x ∈ z ], S ∧ T is

S ∧ T
x : N

y : seq N

z : P N

x ≤ #y ∧ x ∈ z

S ∨ T The schema formed from schemas S and T by merging their decla-
rations and disjoining (or-ing) their predicates. The two schemas
must be compatible (see above). For example, S ∨ T is
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S ∨ T
x : N

y : seq N

z : P N

x ≤ #y ∨ x ∈ z

S ⇒ T The schema formed from schemas S and T by merging their dec-
larations and taking ‘pred S ⇒ pred T ’ as the predicate. The two
schemas must be compatible (see above). For example, S ⇒ T is

S ⇒ T
x : N

y : seq N

z : P N

x ≤ #y ⇒ x ∈ z

S ⇔ T The schema formed from schemas S and T by merging their dec-
larations and taking ‘pred S ⇔ pred T ’ as the predicate. The two
schemas must be compatible (see above). For example, S ⇔ T is

S ⇔ T
x : N

y : seq N

z : P N

x ≤ #y ⇔ x ∈ z

S \ (v1, v2, . . . , vn)
Hiding: the schema S with variables v1, v2, . . . , vn hidden – the
variables listed are removed from the declarations and are existen-
tially quantified in the predicate. The parantheses may be omitted
when only one variable is hidden.

S � (v1, v2, . . . , vn)
Projection: The schema S with any variables that do not occur in
the list v1, v2, . . . , vn hidden – the variables are removed from the
declarations and are existentially qualified in the predicate. For
example, (S ∧ T ) � (x , y) is

(S ∧ T ) � (x , y)
x : N

y : seq N

(∃ z : P N •
x ≤ #y ∧ x ∈ z )
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The list of variables may be replaced by a schema; the variables
declared in the schema are used for projection.

∃D • S Existential quantification of a schema.
The variables declared in the schema S that also appear in the dec-
larations D are removed from the declarations of S. The predicate
of S is existentially quantified over D. For example, ∃ x : N • S is
the following schema.

∃ x : N • S
y : seq N

∃ x : N •
x ≤ #y

The declarations may include schemas. For example,

∃ S • T
z : N

∃ S •
x ≤ #y ∧ z < x

∀D • S Universal quantification of a schema.
The variables declared in the schema S that also appear in the dec-
larations D are removed from the declarations of S. The predicate
of S is universally quantified over D. For example, ∀ x : N • S is
the following schema.

∀ x : N • S
y : seq N

∀ x : N •
x ≤ #y

The declarations may include schemas. For example,

∀ S • T
z : N

∀ S •
x ≤ #y ∧ z < x

Operation schemas

The following conventions are used for variable names in those schemas which represent
operations, that is, which are written as descriptions of operations on some state,
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undashed state before the operation,

dashed state after the operation,

ending in “?” inputs to (arguments for) the operation, and

ending in “!” outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

∆S =̂ S ∧ S ′

Change of state schema: this is a default definition for ∆S . In
some specifications it is useful to have additional constraints on
the change of state schema. In these cases ∆S can be explicitly
defined.

ΞS =̂ [∆S | θS ′ = θS ]
No change of state schema.

Operation schema operators

pre S Precondition: the after-state components (dashed) and the outputs
(ending in “!”) are hidden, e.g. given,

S
x?, s, s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′

pre S is,

pre S
x?, s : N

∃ s ′, y ! : N •
s ′ = s − x? ∧ y ! = s ′

S o

9 T Schema composition: if we consider an intermediate state that is
both the final state of the operation S and the initial state of the
operation T then the composition of S and T is the operation
which relates the initial state of S to the final state of T through
the intermediate state. To form the composition of S and T we
take the pairs of after-state components of S and before-state com-
ponents of T that have the same basename, rename each pair to
a new variable, take the conjunction of the resulting schemas, and
hide the new variables. For example, S o

9 T is,
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S o
9 T

x?, s, s ′, y ! : N

(∃ ss : N •
ss = s − x? ∧ y ! = ss
∧ ss ≤ x? ∧ s ′ = ss + x?)
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Appendix C

Proof of Lemmas

This appendix includes the proofs of the lemmas required for the proof of compositionality
of the complete-readiness model in Chapter 5. A denotes a class and A its structural
model. C denotes a context which includes a single object a of its elided class as a state
variable.

Lemma C.1

The history of an object of class A is in the set h init(A) if and only if its behaviour is in
b init(A).

behav(A)(| h init(A) |) = b init(A)

Proof

From the definition of behav(A),

behav(A)(| h init(A) |) = {b : CRsafe(A) | ∃ h : h init(A) •
b.events = h.events ∧
∀ i : b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph)}

From the definition of h init(A),

behav(A)(| h init(A) |) = {b : CRsafe(A) | ∃ h : T Hsafe(A) •
h.events = 〈 〉 ∧
b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph)}
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Since h.events = 〈 〉 ∧ b.events = h.events is equivalent to b.events = 〈 〉 ∧ b.events =
h.events,

behav(A)(| h init(A) |) = {b : CRsafe(A) | b.events = 〈 〉 ∧
∃ h : T Hsafe(A) •

b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph)}

From the definition of behav(A),

behav(A)(| h init(A) |) = {b : CRsafe(A) | b.events = 〈 〉 ∧
∃ h : T Hsafe(A) • b = behav(A)(h)}

Since CRsafe(A) = behav(A)(| T Hsafe(A) |),

behav(A)(| h init(A) |) = {b : CRsafe(A) | b.events = 〈 〉}

From the definition of b init(A),

behav(A)(| h init(A) |) = b init(A)

�

176



Appendix C. Proof of Lemmas

Lemma C.2

The history of an object of class A is in h pre(A, e), for a particular event e, if and only
if its behaviour is in b pre(A, e).

behav(A)(| h pre(A, e) |) = b pre(A, e)

Proof

From the definition of behav(A),

behav(A)(| h pre(A, e) |) =
{b : CRsafe(A) | ∃ h : h pre(A, e) •

b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph)}

From the definition of h pre(A, e),

behav(A)(| h pre(A, e) |) =
{b : CRsafe(A) | ∃ h : T Hsafe(A) •

b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph) ∧

h.events ∈ seq Event ∧
∃ h ′ : T Hsafe(A) •

front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉}

Since CRsafe(A) = behav(A)(| T Hsafe(A) |),

behav(A)(| h pre(A, e) |) =
{b : CRsafe(A) | ∃ b ′ : CRsafe(A) •

∃ h : T Hsafe(A) •
b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph) ∧

h.events ∈ seq Event ∧
∃ h ′ : T Hsafe(A) •

behav(A)(h ′) = b ′

front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉}
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From the definition of behav(A),

behav(A)(| h pre(A, e) |) =
{b : CRsafe(A) | ∃ b ′ : CRsafe(A) •

∃ h : T Hsafe(A) •
b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph) ∧

h.events ∈ seq Event ∧
∃ h ′ : T Hsafe(A) •

b ′.events = h ′.events ∧
∀ i : dom b ′.readys; ph : prehist(h ′) •

#ph.states = i ⇒
b ′.readys(i) = next(A, ph) ∧

front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉}

Since b ′.events = h ′.events ∧ b.events = h.events ∧ h ′.events = h.events a 〈e〉 is equiv-

alent to b ′.events = h ′.events ∧ b.events = h.events ∧ b ′.events = b.events a 〈e〉, and
b.events = h.events ∧ h.events ∈ seq Event is equivalent to b.events = h.events ∧
b.events ∈ seq Event ,

behav(A)(| h pre(A, e) |) =
{b : CRsafe(A) | b.events ∈ seq Event

∃ b ′ : CRsafe(A) •

b ′.events = b.events a 〈e〉 ∧
∃ h : T Hsafe(A) •

b.events = h.events ∧
∀ i : dom b.readys; ph : prehist(h) •

#ph.states = i ⇒
b.readys(i) = next(A, ph) ∧

∃ h ′ : T Hsafe(A) •
b ′.events = h ′.events ∧
∀ i : dom b ′.readys; ph : prehist(h ′) •

#ph.states = i ⇒
b ′.readys(i) = next(A, ph) ∧

front h ′.states = h.states}
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From the definition of behav(A),

behav(A)(| h pre(A, e) |) = {b : CRsafe(A) | b.events ∈ seq Event
∃ b ′ : CRsafe(A) •

b ′.events = b.events a 〈e〉 ∧
∃ h : T Hsafe(A) •

behav(A)(h) = b ∧
∃ h ′ : T Hsafe(A) •

behav(A)(h ′) = b ′ ∧
front h ′.states = h.states}

Since ∃ h, h ′ : T Hsafe(A) • front h ′.states = h.states ∧ behav(A)(h) = b ∧ behav(A)(h ′) =
b ′ implies front b ′.readys = b.readys (from the definition of behav(A)),

behav(A)(| h pre(A, e) |) = {b : CRsafe(A) | b.events ∈ seq Event
∃ b ′ : CRsafe(A) •

front b ′.readys = b.readys ∧

b ′.events = b.events a 〈e〉 ∧
∃ h : T Hsafe(A) •

behav(A)(h) = b ∧
∃ h ′ : T Hsafe(A) •

behav(A)(h ′) = b ′ ∧
front h ′.states = h.states}

Since T Hsafe(A) includes all pre-histories of any history it contains, for all h ′ : T Hsafe(A),
there exists a h : T Hsafe(A) such that front h ′.states = h.states.

Hence, front b ′.readys = b.readys ∧ ∃ h, h ′ : T Hsafe(A) • front h ′.states = h.states ∧
behav(A)(h) = b ∧ behav(A)(h ′) = b ′ is equivalent to front b ′.readys = b.readys ∧ ∃ h, h ′ :
T Hsafe(A) • behav(A)(h) = b ∧ behav(A)(h ′) = b ′. Therefore,

behav(A)(| h pre(A, e) |) = {b : CRsafe(A) | b.events ∈ seq Event
∃ b ′ : CRsafe(A) •

front b ′.readys = b.readys ∧

b ′.events = b.events a 〈e〉 ∧
∃ h : T Hsafe(A) •

behav(A)(h) = b ∧
∃ h ′ : T Hsafe(A) •

behav(A)(h ′) = b ′}

Since CRsafe(A) = behav(A)(| T Hsafe(A) |),

behav(A)(| h pre(A, e) |) = {b : CRsafe(A) | b.events ∈ seq Event
∃ b ′ : CRsafe(A) •

front b ′.readys = b.readys

b ′.events = b.events a 〈e〉}
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From the definition of b pre(A, e),

behav(A)(| h pre(A, e) |) = b pre(A, e)

�
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Lemma C.3

A state s of C [A] satisfies a predicate in C [A] using Method 1 if and only if s map(A)(s)
satisfies the predicate using Method 2.

Proof

1) The predicate does not refer to a.

If the predicate is true given the assignment of values to the variables in s other than a
then, using Method 1, it will be true for all histories of a (i.e. all histories in T Hsafe(A)).
Similarly, using Method 2, it will be true for all behaviours of a (i.e. all behaviours
in CRsafe(A)). Since behav(A)(| T Hsafe(A) |) = CRsafe(A), s map(A)(s) will satisfy the
predicate using Method 2 whenever s satisfies the predicate using Method 1.

If the predicate is false given the assignment of values to the variables in s other than a
then, using Method 1, the predicate is not satisfied for any history of a. Similarly, using
Method 2, the predicate is not satisfied for any behaviour of a.

2) The predicate is a.INIT .

Using Method 1, the predicate is true when the history of a is in h init(A). Using
Method 2, the predicate is true when the behaviour of a is in b init(A). Since, by
Lemma C.1, behav(A)(| h init(A) |) = b init(A), s will satisfy a.INIT using Method 1 if
and only if s map(A)(s) satisfies a.INIT using Method 2.

3) The predicate is pre a.op and the assignment of values to a.op’s parameters are such
that the occurrence of a.op would correspond to the event e.

Using Method 1, the predicate is true when the history of a is in h pre(A, e). Using
Method 2, the predicate is true when the behaviour of a is in b pre(A, e). Since by
Lemma C.2, behav(A)(| h pre(A, e) |) = b pre(A, e), s will satisfy the predicate using
Method 1 if and only if s map(A)(s) satisfies the predicate using Method 2.

All other predicates in C [A] can be constructed from the predicates above and, using the
above results, can be shown to satisfy the lemma. �
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Lemma C.4

If the transition (h, h ′) is in h trans(A, e), for a particular event e, then the transition
(behav(A)(h), behav(A)(h ′)) is in b trans(A, e).

∀(h, h ′) : h trans(A, e) • (behav(A)(h), behav(A)(h ′)) ∈ b trans(A, e)

Proof

If (h, h ′) is in h trans(A, e) then from the definition of h trans(A, e),

h.events ∈ seq Event ∧
front h ′.states = h.states ∧

h ′.events = h.events a 〈e〉

From the definition of behav(A),

behav(A)(h).events = h.events ∧
∀ i : dom behav(A)(h).readys; ph : prehist(h) •

#ph.states = i ⇒
behav(A)(h).readys(i) = next(A, ph) ∧

behav(A)(h ′).events = h ′.events ∧
∀ i : dom behav(A)(h ′).readys; ph : prehist(h ′) •

#ph.states = i ⇒
behav(A)(h ′).readys(i) = next(A, ph)

Therefore,

behav(A)(h).events ∈ seq Event ∧
front behav(A)(h ′).readys = behav(A)(h).readys ∧

behav(A)(h ′).events = behav(A)(h).events a 〈e〉

From the definition of b trans(A, e),

(behav(A)(h), behav(A)(h ′)) ∈ b trans(A, e)

�
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Lemma C.5

If the transition (b, b ′) is in b trans(A, e), for a particular event e, then for all h ′ such that
behav(A)(h ′) = b ′, there exists a h such that behav(A)(h) = b and the transition (h, h ′) is
in h trans(A, e).

∀(b, b ′) : b trans(A, e) •
∀ h ′ : behav(A)∼(| {b ′} |) • ∃ h : behav(A)∼(| {b} |) • (h, h ′) ∈ h trans(A, e)

Proof

If (b, b ′) is in b trans(A, e) and behav(A)(h ′) = b ′ then from the definition of b trans(A, e)
and behav(A),

b ∈ seq Event ∧
front b ′.readys = b.readys ∧

b ′.events = b.events a 〈e〉 ∧
b ′.events = h ′.events ∧
∀ i : dom b ′.readys; ph : prehist(h ′) •

#ph.states = i ⇒
b ′.readys(i) = next(A, ph)

Let h be a history such that h.states = front h ′.states and h.events = front h ′.events.
Since h ∈ prehist(h ′), h ∈ T Hsafe(A) and is therefore in the domain of behav(A).

From the definition of behav(A), behav(A)(h) = b. Also, from the definition of h trans(A, e),
(h, h ′) is in h trans(A, e). �
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Lemma C.6

(a) If a state tuple (s, s ′) satisfies an operation in C [A] using Method 1 then the tuple
(s map(A)(s), s map(A)(s ′)) satisfies the operation using Method 2.

(b) If a state tuple (t , t ′) satisfies an operation in C [A] using Method 2 then for all states
s ′ in s map(A)∼(| {t ′} |), there exists a state s in s map(A)∼(| {t} |) such that the tuple
(s, s ′) satisfies the operation using Method 1.

Proof

1) The operation does not change a. It may, however, refer to a, i.e. it may involve a.INIT

or pre a.op.

Using Method 1, (s, s ′) is a transition of the operation if the history of a in s is the same as
the history of a in s ′ and the precondition and postcondition of the operation are true for
the assignment of values to the variables in s and s ′ respectively. Using Method 2, (t , t ′)
is a transition of the operation if the behaviour of a in t is the same as the behaviour of a
in t ′ and the precondition and postcondition of the operation are true for the assignment
of values to the variables in t and t ′ respectively.

(a) Since s satisfies the precondition of the operation using Method 1, s map(A)(s) sat-
isfies the precondition using Method 2 by Lemma C.3. Also, since s ′ satisfies the post-
condition of the operation using Method 1, s map(A)(s ′) satisfies the postcondition using
Method 2. From the definition of s map, if the history of a is the same in s and s ′ then the
behaviour of a is the same in s map(A)(s) and s map(A)(s ′). Therefore, the operation
satisfies part (a) of the lemma.

(b) Since t satisfies the precondition of the operation using Method 2, all states s in
s map(A)∼(| {t} |) satisfy the precondition using Method 1 by Lemma C.3. Also, since t ′

satisfies the postcondition of the operation using Method 2, all s ′ in s map(A)∼(| {t ′} |)
satisfy the postcondition using Method 1. From the definition of s map, if the behaviour
of a in t is the same as the behaviour of a in t ′ then given an s ′ in s map∼(A)(| {t ′} |),
there exists an s in s map∼(A)(| {t} |) such that the history of a in s is the same as the
history of a in s ′. Therefore, the operation satisfies part (b) of the lemma.

2) The operation changes a arbitrarily, i.e. the operation includes a in its ∆-list but does
not refer to a ′ in its predicate.

Using Method 1, (s, s ′) is a transition of the operation if the precondition and postcon-
dition of the operation are true for the assignment of values to the variables in s and s ′

respectively. Using Method 2, (t , t ′) is a transition of the operation if the precondition
and postcondition of the operation are true for the assignment of values to the variables
in t and t ′ respectively.

(a) Since s satisfies the precondition of the operation using Method 1, s map(A)(s) sat-
isfies the precondition using Method 2 by Lemma C.3. Also, since s ′ satisfies the post-
condition of the operation using Method 1, s map(A)(s ′) satisfies the postcondition using
Method 2. Therefore, the operation satisfies part (a) of the lemma.

(b) Since t satisfies the precondition of the operation using Method 2, all states s in
s map(A)∼(| {t} |) satisfy the precondition using Method 1 by Lemma C.3. Also, since t ′

satisfies the postcondition of the operation using Method 2, all s ′ in s map(A)∼(| {t ′} |)
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satisfy the postcondition using Method 1. Therefore, the operation satisfies part (b) of
the lemma.

3) The operation is a.op and the assignment of values to a.op’s parameters are such that
the occurrence of the operation corresponds to the event e.

Using Method 1, (s, s ′) is a transition of the operation when the tuple consisting of the
history of a in s and the history of a in s ′ is in h trans(A, e). Using Method 2, (t , t ′) is
a transition of the operation when the tuple consisting of the behaviour of a in t and the
behaviour of a in t ′ is in b trans(A, e).

(a) Let h denote the history of a in s and h ′ the history of a in s ′. Since (h, h ′) is in
h trans(A, e), (behav(A)(h), behav(A)(h ′)) is in b trans(A, e) by Lemma C.4. Therefore,
(s map(A)(s), s map(A)(s ′)) satisfies the operation using Method 2.

(b) Let b denote the behaviour of a in t and b ′ the behaviour of a in t ′. Since (b, b ′) is
in b trans(A, e), for all histories h ′ such that behav(A)(h ′) = b ′, there exists a history h
such that behav(A)(h) = b and (h, h ′) is in h trans(A, e) by Lemma C.5. Therefore, for
all states s ′ in s map(A)∼(| {t ′} |), there exists a state s in s map(A)∼(| {t} |) such that
(s, s ′) satisfies the operation using Method 1.

All other operations in C [A] can be constructed from the operations above and, using the
above results, can be shown to satisfy the lemma. �

185



Appendix C. Proof of Lemmas

Lemma C.7

Let H1 denote the set of safe histories of C [A] derived using Method 1. Given a finite his-
tory h1 in H1, for any state s such that s map(A)(s) = s map(A)(h1.states(#h1.states)),
there exists a history h ′

1 in H1 such that h map(A)(h ′

1) = h map(A)(h1) and the final state
of h ′

1 is s.

∀ h1 : H1 •
h1.events ∈ seq Event ⇒

∀ s : s map(A)∼(| s map(A)(h1.states(#h1.states) |) •
∃ h ′

1 : H1 •
h map(A)(h ′

1) = h map(A)(h1) ∧
h ′

1.states(#h ′

1.states) = s

Proof

The proof is by induction over the length of h1.events.

(i) If #h1.events = 0 then h1.states(#h1.states) = h1.states(1) must satisfy the predi-
cate of the initial state schema of C [A] using Method 1. Therefore, all states s such
that s map(A)(s) = s map(A)(h1.states(1)) must also satisfy the predicate of the ini-
tial state schema of C [A] by Lemma C.3. Hence, there must exist a h ′

1 in H1 such that
h map(A)(h ′

1) = h map(A)(h1) and the final state of h ′

1 is s.

(ii) Assume the lemma is true for all h1 in H1 such that #h1.events = n for some n > 0.

If #h1.events = n +1 then the state transition (h1.states(n +1), h1.states(n +2)) must be
a transition of the event h1.events(n+1). Hence, for all states s ′ such that s map(A)(s ′) =
s map(A)(h1.states(n+2)), by Lemma C.6, there exists a state s such that s map(A)(s) =
s map(A)(h1.states(n + 1)) and (s, s ′) is a transition of h1.events(n + 1).

Since all pre-histories of h1 are in H1, there exists a history ph1 in H1 such that ph1 ∈
prehist(h1) and #ph1.events = n. Therefore, there exists a history ph ′

1 in H1 such that
h map(A)(ph ′

1) = h map(A)(ph1) and ph ′

1.states(n+1) = s by the assumption. Therefore,
there must exist a h ′

1 (which extends ph ′

1) in H1 such that h map(A)(h ′

1) = h map(A)(h1)
and the final state of h ′

1 is s ′. Hence, the lemma is true for all h1 in H1 such that
#h1.events = n + 1. �

186



Appendix C. Proof of Lemmas

Lemma C.8

If the sequence of histories of a in a total history h1 of C [A] is in h seq(A) then the
sequence of behaviours of a in h map(A)(h1) is in b seq(A).

Proof

Let hs denote the sequence of histories of a in h1. If hs is in h seq(A) then from the
definition of h seq(A),

hs ∈ dom closure ∧
closure(hs) ∈ T H(A)

Let bs denote the sequence of behaviours of a in h map(A)(h1). Since hs ∈ dom closure,
from the definition of closure, the history of a in h1 is either continually extended or,
after some point, remains unchanged. Therefore, from the definition of behav(A), the
behaviour of a in h map(A)(h1) is either continually extended or, after some point, remains
unchanged. Hence, from the definition of b closure, bs ∈ dom b closure.

Furthermore, it follows that b closure(bs) = behav(A)(closure(hs)). Therefore, since
behav(A)(| T H(A) |) = CR(A), b closure(bs) ∈ CR(A).

Hence, from the definition of b seq(A), bs ∈ b seq(A). �
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Appendix C. Proof of Lemmas

Lemma C.9

Let H1 denote the set of safe histories of C [A] derived using Method 1 and H2 denote the
set of safe histories of C [A] derived using Method 2. If the sequence of behaviours of a
in a history h2 of H2 is in b seq(A) then there exists a history h1 in h map(A)∼(| {h2} |)
such that the sequence of histories of a in h1 is in h seq(A) and h1 is in H1.

Proof

Let bs denote the sequence of behaviours of a in h2. If bs is in b seq(A) then from the
definition of b seq(A),

bs ∈ dom b closure ∧
b closure(bs) ∈ CR(A)

Let ha be a history in T H(A) such that behav(A)(ha) = b closure(bs). The existence
of ha is guaranteed since behav(A)(| T H(A) |) = CR(A). Let h1 be a history such that
h map(A)(h1) = h2 and at each state in h1 the history of a is a pre-history of ha . The
existence of h1 is guaranteed since T Hsafe(A) contains all pre-histories of ha , and, hence,
each history of a in h1 is a possible safe history of A.

Let hs denote the sequence of histories of a in h1. Since bs ∈ dom b closure, from the
definition of b closure, the behaviour of a in h2 is either continually extended or, after
some point, remains unchanged. Therefore, from the definition of behav(A), the history
of a in h1 is either continually extended or, after some point, remains unchanged. Hence,
from the definition of closure, hs ∈ dom closure. Furthermore, closure(hs) = ha is in
T H(A). Hence, from the definition of h seq(A), hs ∈ h seq(A).

Also, since any event of C [A] which extends the behaviour of a (i.e. an event which
applies an operation to a or changes a arbitrarily) can also extend the history of a by
the same events, and any event of C [A] which doesn’t change the behaviour of a (i.e. an
event which doesn’t refer to a or changes a arbitrarily) can also leave the history of a
unchanged, the sequence of events of C [A] which result in h2 using Method 2 can result
in h1 using Method 1. Hence, h1 is in H1. �
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Appendix C. Proof of Lemmas

Lemma C.10

Let H1 denote the set of safe histories of C [A] derived using Method 1 and H2 denote the
set of safe histories of C [A] derived using Method 2.

(a) If a history h1 satisfies a history invariant in C [A] using Method 1 then h map(A)(h1)
satisfies the history invariant using Method 2.

(b) If a history h2 is in H2 and satisfies a history invariant in C [A] using Method 2 then
there exists a h1 in h map(A)∼(| {h2} |) such that h1 is in H1 and satisfies the history
invariant using Method 1.

Proof

1) The history invariant does not refer to a.

Whether a history satisfies the history invariant is independent of the value of a.

(a) If h1 satisfies the history invariant using Method 1 then h map(A)(h1) satisfies the
history invariant using Method 2. Therefore, the history invariant satisfies part (a) of the
lemma.

(b) If h2 satisfies the history invariant using Method 2 then all h1 in h map(A)∼(| {h2} |)
satisfy the history invariant using Method 1. Also, there exists a h1 in h map(A)∼(| {h2} |)
which is also in H1 by Theorem 5.1(b). Therefore, the history invariant satisfies part (b)
of the lemma.

2) The history invariant is
→

a .

Using Method 1, h1 satisfies the history invariant when the sequence of histories of a in
h1 is in h seq(A). Using Method 2, h2 satisfies the history invariant when the sequence of
behaviours of a in h2 is in b seq(A).

(a) Since the sequence of histories of a in h1 is in h seq(A), the sequence of behaviours of
a in h map(A)(h1) is in b seq(A) by Lemma C.8. Therefore, the history invariant satisfies
part (a) of the lemma.

(b) Since the sequence of behaviours of a occurring in h2 is in b seq(A), there exists a h1

in h map(A)∼(| {h2} |) such that the sequence of histories of a in h1 is in h seq(A) and h1

is in H1 by Lemma C.9. Therefore, the history invariant satisfies part (b) of the lemma.

All other history invariants in C [A] can be constructed from the history invariants above
and, using the above results, can be shown to satisfy the lemma. �
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