
9
High-Level Petri

Nets—Extensions,
Analysis, and Applications

9.1 Introduction

Petri nets are an excellent formal model for studying concur-

rent and distributed systems and have been widely applied in

many different areas of computer science and other disciplines

(Murata, 1989). There have been over 8000 publications on

Petri nets (refer to Website http://www.daimi.au.dk/PetriNets/).

Since Carl Adam Petri originally developed Petri nets in 1962,

Petri nets have evolved through four generations: the first-

generation low-level Petri nets primarily used for modeling

system control (Reisig, 1985a), the second-generation high-

level Petri nets for describing both system data and control

(Jensen and Bozenburg, 1991), the third-generation hierarch-

ical Petri nets for abstracting system structures (He and Lee,

1991. He, 1996; Jensen, 1992), and the fourth-generation

object-oriented Petri nets for supporting modern system de-

velopment approaches (Agha, 2001). Petri nets have also been

extended in many different ways to study specific system

properties, such as performance, reliability, and schedulability.

Well-known examples of extended Petri nets include timed

Petri nets (Wang, 1998) and stochastic Petri nets (Marsan et

al., 1994; Haas, 2002). In this article, we present several exten-

sions to Petri nets based on our own research work and

provide analysis techniques for these extended Petri net

models. We also discuss the intended applications of these

extended Petri nets and their potential benefits.

9.2 High-Level Petri Nets

In the past few years, a concerted effort by the worldwide Petri

net community has resulted in an international standard on

defining high-level Petri nets (HLPN) (ISOLTEC, 2002) that

will profoundly help to facilitate and promote the research and

applications of these nets. In the following sections, we follow

as closely as possible the notations, concepts, and definitions

given in the standard documentation to introduce high-level

Petri nets, which are used later to define our extensions.

Xudong He* and Tadao
Murata8
School of Computer Science*

Florida International University,
Florida, USA

Department of Computer Science8
University of Illinois at Chicago,
Chicago, Illinois, USA

9.1 Introduction ... 000

9.2 High-Level Petri Nets ... 000
9.2.1 The Syntax and Static Semantics of High-Level Petri Nets . 9.2.2 Dynamic Semantics

9.3 Temporal Predicate Transition Nets... 000
9.3.1 Definition of Temporal Logic . 9.3.2 Temporal Predicate Transition Net .

9.3.3 An Example of TPrTN . 9.3.4 Analysis of TPrTNs

9.4 PZ Nets.. 000
9.4.1 A Brief Overview of Z . 9.4.2 Definition of PZ Nets . 9.4.3 PZ Net Analysis

9.5 Hierarchical Predicate Transition Nets ... 000
9.5.1 Definition of HPrTNs . 9.5.2 System Modeling Using HPrTNs

9.6 Fuzzy-Timing High-Level Petri Nets ... 000
9.6.1 Definition of FTHN . 9.6.2 Computation for Updating Fuzzy Time Stamps .

9.6.3 Intended Application Areas and Application Examples of FTHNs

References .. 000

Copyright � 2004 by Academic Press.

All rights of reproduction in any form reserved.

459

Au: Please
check to make
sure this
website still
works-sites are
easily outdated
and replaced.

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 459

9.2.1 The Syntax and Static Semantics
of High-Level Petri Nets

An HLPN is a structure:

N ¼ (NG, Sig, V , H , Type, AN , M0):

Here:

. NG ¼ (P, T ; F) is a net graph, with:
. P a finite set of nodes, called places;
. T a finite set of nodes, called transitions, disjoint from

P(P \ T ¼1); and
. F � (P � T) [(T � P) a set of directed edges called

arcs, known as the flow relation.
. Sig ¼ (S, O) is a Boolean signature, where S is a set of

sorts and where O is a set of operators defined in the

Annex A of ISO/JEC (2002).
. V is an S-indexed set of variables, disjoint from O.
. H ¼ (SH , OH) is a many-sorted algebra for the signature

Sig, defined in this list:
. Type: P ! SH is a function that assigns types to places.
. AN¼ (A, TC) is a pair of net annotations.

. A: F ! TERM(O [V) such that for all (p, t), (t, p)

2F and all bindings a, Vala(A(p, t)), Vala(A(t 0, p))

2 mType(p). TERM (O [V), a, Vala and mType(p)

are defined in Annex A of ISO/IEC (2002). A is a

function that annotates each arc with a term that

when evaluated (for some binding) results in a multiset

over the associated place’s type.
. TC: T ! TERM(O [V)Bool is a function that anno-

tates transitions with Boolean expressions.
. M0: P ! [p2Pm Type(p) such that 8p 2 P, M0(p) 2 m

Type (p) is the initial marking function that associates

a multiset of tokens (of the correct type) with each

place.

The above definitions are directly from ISO/IEC 2002.

Basically, HLPN has three essential parts: (1) a net graph

NG defining the syntax, (2) an underlying algebraic specifica-

tion (Sig, V, H) defining the semantic domain, and (3) a net

inscription (Type, AN, M0) mapping syntactic entities to their

semantic denotations. By restricting the underlying algebraic

specification and/or the net inscription, different variations of

high-level Petri nets can be obtained.

9.2.2 Dynamic Semantics

Marking

The marking M of the HLPN is defined in the same way as the

initial marking:

M : P ! [p2Pm Type(p) such that 8p 2 P, M(p) 2 m

Type(p).

Enabling

. Enabling of a Single Transition Mode

A transition t 2 T is enabled in a marking M for a particular

assignment of at to its variables and satisfies the transition

condition, Valbool(TC(t)) ¼ true known as a mode of t, if:

8p 2 PValat
(p, t) � M(p),

where for(u, v) 2 (P � T) [(T � P),

u, v ¼ A(u, v) for (u, v) 2 F , or u, v ¼1 for (u, v) 62 F:

. Concurrent Enabling of Transition Modes

Let at be an assignment for the variables of transition t 2 T

that satisfies its transition condition, and then denote the set of

all assignments for transition t, by Assignt. Define the set of all

transition modes to be TM ¼ {(t , at)jt 2 T , at 2 Assignt } and

a step to be a finite nonempty multiset over TM.

A step X of transition modes is enabled in a marking, M, if:

8p 2 P
X

(t, at)2X

Valat
(p, t) � M(p):

Thus, all of the transition modes in X are concurrently enabled

if X is enabled. Enabling of a single transition mode is a special

case of concurrent enabling of transition modes.

The enabling condition of a transition specifies that enough

right tokens are available to make the transition happen.

Transition Rule

If t 2 T is enabled in mode at for marking M, t may occur in

mode at . When t occurs in mode at , the marking of the net is

transformed to a new marking M 0, denoted in M[t , at > M 0,
according to the following rule:

8p 2 P(M 0(p) ¼ M(p)� Valat
(p, t)þ Valat

(t , p)):

If a step X is enabled in marking M, then the step can occur,

resulting in a new marking of M 0 denoted by M[X > M 0,
where M 0 is given by:

8p 2 P(M 0(p) ¼ M(p)�
X

(t, at)2X

Valat
(p, t)þ

X
(t, at)2X

Valat
(t , p))

The firing rule defines the effect of firing a transition, which

consumes specific tokens according to the mode in the preset

(input places) of the transition and generates new tokens in the

postset (output places) of the transition.

Behavior of A HLPN N

An execution sequence M0[X0 > M1[X1 > . . . of N is either

finite when the last marking is terminal (no more enabled

transition in the last marking) or infinite, in which each Xi is

Au: Do you
think that
equations in
this chapter
need a number
assigned to
them, as in
(9.1), (9.2),
(9.3), etc? If
so, please add
these
throughout
start from 9.1

Au: end
bracker?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 460

460 Xudong He and Tadao Murata

a step. The behavior of N is the set of all execution sequences

starting from the initial marking. The set of all reachable

markings from the initial marking is denoted by [M0 >.

Although ISO/IEC (2002) has defined the concepts of mark-

ings, transition enabling, and firing rules, it stopped short in

defining the dynamic semantics of an HLPN. In the existing

Petri net literature, there have been several semantic models of

Petri nets, such as interleaving, concurrent, and causal execu-

tions (Reisig, 1985b). From our own experience, we feel that

the interleaving set semantics model defined above is adequate

for studying many useful system behavioral properties.

9.3 Temporal Predicate Transition Nets

Petri nets are a model-oriented formal method and are well

suited for modeling the dynamic behaviors of concurrent and

distributed systems. Petri net specifications reveal system design

structures and thus provide guidelines for system implementa-

tion. Furthermore, Petri net specifications are executable and

support system simulation and testing in addition to formal

analysis. It is not easy, however, to directly and explicitly express

behavioral properties using Petri nets. On the other hand, prop-

erty-oriented formal methods, such as temporal logic, are ideal

for specifying and analyzing behavioral properties. It would be

great to have a hybrid formal method by integrating the

strengths of model-oriented and property-oriented formal

methods. In recent years, integrating formal methods has

become a major research area (Clark and Wing, 1996). There

have been several published results on integrating Petri nets and

temporal logic (Anttila et al., 1983; Diaz et al., 1983; He and Lee,

1990; He, 1992; Mandrioli et al., 1996; Suzuki and Lu, 1989).

Most of the earlier work was either lacking a systematic approach

or using a low-level Petri net model. In the following subsec-

tions, we describe our results on integrating predicate transition

nets [GL81] and first-order linear time temporal logic [MP92].

9.3.1 Definition of Temporal Logic

In this section, we define a linear time first-order temporal logic

(LTFOTL) in the style of Lamport (1994a) based on a given

PrTN. Let N ¼ (NG, Sig, V , H , Type, AN , M0) be a PrTN.

Values, State Variables, and States

The set of values is the multiset of tokens defined by the

ground terms TERM(O) of N. Multisets can be viewed as

partial functions. For example, multiset {3a, 2b} can be repre-

sented as {a 7!3, b 7!2}.

The set of state variables is the set P of places of NG, which

change their meanings during the executions of N. The arity of

a place p is determined by its type Type (p).

The set of statesSt is the set of all reachable markings [M0 >
of N. A marking is a mapping from the set of state variables

into the set of values. We use M[x] to denote the value of x

under state (marking) M.

Since state variables take partial functions as values, they

are flexible function symbols. We can access a particular

component value of a state variable. There is a problem,

however, associated with partial functions (i.e., many values

are undefined). The above problem can easily be solved by

extending state variables into total functions in the following

way: for any n-ary state variable p, any tuple c 2 TERM (O),

and any state M, if p(c) is undefined under M, then let

M[p(c)] ¼ 0. The above extension is consistent with the se-

mantics of PrTN. Furthermore we can consider the meaning

[p(c)] of the function application p(c) as a mapping from

states to Nat using a postfix notation for function application

M[p(c)].

Rigid Variables, Rigid Function, and Predicate Symbols

Rigid variables are individual variables that do not change

their meanings during the executions of N. All rigid variables

occurring in our temporal logic formulas are bound (quanti-

fied), and they are the only variables that can be quantified.

Rigid variables are variables appearing in the label expressions

and constraints of N.

Rigid function and predicate symbols do not change their

meanings during the executions of N. The set of rigid function

and predicate symbols is defined in V of N.

State Functions, Predicates, and Transitions

A state function is an expression built from values, state

variables, rigid function, and predicate symbols. For example,

[p(c)þ 1] is a state function, where c and 1 are values, p is a

state variable, and þ is a rigid function symbol. Since the

meanings of rigid symbols are not affected by any state, for

any given state M , M[p(c)þ 1] ¼ M[p(c)]þ 1.

A predicate is a Boolean-valued state function. A predicate p

is satisfied by a state M if and only if M[p] is true.

A transition is a particular kind of predicate that contains

primed state variables (e.g., [p0(c) ¼ p(c)þ 1]). A transition

relates two states (an old state and a new state), where the

unprimed state variables refer to the old state and where

the primed state variables refer to the new state. Therefore, the

meaning of a transition is a relation between states. The term

transition used here is a temporal logic entity. Although it

reflects the nature of a transition in a PrTN net N, it is

not a transition in N. For example, given a pair of states M

and M 0: M[p0(c) ¼ p(c)þ 1]M 0 is defined by M 0[p(c)] ¼
M[p(c)]þ 1. Given a transition t, a pair of states M and M 0

is called a ‘‘transition step’’ if M[p]M 0 equals true.

We can easily generalize any predicate p without primed

state variables into a relation between states by replacing all

unprimed state variables with their primed versions such that

M[p]M 0 equals M 0[p] for any states M and M 0.

Temporal Formulas

Temporal formulas are built from elementary formulas (predi-

cates and transitions) using logical connectives : and ^ (and

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 461

9 High-Level Petri Nets—Extensions, Analysis, and Applications 461

derived logical connectives _,), and,), universal quantifier

8 (and derived existential quantifier 9), and temporal operator

always tu-(and derived temporal operator sometimes �).

The semantics of temporal logic is defined on infinite se-

quences of states that are extracted from the execution sequences

of PrTNs, where the last marking of a finite execution se-

quence is repeated infinitely many times at the end of the

execution sequence. For example, for an execution sequence

M0[X0 > M1[X1 > . . . Mn, the following infinite sequence be-

havior s ¼<< M0 . . . Mn, Mn, . . . >> is obtained. We denote

the set of all possible behaviors obtained from a given PrTN as

St1. Let u and v be two arbitrary temporal formulas; p be an m-

ary place; t be a transition; x, x1 . . . xn be rigid variables;

s ¼<< M0, M1, . . . >> be a behavior; and sk ¼<< Mk ,

Mkþ1, . . . >> be a k-step-shifted behavior sequence. We define

the semantics of temporal formulas recursively as follows:

(1) s[p(x1, . . . , xn)] � M0[p(x1, . . . , xn)]
(2) s[t] � M0[t]M1

(3) s[:u] � :s[u]
(4) s[u ^ v] � s[u] ^ s[v]
(5) s[8xu] � 8x:s[u]
(6) s[tuu] � 8n 2 Nat sn[u]

Intuitively temporal operator always tu means every state in a

state sequence, and its dual operator sometimes � means some

future state in a state sequence. The relationship between these

two temporal operators is:

:tu � : � :

A temporal formula u is said to be satisfiable denoted as

sj ¼ u, if there is an execution s such that s[u] is true

(i.e., sj ¼ u, 9s 2 ST1:s[u]). A temporal formula u is

valid with regard to N, denoted as N j ¼ u, if it is satisfied

by all possible behaviors St1 from N : N j ¼ u, 8s

2 St1:s[u].

9.3.2 Temporal Predicate Transition Net

A temporal predicate transition net (TPrTN) is a tuple

TN ¼ (NG, Sig, V , H , Type, AN , M0, f), where N ¼ (NG,

Sig, V , H , Type, AN , M0) is a PrTN, and f is a LTFOTL

formula that constrains the execution of TN. The semantics

of TN are defined to be the set of execution sequences

S ¼ {sjs 2 St1 ^ s[f]}.

It is easy to see that a TPrTN TN is a PrTN N with a

temporal logic formula f. The temporal logic formula is de-

fined according to the net graph NG using logical connectives

and operators, which can be viewed as a part of the underlying

algebraic specification (Sig, V, H). The temporal logic formula

f is evaluated using the dynamic behaviors of N. By incorpor-

ating a temporal formula into the definition of a PrTN, we are

able to explicitly specify and verify many system properties

such as fairness.

9.3.3 An Example of TPrTN

The Five Dining Philosophers problem is a classical example

for studying behavioral properties of concurrent processes.

There are five philosophers sitting around a round table, and

there is one chopstick between two adjacent philosophers.

Each philosopher is either thinking or eating. In order for a

philosopher to eat, he needs to pick up two chopsticks next to

him. There are several interesting issues with regard to a

system model of this simple problem:

. Is the system deadlock free? A deadlock occurs when the

system cannot progress anymore due to a formation of a

waiting cycle.
. Has the system enforced mutual exclusion? Mutual exclu-

sion ensures that no two neighboring philosophers can

eat at the same time.
. Is the system live-lock free? A live lock occurs when some

philosopher has no chance to eat anymore from a certain

point and thus starves to death.

The following TPrTN models the Five Dining Philosophers

problem, shown in Figure 9.1, in which five philosophers are

denoted by five integer tokens 0 to 4 and five chopsticks are also

denoted by five integer tokens 0 to 4. Places p1 and p3 stand for the

Thinking and Eating states of philosophers, respectively. Place p2

defines the availability of chopsticks. Transitions t1 and t2 stand

for the actions of Pick up and Put down chopsticks, respectively.

The algebraic definition of the net TN ¼ (NG, Sig, V , H ,

Type, AN , M0, f) is as follows:

P ¼ {p1, p2, p3}, T ¼ {t1, t2},

F ¼ {(p1, t1), (p2, t1), (t1, p3), (p3, t2), (t2, p1), (t2, p2)},

Type(p1) ¼ Type(p2) ¼ Type(p3) ¼ INT,

A(p1, t1) ¼ x, A(p2, t1) ¼ {x, y}, A(t1, p3) ¼ x,

A(p3, t2) ¼ x, A(t2, p1) ¼ x, A(t2, p2) ¼ {x, y},

TC(t1) ¼ TC(t2) ¼ y ¼ x � 1,

M0(p1) ¼ M0(p2) ¼ {0, 1, 2, 3, 4}, and M0(p1) ¼ { },

x

x

x

x

p3

0,1,2,
3,4

t1

t2

y = x ⊕ 1

y = x ⊕ 1

{ x, y }

{ x, y }

0,1,2,
3,4

p2p1

FIGURE 9.1 A TPrTN Specification of the Five Dining Philosophers

Problem.

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 462

462 Xudong He and Tadao Murata

where INT is a sort defined in Sig, x and y are variables in V , �
is a modulo 5 addition operation given in Sig and defined in

the algebra H, and y ¼ x � 1 is a term in algebra H.

Temporal formula f is defined as follows:

f ¼8x(tu � (p1(x) ¼ 1 ^ p2(x) ¼ 1 ^ p2(x � 1) ¼ 1)

) tu � (p03(x) ¼ 1 ^ p01(x) ¼ 0 ^ p02(x � 1) ¼ 0)):

Temporal formula f defines the strong fairness (Manna and

Pnveli, 1992) that captures the enabling condition and the

firing result of transition t1 with every mode (defined by 8x).

Intuitively, it states that any philosopher who wants to eat

infinitely many times (defined by the temporal operator se-

quence tu�) will eat infinitely many times.

9.3.4 Analysis of TPrTNs

System behavioral properties can be divided into two major

categories: safety properties and liveness properties (Manna

and Pnveli, 1992). Widely accepted formal definitions of safety

and liveness properties were given in [AS85 (Alpern and

Schneider, 1985)]. A safety property, which is different from

the concept safeness in Petri net literature (Murata, 1999)

needs to hold in every state and in every state sequence. The

canonical form of a safety property is characterized by a

temporal formula tuw. A liveness property, which is different

from the concept transition liveness in Petri net literature

(Murata, 1989), needs to hold in some future state in every

state sequence. The canonical form of a liveness property is

characterized by a temporal formula �w.

In He and Lee (1990) and He and Ding (1992), we de-

veloped an axiomatic approach of using temporal logic to

analyze PrTNs. The essential ideas are to derive system-

dependent temporal inference rules from PrTN transitions.

These inference rules capture the causal relationships of tran-

sition firings. Thus, executions of a PrTN become temporal

logic deductions in the derived axiomatic system. We have

proved that safety properties (Manna and Prueli, 1992) can

be effectively analyzed using this axiomatic approach. Further-

more, we have shown how to analyze liveness properties

(Manna and Prueli, 1992) using the above temporal formula

by the (1991).

Given TN ¼ (NG, Sig, V , H , Type, AN , M0, f), we can

obtain the following system-dependent temporal axiom

system L:

(1) A system-dependent axiom captures the initial

marking M0: ^p2P(ICp), (IC)

where ICp represents the initial condition of place p under M0

(2) or each place p of arity k, let y1, . . . , yk be new vari-

ables not used in any label and t be any transition in

the postset p� with label L(p, t) ¼ {m1(x11, . . . ,

x1k), . . . , mn(xn1, . . . , xnk)}. We construct an infer-

ence rule as follows: p(y1, . . . , yk) > p0(y1, . . . , yk)

j � _t2p�((ETt) ^ (_l�i�n

(^l�j�k (yj ¼ xij)))), (PRp)

where ETt represents the causal relationship of firing transition

t. Intuitively, each inference rule states if a place loses tokens

from one marking to another, then some relevant transition

must have fired (He and Ding, 1992) The variables are univer-

sally quantified and are omitted for simplicity. The above

inference rules only reflect the local state changes. Together

with system independent axioms and inference rules (Manna

and Prueli, 1992, 1995), we can use IC and PRp to prove a

variety of safety properties.

The following is the derived system-dependent temporal

axiom system of the Five Dining Philosophers problem

shown in Figure 9.1:

p1(0) ¼ 1 ^ p1(1) ¼ 1 ^ p1(2) ¼ 1 ^ p1(3) ¼ 1 ^ p1(4) ¼ 1^
p2(0) ¼ 1 ^ p2(1) ¼ 1 ^ p2(2) ¼ 1 ^ p2(3) ¼ 1 ^ p2(4) ¼ 1: (IP)

p1(x) > p01(x)j � p1(x) 	 1 ^ p2(x) 	 1 ^ p2(y) 	 1^
y ¼ x � 1 ^ p01(x) ¼ p1(x)� 1 ^ p02(x) ¼
p2(x)� 1 ^ p02(y) ¼ p2(y)� 1 ^ p03(x) ¼ p3(x)þ 1: (PRpt

)

p2(x) > p02(x)j � p1(x) 	 1 ^ p2(x) 	 1 ^ p2(y) 	 1^
y ¼ x � 1 ^ p01(x) ¼ p1(x)� 1 ^ p02(x) ¼ p2(x)� 1^
p02(y) ¼ p2(y)� 103(x) ¼ p3(x)þ 1: (PRp2

)

p3(x) > p03(x)j � p3(x) 	 1 ^ p01(x) ¼ p1(x)þ1 ^ p02(x) ¼ p2(x)þ 1^
p02(y) ¼ p2(y)þ 1 ^ p03(x) ¼ p3(x)� 1 ^ y ¼ x � 1: (PRp3

)

A TPrTN is deadlock free if and only if there is at least one

transition being enabled in any reachable state or if a normal

terminal state has been reached. Deadlock freedom is a safety

property. The deadlock freedom property of the Five Dinning

Philosophers problem is formulated as follows:

tu9x, y(p3(x) 	 1 _ (p1(x) 	 1 ^ p2(x) 	 1 ^ p2(y) 	 1^
y ¼ x � 1)): (*)

A TPrTN net is livelock free if and only if for any transition

enabled infinitely often with a mode a, the same transition

with mode a will fire infinitely often. Livelock freedom is a

liveness property. One of the liveness properties of the Five

Dining Philosophers problem is that every individual philoso-

pher will eventually get a piece of meal (starvation free), which

can be expressed by the following temporal formula:

8xtu}(p3(x) ¼ 1): (**)

The proofs of the above formulas involve logical deductions

using inference rules of ordinary first-order logic and temporal

logic as well as system-dependent inference rules listed previ-

ously. Because logical deductions are machine-oriented and not

suitable for human comprehension, we omit the proofs of the

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 463

9 High-Level Petri Nets—Extensions, Analysis, and Applications 463

above properties (*) and (**). Interested readers can find the

proofs of (*) and (**) in He (1991) and He and Ding (1992).

9.4 PZ Nets

A widely accepted formal notation for specifying the function-

ality of sequential systems is Z (Spivey, 1992). The Z is based on

typed set theory and first-order logic and, thus, offers rich type

definition facility and supports formal reasoning. However, Z

does not support an effective definition of concurrent and

distributed systems, and Z specifications do not have explicit

operational semantics. Many researchers have attempted to

combine Z with other concurrent models, including CSP (Ben-

jamin, 1990), CCS (Taguchi and Araki, 1997), and temporal

logic (Duke and Smith, 1989; Clarke and Wing, 1996; Evans,

1997; Lamport, 1994b) in recent years. Several works attempted

to integrate Petri nets and Z (Van Hee et al., 1991; He, 2001). In

van Hee et al. (1991); Z was used to specify (1) the metamodel of

restricted hierarchical colored Petri nets (that allows super

transitions but not super places) and (2) the transitions of

specific colored Petri nets. A complete specification consists

of a hierarchical net structure, one global state schema for

defining all places, and one operation schema for each transi-

tion. Schemas of transitions are piped to obtain an operational

semantics through the use of input and output variables. In He

(2001), a formal method of integrating Petri nets with Z was

presented with the objectives to extend Petri nets with data and

function definition capabilities through an underlying Z speci-

fication and to extend Z with an explicit operational semantics

and concurrency mechanisms through Petri nets. In the

following subsections, we briefly describe the basics of Z nota-

tions and introduce the results given in He (2001).

9.4.1 A Brief Overview of Z

Besides elementary data types, Z allows the user to introduce

other primitive types, called given types. Given types are in

capital letters and enclosed by a pair of brackets that do not

require further definitions. For example, [IDEN] introduces a

given type IDEN.

Part of Z is an essential notation called schema from which

new types and their properties can be defined. A Z schema has

a boxed structure often consisting of two major parts: the

declaration part and the predicate part (optional) as follows:

Name

Declaration part

Predicate part

The name of a schema is global and can be used in the

declaration part of other schemas to reuse the variable

definitions.

The declaration part defines local variables of the schema in

the form: var: Type (the collection of these variable definitions

forms the signature of the schema), and thus a reference of

this variable in another schema needs to be prefixed by its

schema name followed by a period (i.e., Name. var: A variable

name can be a simple name (defining the old value), a name

with a dash0 (defining the new value of the same name without

the dash), a name with a question mark? (an input from the

external environment), or a name with an exclamation point!

(an output to the external environment). If a schema includes

both the name of a schema S and its dashed version S0, the

following notation is used: DS when the value of some variable

defined in S has been changed by the required processing or

JS when nothing in S is changed by the required processing.

The predicate part specifies the constraint (invariant) of a

definition or the precondition (subformulas without dashed

variables) and postcondition (subformulas containing dashed

variables) of some processing in terms of first-order logic

formulas. Subformulas on separate lines in the predicate part

are conjoined by default. The predicate thus defines the prop-

erty of the schema.

State Schemas and Operation Schemas

A schema can be used to define the abstract state of a system,

called a state schema in the sequel, when the state machine

model is used. The predicate part in this case defines the data

invariant among involved variables.

Each state schema S needs an initial value that is defined by

an initialization schema that enumerates the initial values of

state variables in the predicate part.

A schema SC can be used to define an operation, called an

operation: schema in the sequel, which includes both a state

schema name S and its version S0 in its declaration part.

However, DS or JS is often used instead of S and S0. The

predicate part can be divided into the precondition part (de-

noted by pre-SC in the sequel) and the postcondition part

(denoted by post-SC in the sequel).

Operations on Schemas

New schemas can be built using existing schemas besides the

inclusion mentioned in the previous paragraphs.

(1) Schema disjunction: Schema disjunction has the

form New ¼̂¼ Old1 _ Old2, where New, Old1, and

Old2 are schema names. The declaration part of new

schema New is obtained by merging the declaration

parts of Old1 and Old2, and the predicate part of New

is obtained by making a disjunction of the predicate

part of Old1 with that of Old2.

(2) Schema conjunction: Schema conjunction has the

form New ¼̂¼ Old1 ^ Old2, where New, Old1, and

Old2 are schema names. The declaration part of new

schema New is obtained by merging the declaration

parts of Old1 and Old2, and the predicate part of New

is obtained by making a conjunction of the predicate

part of Old1 with that of Old2.

Au: This is not
a dash. Do you
mean to say a
‘‘prime
symbol’’, as the
description, or
do you want to
change this to
a dash ‘‘–’’?

Au: Besides?
Not clear here
– Schemes can
be built except
those
restricted by
the inclusion?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 464

464 Xudong He and Tadao Murata

(3) Schema composition: Let Old1 and Old2 be two

schemas; a new schema of the form New ¼̂¼ Old1;

Old2 can be defined and has the following meaning:
. The signature of New is the inputs and outputs of

both Old1 and Old2, together with the nondashed

variables in Old1 and dashed variables of Old2;
. The property of Old1 is included in New, but all the

dashed names are redecorated with a decorator not

used in either Old1 and Old2;
. The property of Old2 is included in New, but all the

nondashed names are decorated with the same dec-

orator as was used in Old1; and
. The newly decorated names are hidden with an

existential quantifier.

Other operations related to schemas can be found in work by

Spivey (1992), including using a schema as a type in the

declaration part of other schemas, hiding declarations in a

schema, and reusing the operations defined in one schema in

other related schemas through promotion.

9.4.2 Definition of PZ Nets

Let Z ¼ (ZP, ZT, ZI) be a collection of Z schemas. If we let z be

a Z schema, we use name(z), sig(z), and prop(z) to denote the

name, the signature part (as a typed set of mappings), and

property part of z, respectively in the sequel. The ZI schemas in

Z satisfy the following conditions:

. 8z1, z2 2 ZP
 (z1 6¼ z2) sig(z1) \ sig(z2 ¼1);

. 8z1, z2 2 ZI
 (z1 6¼ z2) sig(z1) \ sig(z2) ¼1); and

. jZPj ¼ jZIj.

The first two conditions state that the signatures of z sche-

mas are pair-wise disjoint, and the last condition states that the

number of z schemas in ZP is the same as that in Z (i.e., one-

to-one correspondence).

A PZ net is a tuple ZN ¼ (NG, Sig, V , H , Type, AN ,

M0, Z).

Here, Z is a collection of Z schemas satisfying the above

conditions, AN ¼ (Type, A, TC), and:

. Type: P ! ZP is one-to-one mapping, giving the data

definition of ZN. For each place p 2 P, Type maps p to

a unique Z schema z 2 ZP such that p ¼name(z). The

type of p is defined by the signature of z.
. TC: T ! ZT is one-to-one mapping, providing the func-

tionality definition of ZN. For each transition t 2 T , C

maps t to a Z schema z 2 ZT such that t¼name(z). The

functional processing of t is defined by the property of z.

Furthermore, the following constraint is satisfied. For any

p 2 P, t 2 T :

(1) If (p, t) 2 F , then sig (Type (p)) \sig(TC(t)) 6¼1.

(2) If (t , p) 2 F , then sig (Type (p)) \ sig(TC(t)) 6¼1.
. A: F ! pVar is the control flow definition of ZN, where

Var is the set of all hidden variables (through quantifica-

tion) in ZT. Let Var(t) denote the set of hidden variables

in TC(t) for any transition t, let S(v) denote the sort

(or type) of a variable n, and let S(V) denote the set of

the sorts of the variables in the sorted set V. Then, the

following constraints are satisfied for any p 2 P :

(1) �AA(p, t) � Var(t) and �AA(t , p) � Var(t), where

�AA(x, y) ¼ A(x, y) if (x, y) 2F

1 otherwise

�

(2) For any x 2 �AA(p, t)(or�AA(t , p))
 S(x) 2 S(sig(Type

(p))).

(3) prop(TC(t))) sig(Type(p)0) ¼ sig(Type(p))� �AA
(p, t) [�AA(t , p).

. M0: P ! ZI is a Type-respecting (i.e., sig(Type(p)) ¼
sig(M0(p)) initial marking of ZN, where Z1 is a set of Z

schemas defining the initial state of the system. M0(p) is

the Z schema in Z1, defining the initial marking of place p.

The following is a simple example of a PZ net specification of

the familiar Five Dining Philosophers problem. The overall

system structure is shown in Figure 9.2, which is the same as

Figure 9.1 except for the renaming.

The Z schemas (ZP, ZT, Zl) are the following:

(1) ZP ¼ {thinking, chopstick, eating}:

Thinking

tphil: p PHIL

Chopstick

chop: p CHOP

Eating

ephil: p (PHIL � CHOP � CHOP)

left: PHIL ! CHOP

right: PHIL ! CHOP

(2) ZT ¼ pickup, putdown:

Pick up

D Thinking

D Chopstick

x

x'

z

z'

p3

0,1,2,
3,4

t1

t2

{ y1, y2 }

{y1, y2}

0,1,2,
3,4

p2p1

FIGURE 9.2 A PZ Net Specification of the Five Dining Philosophers

Problem.

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 465

9 High-Level Petri Nets—Extensions, Analysis, and Applications 465

D Eating

9x: PHIL � 9y1, y2: CHOP � 9z0: PHIL� CHOP� CHOP�
(x 2 tphil ^ y1 2 chop ^ y2 2 chop ^ y1 ¼ left(x)^

y2 ¼ right(x)^
(z 0 ¼< x, y1, y2 >

tphil0 ¼ tphiln{x}

chop0 ¼ chopn{y1, y2}

ephil� ¼ ephil [{z0}

left0 ¼ left ^ right ¼ right))

Put down

D Thinking

D Chopstick

D Eating

9x0: PHIL � 9y 01, y 02: CHOP � 9z: PHIL� CHOP� CHOP�
(z 2 ephil ^ z ¼< x0, y 01, y 02 >

tphil0 ¼ tphil [{x0}

chop0 ¼ chop [{y 01, y 02}

ephil0 ¼ ephiln{z}

left0 ¼ left ^ right ¼ right)

(3) Z1 ¼ Init_Thinking, Init_Chopstick, Init_Eating:

Init_Thinking

tphil ¼ {0, 1, 2, 3, 4}

Init_Chopstick

chop ¼ {0, 1, 2, 3, 4}

Init_Eating

Eating

ephil ¼1

left ¼ {07!4, 17!0, 2 7!1, 37!2, 4 7!3}

right ¼ {0 7!0, 17!1, 27!2, 37!3, 47!4}

Type ¼ {p1 7!Thinking, p2 7!Chopstick, p3 7!Eating}

TC ¼ {t17!Pickup, t27!Putdown},

A ¼ {(p1, t1)7!{x}, (p2, t1) 7!{y1, y2}, (t1, p3)7!{z 0},

(p3, t2)7!{z}, (t2, p1)7!{x0}, (t2, p2)7!{y10, y20}},

M0 ¼ {p17!Init Thinking, p27!Init Chopstick,

p37!Init Eating}:

9.4.3 PZ Net Analysis

In He (1995, 2001), a structural induction technique was

proposed for analyzing safety properties of PZ nets, which is

based on an invariance inference rule from work by Manna

and Prueli (1995). This technique is briefly discussed in the

following subsections.

Formalizing Invariant Properties

Let [M0 >
v denote the set of all valid marking sequences ex-

tracted from all execution sequences of a given PZ net, and let s

be a valid marking sequence with jsj as the length of the sequence

and s(i) as the ith state (marking) in s:W (a first order logic

formula) is an invariant property if and only if the following

holds: 8s: s 2 [M0 >
! :(8i: 0 � i � jsj:(s(i) j¼ W)), where

s(i) j¼ W denotes that marking s(i) satisfies W (i.e., the evalu-

ation of W under marking s(i) yields true). Thus, a safety

property holds in every state (marking) of every valid marking

sequence. The above formulation can be simplified to the

following equivalent version in terms of the set of all reachable

markings only:

8M : M 2 [M0 > :(M j¼ W):

Proving Invariant Properties

In Manna and Prveli (1995), several temporal logic-based

inference rules for invariance (or safety properties) were

given. Among the rules, the following basic invariance rule

(in its state validity form) is reformulated in terms of PZ

nets and is essential.

The Basic Invariance Rule

B1: M0) W

B2:
C(t): a ^W) W 0 for every t 2 T and occurrence a

M j¼ W for every M 2 [M0 >

In the basic invariance rule, premise B1 requires that the initial

marking M0 imply property W, and premise B2 requires that

all transitions preserve W. C(t) is the Z schema associated with

t that defines the enabling condition (precondition) and the

firing result (postcondition) of t. W 0 is obtained from W by

changing the names of variables to their dashed version. Based

on premises B1 and B2, we conclude that W is valid or is

satisfied under any reachable marking from M0.

We provide the following procedure to use the above infer-

ence rule:

Step 1. Prove the initial marking as satisfying a system

property formula.

Step 2. Assume the system property formula holds after k

events in a state M.

Step 3. Prove the system property formula holds after k þ 1

events in any directly reachable state M 0 from M.

It is easy to see that steps 2 and 3 in the temporal induction

proof technique fulfill premise B2 of the invariance rule. Fur-

thermore, we only need to consider the firing of a relevant

transition and the associated Z schema with regard to the given

property under the guidance of the net structure during step 3.

Au: end
bracker?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 466

466 Xudong He and Tadao Murata

For example, a system deadlock may occur when a particular

place has a special marking. To show the system does not have

the deadlock, we only need to show that transitions connected

to this place cannot result in this special marking. Therefore,

the proof is in general local in the sense that only a subset of

transitions needs to be considered. Similar ideas have been also

explored in other temporal analysis techniques (He and Lee,

1990; He and Ding, 1988). In general, logical, net structural,

and net behavioral reasonings are needed to prove an invariant

property. The above temporal induction technique is demon-

strated in the following example.

The deadlock freedom property of the Five Dining Philoso-

phers problem is formulated as follows:

tu(9x 2 ephil(p3(x) 	 1 _ 9x 2 tphil:(right(x) 2 p2^
left(x) 2 p2)):

This problem explains that at any state, a philosopher is eating,

which ensures the enabledness of transition Put down, or a

philosopher is thinking, which ensures the enabledness of

transition (Pick up)

The above formula can be rewritten as follows without using

the temporal operator:

8M 2 [M0 >:(9x 2 ephil:(p3(x) 	 1 _ 9x 2 tphil (right(x)

2 p2 ^ left(x) 2 p2)):

Thus, we need to prove the following formula using the struc-

tural induction technique:

9x 2 ephil(p3(x) 	 1 _ 9x 2 tphil right(x)

2 p2 ^ left(x) 2 p2) (*)

Here is the proof outline of the formula (*):

Step 1 Under the initial marking M0, Init_Thinking,

Init_Chopstick, and Init_Eating endures:

9x 2 tphil:(right(x) 2 p2 ^ left(x) 2 p2) and thus(*):

Step 2: Assume (*) holds after k transitions in a state M.

Step 3: Prove (*) holds after k þ 1 transitions in a state M 0

such that M[t=a > M 0.
Case 1: Firing transition Pick up with a ¼ {x=ph1, y1=ch1,

y2=ch2} and from the postcondition of schema Pick up with

ch1 2 ephil0in in M 0 Thus, 9x 2 ephil(p3(x) 	 1) is true in M 0,
and hence (*) holds in M 0.

Case 2: Firing transition putdown a ¼ {z=< ph1, ch1,

ch2 > }:
From the precondition of put down with left (ph1) ¼ ch1

and right (ph1) ¼ ch2; from the postcondition of schema put

down with ph1 2 tphil, ch1 2 chop0, and ch2 2 chop’. Thus,

9x 2 tphil: right(x) 2 p2 ^ left(x) 2 p2) is true in M 0, and

hence (*) holds in M 0.
Therefore, (*) has been proven.

9.5 Hierarchical Predicate Transition Nets

The development of hierarchical predicate transition nets

(HPrTNs) was motivated by the need to construct specifica-

tions for large systems using Petri nets (Reisig, 1987) and

inspired by the development of modern high-level program-

ming languages and other hierarchical and graphical nota-

tions, such as data flow diagrams (Yourdon, 1989) and

statecharts (Harel, 1988). Similar work on introducing hier-

archies into colored Petri nets was given in Jensen (1992,

1995). With the introduction of hierarchical structures into

predicate transition nets, the resulting net specifications are

more understandable, and the specification construction pro-

cess becomes more manageable. HPrTNs were used in specify-

ing several systems, including an elevator system (He and Lee

1991), a library system (He and Yana, 1992), and a hurried

dining philosophers system (He and Ding, 2001). HPrTNs can

be analyzed directly by using a structural induction technique

combining structural, behavioral, and logical reasoning (He,

2001) and can be translated into program skeletons in a con-

current and parallel object-oriented programming language

CCþþ (He 2000c) and Java (Lewandowski and He, 1998,

2000). A complete formal definition of HPrTNs was given in

He (1996). In the following subsections, basic concepts and

notation of HPrTNs are briefly introduced.

9.5.1 Definition of HPrTNs

An HPrTN is a structure:

HN ¼ (NG, Sig, V , H , Type, AN , M0, r):

Here:

. NG ¼ (P, T , F) is a net graph. P and T are finite sets of

places and transitions such that P \ T ¼. Elements in P

are represented by solid and dotted circles. Similarly,

elements in T are represented by solid and dotted boxes.

Solid circles or boxes are elementary nodes, and dotted

circles and boxes are super nodes. In particular, we iden-

tify two subsets IN � P [T and OUT � P [T such that

IN contains the heads of all incoming nonterminating

arcs (an arc inside a super node is a nonterminating arc if

one of its ends is connected to the boundary of the super

node) and OUT contains the tails of all outgoing non-

terminating arcs. Nodes in IN [OUT are called interface

nodes. We use � IN to denote the set of the presets of all

elements in IN (i.e., �IN ¼ { � njn 2 IN}), and OUT � to

denote the set of the postsets of all elements in OUT. F is

the set of arcs and is called the flow relation, satisfying

the conditions: P \ F ¼ , F \ T ¼, and F � (� IN�
IN [P � T [T � P [OUT� OUT �). An arc f can be

uniquely identified by a pair of nodes (n1, n2) denoting

its source and sink, in which n1(n2) may denote the preset

(postset) of n2(n1) when f is a nonterminating arc.

Au: Not a
word in the
dictionary-
please change
word.

Au: end
bracker?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 467

9 High-Level Petri Nets—Extensions, Analysis, and Applications 467

. Sig, V, H, Type are defined as in HLPN in Section 9.2.

. AN ¼ (A, TC) is a pair of net annotations.

A is a function that annotates each are with a term that

when evaluated (for some binding) results in a multiset over

the associated place’s type. Furthermore, all simple labels of a

compound label must have distinct identifiers, and all simple

labels of arcs connected to the same node must have distinct

identifiers. Because compound labels define data flows as well

as control flows, the following basic control flow patterns (He

and Lee, 1991) must be correctly labeled: (1) data flowing into

and out of an elementary transition must take place concur-

rently, and (2) data flowing into and out of an elementary

predicate can occur at different times. Furthermore, data flows

between different levels of hierarchies must be balanced (i.e., a

simple label occurs in a nonterminating arc if and only if it also

appears in an arc with the same direction connected to the

enclosing super node).

. TC is a function that annotates transitions with Boolean

expressions. A super transition is an abstraction of low-

level actions, and its meaning is thus completely defined

by the low-level refinement. Therefore, the constraint of a

super transition is true by default (it is conceivable that a

nontrivial constraint for a super transition might be

useful; however, in general it is very difficult to define

such a constraint and also very difficult to interpret the

constraint with regard to the operational (dynamic) se-

mantics of the super transition).
. M0 is the initial marking function.
. r _PP [T ! p(P [T) is a hierarchical mapping that de-

fines the hierarchical relationships among the nodes in

P and T; this mapping also satisfies the constraint that

the interface nodes 2 IN [OUT be all predicates if

their parent node is a predicate or all transitions if

their parent node is a transition. For any node n, r(n)

defines the immediate descendant nodes of n. The ances-

tor and descendants of any node can be easily expressed

by using well-known relations, such as transitive closure

on r A node in an HPrTN is local to its parent and can

be uniquely identified by prefixing its ancesters’ names

separated with periods to its own name; however, often

its own name is referred whenever a no name clash

occurs.

The enabling condition of an elementary transition is de-

fined exactly the same as that of an HLPN’s in Section 9.2. A

super transition is enabled if at least one of its interface child

transitions in IN is enabled and its firing is defined by an

execution sequence of its child transitions; thus, its behavior

is fully defined by its child transitions. The firing rule of a

transition is formally defined in He (1996). Two transitions

(including the same transition with two different occurrence

modes) can fire concurrently if they are not in conflict (the

firing of one of them disables the other). Conflicts are resolved

nondeterministically. The firing of an elementary transition is

atomic, and the firing of a super transition implies the firing of

some elementary transition and may not be atomic. We define

the behavior of an HPrTN to be the set of all possible maximal

execution sequences containing only elementary transitions.

Each execution sequence represents consecutively reachable

markings from the initial marking in which a successor

marking is obtained through a step (firing of some enabled

transitions) from the predecessor marking.

Figure 9.3 shows an HPrTN specification of the Five Dining

Philosophers problem.

Type(Thinking) ¼ w Eating ¼ p (PHIL), Type(Avail) ¼
Type (Used) ¼ p (CHOP),

Type(Chop)) ¼ w(Avail) [w(Used), Type(Relation) ¼ p

(PHIL � CHOP � CHOP),

A(f3) ¼< 1, re > , A(f4) ¼< 2, re > , A(f5) ¼< 3, ph > ,

A(f6) ¼< 4, ph > , A(f7)¼< 5, ph > , A(f8)¼< 6, ph > ,

A(f13) ¼< 7, {ch1, ch2} > , A(f14) ¼< 8, {ch1, ch2} > ,

A(f15) ¼< 9, {ch1, ch2} > , A(f16) ¼< 10, {ch1, ch2} > ,

A(f9) ¼ A(f3) � A(f13), A(f10) ¼ A(f4)� A(f16),

A(f11) ¼ A(f3) � A(f15), A(f12) ¼ A(f4)� A(f14),

A(f1) ¼ A(f13)� A(f15), A(f2) ¼ A(f14)� A(f16),

TC(Pickup)¼ (ph¼ re[1]) ^ (ch1 ¼ re[2]) ^ (ch2¼ re[3]),

TC(Putdown)¼ (ph¼ re[1])^(ch1¼ re[2])^(ch2¼ re[3]),

TC(Phil) ¼ True,

M0(Thinking) ¼ {1, 2, . . . , k}, M0(Eating) ¼ {},

M0(Avail) ¼ {1, 2, . . . , k}, M0(Used) ¼ {},

M0(Chop) ¼ M0(Avail) [M0(Used) ¼ {1, 2, . . . , k},

M0(Relation) ¼ {(1, 1, 2), (2, 2, 3), . . . , (k, k, 1)}

Phil

Phil

f1

f2

f3

f4

f5 f9

f10

f11

f12

f13

f14

f15

f16

f6

f7

f8

Chop

Chop

Relation

(A) A high level view

Thinking

Eating

Pick up

Put down

(B) A refinement

Used

Avail

FIGURE 9.3 an HPrTN specification of the Five Dining Philoso-

phers Problem.

Au: Is this part
of 9.3 Figure?
If not, please
provide an
introductory
sentence

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 468

468 Xudong He and Tadao Murata

9.5.2 System Modeling Using HPrTNs

HPrTNs can be used to model systems using the traditional

structured approach (Yourdon, 1989) or modern object-

oriented approach (Booch, 1994). He and Ding (2001) pro-

posed an approach to realize various object-oriented (OO)

concepts in HPrTNs. Furthermore, He (2000a, 2000b) and

Dong and He (2001) applied HPrTNs to formalize several

diagrams in the Unified Modeling Language (UML)—a soft-

ware industry standard second-generation object-oriented

modeling language. In the following sections, we briefly de-

scribe how to model several key OO concepts in HPrTNs.

Classes

One of the central ideas of OO paradigm is data encapsulation

captured by the class concept. A class is essentially an abstract

data type with a name, a set of related data fields (or attri-

butes), and a set of operations on the data fields. It is straight-

forward to use a predicate to denote a data field (structure)

and a transition to represent an operation in Petri nets. The

current value of a data field is determined by the tokens of the

denoting predicate under the current marking. The meaning

or definition of an operation is specified by the constraint

associated with the denoting transition.

HPrTNs were originally developed for structured analysis

that provides separate mechanisms for data abstraction and

processing abstraction through super predicates and super tran-

sitions, respectively. Therefore, we can use a super predicate and

super transition pair in an HPrTN to capture the notion of a

class although it is adequate to define a class by using a super

predicate when there is no externally visible operation or using a

super transition when there is no externally visible attribute.

This view of class is a major improvement over the view in (He

and Ding, 1996), where a class was represented by a super

predicate only. In this view, the interface of the class is defined

by the super predicate and the super transition. The super

predicate defines data and internal operations of the class,

while the super transition mainly defines the externally visible

operations of the class. The corresponding subnets further

define the internal structures of the data and the operations.

The net inscription defines the meanings of net components

through predicate types, token values, and transition con-

straints. When the resulting HPrTN is simple enough, there is

no need to separate the super nodes from their subnets (i.e., the

subnets are directly embedded inside the super nodes). An

attribute or operation is externally visible if the corresponding

denoting predicate or transition is an interface node (i.e., con-

nected with a nonterminating arc). It should be noted, however,

that not every super predicate or transition needs to be con-

sidered as a class. A super predicate or transition may simply

denote a data abstraction or operation abstraction as originally

intended; for example, a super predicate can be used to hide the

internal states of an attribute that is defined by several related

predicates, and a super transition can be used to define alterna-

tive implementations of an operation to realize operation over-

loading or overriding. Thus, our approach supports the

coexistence of various modeling paradigms.

Based on the above analysis, we use the following Cþþ-like

class schema to document a class defined by the super node(s)

in an HPrTN (it is worth noting that the class schema is only

used for understanding purpose and does not add functional-

ity to the given HPrTN:

class Name [:superclass(es)]

{ public:

predicates and transitions

[private:

predicates and transitions],

}

where brackets [. . .] denote optional items. Predicates and

transitions listed in both public and private sections are

those contained in the super node(s). The name(s) of the

super node(s) are used to form the class name.

In the HPrTN shown in Figure 9.3, both super transition

Phil and super predicate Chop can be viewed as classes. Thus,

the following class definitions can be obtained:

class Chop

{ public:

Avail, Used

},

class Phil

{ public:

Pick up, Put down

private:

Thinking, Eating

}.

Objects

An instance or object of a class has its own copy of data while

sharing operations with other objects of the same class. To

distinguish an object from other objects, a unique identifier is

needed for each object.

In an HPrTN, an object is essentially defined by a set of

tokens related through the same identifier, thus, the sort of any

predicate p needs to contain a component sort of relevant

identifiers (i.e., Type (p) ¼ p(ID � . . .). Different objects of a

class share the same class data structures (i.e., tokens with

different identifiers can reside in a predicate at the same time

in an HPrTN). In general, however, objects of the same class

cannot interact with each other directly. The above problem

can be easily solved by defining a subexpression comparing

token identifiers in the constraint of each transition. Move-

ments of tokens and/or changes of token values while main-

taining the object identifier indicate state changes of the object.

In the HPrTN shown in Figure 9.3, there are k philosopher

objects with identifiers of sort PHIL, and there are k chopstick

objects with identifiers of sort CHOP.

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 469

9 High-Level Petri Nets—Extensions, Analysis, and Applications 469

Class Reference Relation

Classes work together to fulfill the functionality of the under-

lying system. A class can use the operations and/or data pro-

vided by other classes.

In HPrTNs, the interface of a transition includes a box with

a name and the labels of relevant arcs (the label identifiers

determining the calling context and the flow expressions spe-

cifying parameters). The meaning of an elementary transition

is defined by its constraint, and the meaning of a super transi-

tion is defined through its corresponding subnet.

It is easy to model a class reference by adding some arc when

a class needs to access some public attribute of another class.

For example, Figure 9.4 illustrates simple class reference rela-

tionships where some operation in class C1 (p1 and t1) uses

some public attributes defined in class C2 (p2 and t2), and

some operation in class C2 uses some public attributes defined

in class C1. Figure 9.3 contains simple reference relationships

between classes Phil and Chop.

To define an operation in one class using another operation

in a different class, we cannot simply add an arc since Petri nets

do not allow direct connections between transitions. As dis-

cussed earlier, there are two main ways to handle class refer-

ence relationships in the existing research works: (1) to fuse the

two operations in two classes into one such that only syn-

chronized communication is allowed (Biberstein and Buchs,

1995; Battison et al., 1995; Lakos, 1995b) and (2) to create

some places inside one class to hold parameters to simulate

message passing and function calls (Bastida, 1995; Lakos,

1995b) which supports asynchronous communication.

HPrTNs support both synchronous and asynchronous com-

munications through reference places to model different com-

munication protocols. These reference predicates do not

belong to any class and can be viewed as connectors in software

architecture languages (Shaw and Garlan, 1996). It is quite easy

to model a function call through passing two messages by

using one reference predicate to hold the input values and

another to hold output results; another easy way to model a

function call is by defining the calling operation (function) as a

super transition whose subnet has at least two transitions to

handle sending and receiving values.

Figure 9.5 shows the general pattern of a function call from

class C1 containing t1 to class C2 containing t2, in which p1 and

p2 are reference places. The above pattern defines a one-way

synchronized communication (i.e., the caller must wait for

the callee to continue its execution), whereas a simple message

passing from an operation in one class to an operation in

another class in general defines an asynchronous communi-

cation.

Figure 9.6 defines a general synchronization pattern such

that two operations in class C1 containing t1 and C2 containing

t2 must execute mutual exclusively, where p is a reference

predicate with an initial dummy token.

It is quite natural and easy to define class reference relation-

ships by using the decomposition and synthesis techniques of

HPrTNs discussed in He and Lee (1991).

Class Inheritance Relation

Another major feature of the OO paradigm is class inherit-

ance relation that captures the generalization–specialization

relationships in the real world (Coad and Yourdon, 1991). A

class inheritance relationship exists between a superclass and a

subclass such that the subclass inherits data structures as well

as operation definitions from the superclass without the need

to define them again. Thus, class inheritance relation supports

a flexible and managed way to reuse existing data structures

and operations.

A class inheritance relation is realized in HPrTNs through

the reuse of the net structures of inherited super nodes and the

net inscription of inherited elementary nodes (the sorts of

predicates, the label expressions of relevant arcs, and the con-

straints of transitions) defined in an existing HPrTN denoting

a class. The inherited predicates and transitions, however are

explicitly represented or embedded in the subclass to clearly

define its role, the same convention was used by Lakos (1995b).

An inherited element in a subclass has a name of the form

p1

t1

t2

p2

FIGURE 9.4 Simple Public Attributes Access.

t1 t2

op1

op2

p1

p2

FIGURE 9.5 Reference Through Function Call.

p

t1 t2

op1 op2

FIGURE 9.6 Synchronized Communication.

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 470

470 Xudong He and Tadao Murata

super_node.element_name, where super_node is the partial

name of the superclass and element_name is the internal name

of the element in the superclass. Renaming of relevant arcs are

also necessary to reflect the current context and to ensure flow

balance. It is clear that inheritance does not reduce the size of

an HPrTN specification since inherited elements are embed-

ded; an alternative way to embedding is through delegation, as

explained by Abade and Cardelle (1996). However, the advan-

tages are obvious since the meaning or structure (the most

difficult part in writing an HPrTN specification) of an in-

herited element is already available and is obtained without

any additional effort, furthermore, many known properties of

the inherited element might be maintained through inherit-

ance (structural properties are surely kept, but behavioral

properties may need additional validation). It is worth noting

that (1) only public components of a superclass can be in-

herited; (2) inheritances from multiple superclasses are sup-

ported, and an element can be inherited by multiple subclasses

because no ambiguity will occur due to the naming conven-

tion; and (3) a redefined (overriding) operation is considered

as a new operation in a subclass and is distinguished from an

inherited operation such that an overriding operation in a

subclass has the same name as the overriden operation in the

superclass, this distinction between inheritance and overriding

was also made by Abadi and Cardelli (1996).

Figure 9.7 shows a class inheritance relationship defined as

follows:

class p1 and t1

{ public:

p2, t2, t3

};

class p3 and t3: p1 and t1

{ public:

t3, p1
 p2, t1
 t2

private:

p4, p5, t6

}.

Polymorphism

OO paradigm also supports polymorphism such that an op-

eration’s name (with possibly different signatures) may have

different meanings or behaviors (implementations) through

inheritance or overriding.

Polymorphism can be achieved in HPrTNs in two different

yet related ways. First, polymorphism is a major feature of

the underlying many-sorted algebra H of an HPrTN;

detailed discussions of algebraic specifications and poly-

morphism can be found in work by Ehrig and makr, (1985).

The same operation symbol in H is used for many derived

sorts. A simple example is the overloaded equality (¼) oper-

ator when an algebraic specification H contains two elemen-

tary data types (or classes) INT and CHAR with a single

parameterized definition of the equality (¼). Second, poly-

morphism can be accomplished through net structure and

inscription. An operation provides overriding capability if

its constraint distinguishes a superclass object and a subclass

object (or two objects from two different subclasses with

the same superclass) and processes them differently. To realize

polymorphism in an HPrTN, a shared predicate can be used

to hold tokens of a superclass as well as tokens of subclasses,

and the shared predicate is connected to the transition

defined in the superclass and its inherited (or overriding)

versions in the subclasses. The constraint of the original tran-

sition is only satisfied by the tokens of the superclass, and the

constraint of each inherited (or overriding) transition is

only satisfied with tokens of the subclass containing the

transition.

Figure 9.8 shows the general pattern of realizing polymorph-

ism through net structure in HPrTNs, in which p is a shared

place, t1 is a part of the superclass, and t2 is a part of the

subclass, and op�1 is either an inherited or an overriding version

of op1, as shown in Figure 9.8.

Furthermore, operation overriding can be achieved through

a super transition in an HPrTN such that the firing of a

particular component transition is determined partly by the

(dynamic) instantiation of an object identifier (and thus its

sort). The use of the above case-like net structure in realizing

polymorphism can be avoided in the implementation of an

HPrTN.p1

p3

p4 t6 p5

p1.p2

t1

t2 t3

t4

t3t1.t2

p2

FIGURE 9.7 An Example of Class Inheritance Relation.

op1 p op1*

t1 t2

FIGURE 9.8 Polymorphism Through Choice Structure.

Au: Correct
term?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 471

9 High-Level Petri Nets—Extensions, Analysis, and Applications 471

9.6 Fuzzy-Timing High-Level Petri Nets

9.6.1 Definition of FTHN

A Fuzzy-timing high-level petric net (FTHN) is a structure:

FN ¼ (N , D, FT),

where N is an HLPN defined in Section 9.2; D is the set of all

fuzzy delays, dtp(t), associated with arcs (t , p) from each tran-

sition t 2 T to its output place p; and FT is the set of all fuzzy

time stamps. A fuzzy time stamp p(t) 2 FT is associated with

each token and each place. A fuzzy time stamp p(t) is a fuzzy

time function or possibility distribution giving the numerical

estimate of the possibility that a particular token arrives at

time t in a particular place. Any type of possibility distribution

can be represented or approximated by using a number of

trapezoidal distributions. Thus, we use the trapezoidal possi-

bility distribution specified by the five parameters,

h(a, b, c, d) as shown in Figure 9.9, where h is the height

having the following properties: 0 � h � 1, h ¼ 1 for an

event (arrival of a token) that has occurred or will occur and

h < 1 for an event that will not necessarily occur. A so-called

fuzzy number is represented by the triangular distribution

h(a, b, b, d), which is a special case of the trapezoidal form

with b ¼ c. A deterministic interval between a and d denoted

[a, d] can be represented by (a, a, d, d), a special case of

trapezoidal form with a ¼ b, c ¼ d, and h ¼ 1. In addition,

given an arbitrary-shaped possibility distribution, we can ap-

proximate it with the union of a number of trapezoidal distri-

butions (Zhou and Murata, 1999).

In Zhou et al. (2000), FTHN is extended by adding a time

interval with a possibility value p in the form of p[a, b] to

each transition. That is, each transition is associated with a

firing interval denoted p[a, b], where the default interval is

1[0, 0] (a transition definitely fires as soon as it is enabled). If a

transition t is enabled at time instant t, it may not fire before

time instant tþ a and must fire before or at time instant

tþ b. Possibility p is a value in the interval [0,1], where p is

1 if transition t is not in structural conflict with any other

transition, and p can be less than 1 when we want to assign

different chances to transitions in conflict. Here, ‘structural

conflict’ means that a transition t shares some input place

with another transition that can be enabled simultan-

eously with transition t ; firing one transition will disable the

other transition.

9.6.2 Computation for Updating Fuzzy Time
Stamps

Suppose that a transition t is enabled by n tokens and the fuzzy

enabling time et (t) of transition t is computed by

et(t) ¼ latest {pi(t), i ¼ 1, 2, . . . , n}, where latest is the oper-

ator that constructs the ‘‘latest-arrival-lowest-possibility distri-

bution’’ from n distributions (Murata, 1996; Murata et al.,

1999). The pi(t) is the fuzzy time stamp to which the enabling

token arrives at the ith input place of transition t. When there

are m transitions in structural conflict that are enabled with

their fuzzy enabling times, ei(t), i ¼ 1, 2, . . . , t , . . . , m, and

with their possibility intervals, pi[ai, bi], we compute the

fuzzy occurrence time o1(t) of transition t whose fuzzy enab-

ling time is et(t) as follows:

ot(t) ¼ min {et(t)� pi(at, at, bt, bt),

earliest {ei(t)� pi(ai, ai, bi,bi), i ¼ 1, 2, . . . , t , . . . , m}},

where earliest is the operator that constructs the ‘‘earliest-ar-

rival-highest-possibility distribution’’ from m distributions,

(Murata, 1996; Murata et al., 1999), min denotes the minimum

or intersection operation, and � is the extended addition

(Dubois and Prade, 1989). We compute the fuzzy time stamp

ptp(t), which is the fuzzy time distribution at which a token

arrives at the transition t output place p, as follows:

ptp(t) ¼ ot(t)� dtp(t) ¼ h1(o1, o2, o3, o4)� h2(d1, d2, d3, d4)

¼ min {h1, h2}(o1 þ d1, o2 þ d2, o3 þ d3, o4 þ d4),

where dtp(t) is the fuzzy delay associated with the arc (t , p)

(Murded, 1996). When there are no transitions in conflict with

transition t with its possibility interval pt [at, bt], the fuzzy

occurrence time is given by ot(t) ¼ et(t)� (at, at, bt, bt),

where we set pt ¼ 1 since no conflict exists. We use the

following formulas as approximate computations of the earli-

est and latest operations:

earliest {ei(t), i ¼ 1, 2, . . . , n} ¼ earliest{hi(ei1, ei2, ei3, ei4), i ¼ 1, 2, . . . , n}

¼ max {hi}(min {ei1}, min (ei2, min {ei3, min {ei4}), i ¼ 1, 2, . . . , n

latest{pi(t), i ¼ 1, 2, . . . , n} ¼ latest{hi(pi1, pi2, pi3, pi4), i ¼ 1, 2, . . . , n}

¼ min {hi}(max {pi1}, max {pi2}, max {pi3}, max {pi4}), i ¼ 1, 2, . . . , n:

Using the above procedure, we compute and update fuzzy time

stamps p(t), fuzzy enabling times e(t), and fuzzy occurrence

times o(t) each time a transition firing (atomic action) occurs,

starting from the initial (given) fuzzy timestamps of tokens in

the initial marking M0 and initially specified fuzzy delays.

dtp(t). (See Zhou et al. [2000].)

a
0 τ

h

b c d

π(τ)

FIGURE 9.9 Trapezoidal Possibility Distribution.

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 472

472 Xudong He and Tadao Murata

9.6.3 Intended Application Areas and Application
Examples of FTHNs

As seen in Subsections 9.6.1 and 9.6.2, the essence of FTHNs is

the computation of updating fuzzy time stamps, and this

computation involves only additions and comparisons of real

numbers. Thus, computation can be done very fast, and

FTHNs are suitable for performance analysis in real-time ap-

plications. The notion of fuzzy timing is highly flexible in that

it can capture imprecise or incomplete knowledge regarding

time behavior with specified or given possibility distributions,

as well as the more conventional deterministic and probabil-

istic knowledge. However, it is expected that the traditional

probabilistic approach and the FTHN method using possibility

theory are complementary, rather than competitive, as possi-

bility theory is considered to be complementary to probability

theory (Zadeh, 1995). We expect that the FTHN method is

more scalable than the traditional stochastic approaches be-

cause the FTHN computations are done using real arithmetic

operations.

Some examples of FTHN applications include the following.

A real-time network protocol used in local area networks

(LANs) is modeled using FTHNs in (Murata, et al., 1999).

Here we are interested in evaluating the worst-case perform-

ance in a given network, where propagation delays, times for

processing message frames, and other such processes are spe-

cified as trapezoidal fuzzy-time functions. The fuzziness is due

to the uncertain length (thus uncertain delay) of each message.

In addition, FTHN models are used for performance evalu-

ation of manufacturing systems, where the abilities of ma-

chines and/or workers involved in a manufacturing process

are fuzzily known (Watanuki, 1999). Another area in which

FTHN models are applied is the synchronization of multi-

media systems (Zhou and Murata, 1998, 2001). Multimedia

systems integrate a variety of media with different temporal

characteristics (e.g., time-dependent media, such as video,

audio, or animation) and time-independent media (e.g. text,

graphics, and images). Thus, synchronization is a critical issue

in these systems. The temporal specification has to be properly

represented for presentation reviewing and planning by the

user as well as for storing purposes. Multimedia synchroniza-

tion has a time-critical problem because it must guarantee the

temporal constraints for presenting the media items. Thus,

there is a benefit in using FTHN methods to specify and

analyze the temporal relations and specifications. The FTHN

method has been used to present a new fine-grained temporal

FTHN model for distributed multimedia synchronization

(Zhou and Murata, 2001). The FTHN method has also been

applied to a video-on-demand (VOD) system, which is a

continuous playback multimedia application in which con-

stant real-time media data are required for smooth real-time

presentation. Thus, timing is a critical issue, and the response

time is the only timing that has direct interaction with the

subscribers and also impacts the quality-of-service (QoS), as

discussed by Murata and Chen (2000). A nontrivial example of

FTHN application is found in Zhou et al. (2000), where the

FTHN method has been used to model networked virtual-

reality systems, such as Cave Automatic Virtual Environment

(CAVE) and Narrative Immersive Constructionist/Collabora-

tive Environments (NICE) projects at the University of Illinois

at Chicago. Using the FTHN models, various simulations have

been conducted to study real-time behaviors, network effects,

and performance (latencies and jitters) of the NICE. The

simulation results are consistent with data and measurements

obtained experimentally. This study shows how powerful

FTHN models are in specifying and analyzing performance

and how helpful the performance analysis is in improving

a real-time networked-virtual-environment system design

process.

References
Abadi, M., and Cardelli, L. (1996). A theory of objects. Springer-Verlag.

Agha, G., De Cindio, F., Rozenberg, G. (Eds.). (2001). Concurrent

object-oriented programming and Petri nets—Advances in Petri

nets. Lecture Notes in Computer Science. Springer Verlag,

Anttila, M., Eriksson, H., and Ikonen, J. (1983). Tools and studies of

formal techniques—Petri nets and temporal ‘‘logic.’’ In H. Rudin

and C.H. West (Eds.) Protocol specification, testing, verification.

Elsevier Science.

Alpein, B., and Schneider, F. B. (1985). Defining liveness. Information

Processing Letters 21, 181–185.

Bastide, R. (1995). Approaches in unifying Petri nets and the object-

oriented approach. Proceedings of the 1st Workshop on Object-

Oriented Programming and Models of Concurrency Vol. 000–000.

Biberstein, O., and Buchs, D. (1995). Structured algebraic nets with

object-orientation. Proceedings of the 1st Workshop on Object-

Oriented Programming and Models of Concurrency Vol. 000–000.

Battiston, E., Chizzoni, A., and Cindio, F. D. Inheritance and con-

currency in CLOWN. Proceedings of the 1st Workshop on Object-

Oriented Programming and Models of Concurrency. Vol. 000–000.

Benjamin, M. (1990). A message passing System: An example of

combining CSP and Z. Proceedings of the 5th Annual Z Users Work-

shop Vol. 000–000, 221–228.

Booch, G. (1994). Object-oriented analysis and design with applica-

tions. (2d. ed.). Benjamin/Cummings.

Booch, G., Rumbaugh, J., and Jacobson, I. (1997). Unified modeling

language user guide. Reading, MA: Addison-Wesley.

Clarke, E., and Wing, J. (1996). Formal methods: State of the art and

future. ACM Computing Surveys 28(4), 626–643.

Coad, P., and Yourdon, E. (1991). Object-oriented analysis. Yourdon

Press.

Diaz, M., Guidacci, G., and Silveriral, D. (1983). On the specification

and validation of protocols by temporal logic and nets. Information

Processing 83, 47–52.

Dong, Z., and He, X. (2001). Integrating UML statechart and collab-

oration diagrams using hierarchical predicate transition nets.

Lecture Notes in Informatics, P-7, 99–112.

Dubois, D., and Prade, H. (1989). Processing fuzzy temporal know-

ledge. IEEE Transactions On Systems, Man and Cybernetics, 19(4),

729–744.

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 473

9 High-Level Petri Nets—Extensions, Analysis, and Applications 473

Duke, R., and Smith, G. (1989). Temporal logic and Z specifications.

Australian Computer Journal 21(2), 62–69.

Ehrig, H., and Mahr, B. (1985). Fundamentals of algebraic specification

1—Equations and initial semantics. Pringer-Verlag.

Evans, A. S. (1997). An improved recipe for specifying reactive

systems in Z. Proceedings of the 10th International Conference of

Z Users (Lecture Notes in Computer Science) 1212, 273–294.

Genrich, H. J., and Lautenbach, K. (1981). System modeling with

high-level Petri nets. Theoretical Computer Science 13, 109–136.

Haas, P. (2002). Stochastic Petri nets: Modeling, stability, simulation.

Springer-Verlag.

Harel, P. (2002). On visual formalisms. Communications of the ACM

31, 514–530.

He, X., and Ding, Y. (1992). A temporal logic approach for analyzing

safety properties of predicate transition nets. Proceedings of the

12th IFIP World Computer Congress (Information Processing ’92)

Vol. 000–000, 127–133.

He, X., and Ding, Y. (1996). Object-oriented specification using

hierarchical predicate transition nets. Proceedings of the 2nd Inter-

national Workshop on Object-Oriented Programming and Models of

Concurrency Vol. 000–000, 72–79.

He, X., and Ding, Y. (2001). Object orientation in hierarchical

predicate transition nets. Lecture Notes in Computer Science Vol.

000–000, 196–215.

He, X. (1991). Specifying and verifying real-time systems using time

Petri nets and real-Time temporal logic. Proceedings of the 6th

Annual Conference on Computer Assurance Vol. 000–000, 135–140.

He, X. (1992). Temporal predicate transition nets—A new formalism

for specifying and verifying concurrent systems. International Jour-

nal of Computer Mathematics 45 (1/2), 171–184.

He, X. (1995). A method for analyzing properties of hierarchical

predicate transition nets. Proceedings of the 19th Annual Inter-

national Computer Software and Applications Conference (COMP-

SAC ’95) Vol. 000–000, 50–55.

He, X. (1996). A formal definition of hierarchical predicate transition

nets. Proceedings of the 17th International Conference on Application

and Theory of Petri Nets (ICATPN’96), Lecture Notes in Computer

Science 1091, 212–229.

He, X. (1998). Transformations on hierarchical predicate transition

nets: Abstractions and refinements. Proceedings of the 22nd Inter-

national Computer Software and Application Conference (COMPSAC

’98) Vol. 000–000, 164–169.

He, X. (2000a). Formalizing use case diagrams in hierarchical predi-

cate transition nets. Proceedings of the IFIP 16th World Computer

Congress Vol. 000–000, 484–491.

He, X. (2000b). Formalizing class diagrams using hierarchical predi-

cate transition nets. Proceedings of the 24th International Computer

Software and Application Conference (COMPSAC ’2000). Vol.

000–000.

He, X. (2000c). Translating hierarchical predicate transition nets

into CCþþ programs. Information and Software Technology 42(7),

475–488.

He, X. (2001). PZ nets—A formal method integrating Petri nets with

Z. Information and Software Technology. 43, 1–18.

He, X., and Lee, J.A.N. (1990). Integrating predicate transition nets

and first-order temporal logic in the specification of concurrent

systems. Formal Aspects of Computing 2(3), 226–246.

He, X., and Lee, J.A.N. (1991). Methodology for constructing predi-

cate transition net specifications. Software—Practice & Experience

21(8), 845–875.

He, X., and Yang, C. H., Structured analysis using hierarchical predi-

cate transition nets. Proceedings of the 16th International Computer

Software and Applications Conference (COMPSAC’92) Vol. 000–000,

212–217.

ISO/IEC. (2002). High-level Petri nets–Concepts, definitions, and

graphical notation. Final Draft International Standard 15909,

version 4.7.1.

Jensen, K. (1992). Coloured Petri nets—Basic concepts, analysis

methods, and practical use. Springer-Verlag.

Jensen, K. (1995). Coloured Petri nets—Basic concepts, analysis

methods, and practical use. Springer-Verlag.

Jensen, K., and Rozenberg, G. (Eds.). (1991). High-level Petri

nets—Theory and applications. Springer-Verlag.

Kan, C., and He, X. (1995). High-level algebraic Petri nets. Infor-

mation and Software Technology 37 (1), 23–30.

Kan, C., and He, X. (1996). A method for constructing algebraic Petri

nets. Journal of Systems and Software 35, 12–27.

Kappel, G., and Schrefl, M. (1991). Using an object-oriented diagram

technique for the design of information systems. In Dynamic

modeling of information systems. Elsevier Science Publishers.

Lewandowski, S., and He, X. (1998). A Java framework for imple-

menting hierarchical predicate transition nets. Proceedings of

the 10th International Conference on Software Engineering and

Knowledge Engineering (SEKE’98) Vol. 000–000, 261–268.

Lewandowski, S., and He, X. (2000). Automating the generation

of code for a hierarchical predicate transition net-based design.

Proceedings of the 12th International Conference on Software

Engineering and Knowledge Engineering. Vol. 000–000 pp 000–

000.

Lakos, C. (1995a). From colored Petri nets to object Petri nets:

Proceedings of the 16th International Conference on the Application

and Theory of Petri Nets. Vol. 000–000 pp 000–000.

Lakos, C. (1995b). The object orientation of object Petri nets. Pro-

ceedings of the 1st Workshop on Object-Oriented Programming and

Models of Concurrency Vol. 000–000 pp 000–000.

Lamport, L. (1994a). The temporal logic of actions. ACM Transactions

on Programming Languages and Systems 16 872–923.

Lamport, L. (1994b). TLZ Proceedings of the 1994 Z User Workshop

Vol. 267–268.

Lee, Y.K., and Park, S.J. (1993). OPNets: An object-oriented high-level

Petri net model for real-time system modeling. Journal of Systems

and Software 20, 69–86.

Mandrioli, D., Morzenti, A., Pezze, M., Pietro, P., and Silva, S. (1996).

A Petri net and logic approach to the specification and verification

of real-time systems. Formal Methods for Real-time Computing Vol.

000–000 pp 000–000.

Manna, Z., and Pnueli, A. (1995). The temporal verification of reactive

systems—safety. Springer-Verlag, Vol. 000–000 pp 000–000.

Manna, Z., and Pnuell, A. (1992). The temporal logic of reactive and

concurrent systems—specification. New York: Springer-Verlag Vol.

000–000 pp 000–000.

Marsan, M., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G.,

(1994). Modeling with generalized stochastic Petri nets. New York:

John Wiley & Sons Vol. 000–000 pp 000–000.

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Au: City &
State Abbrev.?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 474

474 Xudong He and Tadao Murata

Matsuoka, S., and Yonezawa, A. (1993). Analysis of inheritance

anomaly in object-oriented concurrent programming languages.

In G. Agha, P. Wegner, and A. Yonezawa, (Eds.). Research directions

in concurrent object-oriented programming. MIT Press. Vol. 000–000

pp 000–000.

Medvidovic, N., and Taylor, R. (2000). A classification and compari-

son framework for software architecture description languages.

IEEE Transaction on Software Engineering 26 (1), 70–93.

Murata, T. (1996). Temporal uncertainty and fuzzy-timing high-level

Petri nets. Application and theory of Petri nets: Lecture Notes in

Computer Science, 1091, 11–28.

Murata, T. (1989). Petri nets, properties, analysis and applications.

Proceedings of IEEE, 77(4), 541–580.

Murata, T., and Chen, C.P. (2000). Fuzzy-timing Petri-net modeling

and analysis of video-on-demand system response times. Proceed-

ings of the 5th World Conference on Integrated Design & Process

Technology, Vol. 298–306.

Murata, T., Suzuki, T., and Shatz, S. (1999). Fuzzy-timing high-level

Petri nets (FTHNs) for time-critical systems. In J. Cardoso and

H. Camargo (Eds.). Fuzziness in Petri nets, Vol. 22: Studies in

Fuzziness and Soft Computing. New York: Springer Verlag.

Queille, I.P., and Sifakis, J. (1982). Specification and verification of

concurrent systems in CESAR. Lecture Notes in Computer Sciences

137, 337–351.

Reisig, W. (1987). Petri nets in software engineering. Lecture Notes in

Computer Science 255, 63–96.

Shaw, M., and Garlan, D. (1996). Software architecture. Englewood

Cuffs, NJ: Prentice-Hall.

Suzuki, L., and Lu, H. (1989). Temporal Petri nets and their applica-

tion to modeling and analysis of a handshake daisy chain arbiter.

IEEE Transactions on Computer 38(5), 696–704.

Spivey, J.M. (1992). The Z notation: A reference manual. Englewood

Cliffs, NJ: Prentice-Hall.

Reisig, W. (1985a). Petri nets—An introduction. EATCS Monographs

on Theoretical Computer Science 4,

Reisig, W. (1985b). On the semantics of Petri nets. In J. Neuhold

and G. Chroust (Eds.), Formal models in programming North-

Holland.

Taguchi, K., and Araki, K. (1997). The state-based CCS semantics

for concurrent Z specification. Proceedings of the 1st International

Conference on Formal Engineering Methods Vol. 283–292.

Stroustrup, B. (1991). The C þþProgramming Language. (2nd ed.).

Reading, MA: Addison-Wesley.

van Hee, K.M., Somers, L.J., and Voorhoeve, M. (1991). Z and high-

level Petri nets. Lecture Notes in Computer Science 551, 204–219.

Wang, J. (1998). Timed Petri nets, theory and application. Kluwer

Academic Publisher.

Watanuki, K., and Murata, T. (1999). Evaluation method for assembly.

Norwell, MA: disassembly by Petri nets. Proceedings of the Inter-

national Conference on Engineering Design (ICED’99) 1, 519–522.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ:

Prentice Hall.

Zadeh, L.A. (1995). Discussion: Probability theory and fuzzy logic are

complementary rather than competitive. Technometrics of American

Statistical Association and American Society for Quality Control

37(3), 00

Zhou, Y., and Murata, T. (2001). Modeling and analysis of distributed

multimedia synchronization by extended fuzzy-timing Petri nets.

Journal of Integrated Design and Process Science 4(4), 23–38.

Zhou, Y., and Murata, T. (1998). Fuzzy-timing Petri net model for

distributed multimedia synchronization. Proceedings of the 1998

IEEE International Conference on Systems, Man, and Cybernetics.

Vol. 244–249.

Zhou, Y., and Murata, T. (1999). Petri net model with fuzzy-timing

and fuzzy-metric temporal logic. International Journal of Intelligent

Systems 14(8), 719–746.

Zhou, Y., Murata, T., and DeFanti, T. (2000). Modeling and perform-

ance analysis using extended fuzzy-timing Petri nets for networked

virtual environments. IEEE Transactions on Systems, Man, and

Cybernetics 30(5), 737–756.

Au: City &
State Abbrev.?

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 475

9 High-Level Petri Nets—Extensions, Analysis, and Applications 475

Chen: Circuit Theroy Section 4 – Chapter 9: Page Proof 5.6.2004 6:27pm page 476

