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An Oblivious Spanning Tree for
Single-Sink Buy-at-Bulk

in Low Doubling-Dimension Graphs
Srivathsan Srinivasagopalan, Costas Busch, and S.S. Iyengar

Abstract—We consider the problem of constructing a single spanning tree for the single-sink buy-at-bulk network design problem
for doubling-dimension graphs. We compute a spanning tree to route a set of demands along a graph G to or from a designated
sink node. The demands could be aggregated at (or symmetrically distributed to) intermediate edges where the fusion-cost is
specified by a non-negative concave function f . We describe a novel approach for developing an oblivious spanning tree in the
sense that it is independent of the number and location of data sources (or demands) and cost function at the edges. We present
a deterministic, polynomial-time algorithm for constructing a spanning tree in low doubling-dimension graphs that guarantees
a log3 D-approximation over the optimal cost, where D is the diameter of the graph G. With a constant fusion-cost function,
our spanning tree gives a O(log3 D)-approximation for every Steiner tree that includes the sink. We also provide a Ω(logn)

lower-bound for any oblivious tree in low doubling-dimension graphs. To our knowledge, this is the first paper to propose a single
spanning tree solution to the single-sink buy-at-bulk network design problem (as opposed to multiple overlay trees).

Index Terms—Spanning Tree, Buy-at-Bulk, Network Design, Approximation Algorithm, Doubling-Dimension Graph, Data Fusion,
Data Structure.

✦

1 INTRODUCTION

A typical client-server model has many clients and
one server where a subset of the client set wishes
to route a certain amount of data to the server at
any given time. The set of clients and the server are
assumed to be geographically far apart. To enable
communication among them, there needs to be a net-
work of cables deployed. Moreover, the deployment
of network cables has to be of minimum cost that also
minimizes the communication cost among the various
network components. This is what we roughly call a
typical network design problem. The same problem
can be easily applied to many similar practical scenar-
ios such as oil/gas pipelines and telephone network.

The “Buy-at-Bulk” network design considers the
economies of scale into account. As observed in [2],
in a telecommunication network, bandwidth on a link
can be purchased in some discrete units u1 < u2 <
. . . < un with costs c1 < c2 < . . . < cn respectively. The
economies of scale exhibits the property where the
cost per bandwidth decreases as the number of units
purchased increases: c1/u1 > c2/u2 > . . . > cn/un.
This property is the reason why network capacity is
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bought/sold in “wholesale”, or why vendors provide
“volume discount”.

There are different variants of buy-at-bulk network
design problems that arise in practice. One of them
is “single-sink buy-at-bulk” network design (SSBB).
This SSBB problem has a single “destination” node
where all the demands from other nodes has to be
routed to. Typically, the demand flows are in discrete
units and are unsplittable (indivisible), i.e., the flow
follows a single path from the demand node to the
destination. These problems are often called “discrete
cost network optimization” in operations research.

As mentioned in [3], if information flows from
x different sources over a link, then, the cost of
total information that is transmitted over that link
is proportional to f(x), where f : Z

+ → R
+. The

function f is called a canonical fusion function if it
is concave, non-decreasing, f(0) = 0 and has the
subadditive property f(x1 + x2) ≤ f(x1) + f(x2),
∀x1, x2, (x1 + x2) ∈ Z

+. Generally, SSBB problems use
the subadditive property to ensure that the ‘size’ of
the aggregated data is smaller than the sum of the
sizes of individual data. If the set of demand nodes
is known in advance and f is constant, then, this is a
well-known Steiner tree problem.

We study the oblivious single-sink buy-at-bulk
(SSBB) network design problem with the following
constraints: an unknown number of source (or de-
mand) nodes and an unknown concave transportation
cost function f . An abstraction of this problem can
be found in many applications, one of which is data
fusion in wireless sensor networks where constraints
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such as the number and location of source nodes are
assumed unknown or vary over time. Others include
design of VLSI power circuitry, Transportation & Lo-
gistics (railroad, water, oil, gas pipeline construction)
etc. For simplicity, we consider data fusion problems
in communication networks. Our solution holds for
both data distribution and aggregation problems in
doubling-dimension graphs. Informally, a graph has
doubling-dimension ρ, if there is a smallest ρ such
that for every radius r > 0, every ball of radius 2r
can be covered by at most 2ρ balls of radius r. When
ρ is small (constant), the graph is of low doubling-
dimension.

Doubling-dimension graphs have been used in
many different contexts including compact routing in
wired networks [4], [5], [6], hierarchical routing and
low-diameter networks [7], [8] traveling salesman,
navigability and problems related to modeling the
structural properties of the Internet distance matrix
for distance estimation [9], [10]. As noted in [11], it has
become a key concept to measure the ability of net-
works to support efficient algorithms or to realize spe-
cific tasks efficiently. For wireless networks, this con-
cept has found many uses in solving many distributed
communication problems [12], distributed resource-
management [13], information exchange among pro-
ducers and consumers [14], and for determining other
performance qualities such as energy-conservation in
wireless sensor networks [15].

1.1 Problem Statement

Assume that we are given a weighted graph G =
(V,E,w), with edge weights w : E −→ R≥1, with
a sink s ∈ V . We denote we to be the weight of
edge e. Let A = {v1, v2, . . . , vd}, A ⊆ V be the set
of demand nodes. Let each node vi ∈ A have a non-
negative unit demand. A demand from vi induces a
unit of flow to sink s and this flow is unsplittable.
The demands from various demand nodes have to be
sent to the destination node s possibly routed through
multiple edges in the graph G. This forms a set of
paths P (A) = {p(v1), p(v2), . . . , p(vd)}, where p(vi) is
the path from vi ∈ A to s. The output for a given
graph G, sink s and a set of demand nodes A is a set
of paths P from the nodes in A to s. We seek to find
such a set of paths with minimal cost with respect to
a cost function described below.

There is an arbitrary concave fusion-cost function
f at every edge where data aggregates. This f is the
same for all the edges in G. Let p(v) be the path taken
by a flow from v to s in G. Let ϕe(A) : {p(v) : e ∈
p(v)∧ v ∈ A} denote the set of paths originating from
nodes in A that use an edge e ∈ E. Then, we define
the cost of an edge e to be Ce(A) = f(|ϕe(A)|)·we. The
total cost of the set of paths is defined to be C(A) =∑

e Ce(A).
For a given set A of demand nodes in G, the

corresponding set of paths P (A) would incur a total

cost denoted by C(A). For this set A, there is an
optimal set of paths P ∗(A) with respect to the total
cost denoted by C∗(A). The competitive ratio for the

cost of these two sets of paths is given by C(A)
C∗(A) .

The oblivious case arises when we do not know the
set of demand nodes in advance. So, given a graph
G = (V,E) with sink s ∈ V , an oblivious algorithm,
Aobl, must compute a set of paths P (V ) which induces
P (A) for any set A ⊆ V . The competitive ratio of this
oblivious algorithm is given by:

C.R.(Aobl) = max
A⊆V

C(A)

C∗(A)
.

We aim to find an oblivious algorithm that mini-
mizes the above competitive ratio. We note that SSBB
is NP-Hard as the Steiner tree problem is a special of
case of SSBB (when f(x) = 1) [16].

1.2 Contribution

We seek to find a spanning tree T rooted at sink s
for any doubling-dimension graph G. The spanning
tree T we build produces a set of unique paths P (V )
from ∀v ∈ V to the sink s. This T is oblivious
since it is independent of the data sources, and can
accommodate any canonical fusion-cost function. Our
approach gives a deterministic, polynomial-time al-
gorithm that guarantees O(217ρ log3 D) competitive
ratio for graphs with doubling-dimension ρ. There-
fore, for low doubling-dimension graphs, we ob-
tain a O(log3 D) competitive ratio. When f(·) = c,
a constant, our spanning tree solution provides a
O(log3 D)-approximation to any Steiner tree that con-
tains the sink s. To our knowledge, these are the first
spanning tree solutions to the oblivious SSBB problem
and also for the oblivious Steiner tree problem. We
also give a lower bound in n × n grids for the
competitive ratio for any oblivious SSBB spanning tree
T to be of Ω(log n).

It is well-known in the research community that tree
structures provide a very efficient solution for man-
aging data dissemination and aggregation in large-
scale distributed systems. Prominent architectures
like the content-based publish-subscribe, peer-to-peer
communication, muticasting etc take advantage of
efficient routing in trees and distributed maintenance
of the tables in each node of the network.

The motivation for us to build a spanning tree not
only comes from the above mentioned advantages
and current use, but also because of the fact that
it has the most compact form of data structure in
the sense that they have the minimum number of
edges connecting all the nodes (n − 1). Furthermore,
their inherent acyclic property conveniently avoids
inefficient use of the network due to unnecessary
cyclic data traversal and hence avoids increased costs.
Since there are no routing loops formed during the
tree construction, any design of routing algorithms on
trees is greatly simplified.
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We build a spanning tree based on the following
technique. We partition the nodes in a hierarchical
fashion. The selection of nodes for a given ‘level’ of
hierarchy is based on finding d-independent nodes,
where d is proportional to that level. Nodes of suc-
cessive levels are connected by bounded length paths.
The intersecting paths that may potentially form cy-
cles are appropriately modified to result in a spanning
tree. A modified spanning tree is built from the span-
ning tree to ensure that all paths have appropriate
end-nodes. Analysis is done on this modified tree.

To demonstrate the basic techniques and concepts,
we initially build an overlay tree and produce a logD
competitive ratio. An overlay tree is a tree where each
edge in the tree could be a path in the underlying
physical infrastructure. Shortest paths in an overlay
tree, when projected to its underlying network, could
have several intersections leading to cycles. Our initial
overlay tree construction and analysis gives an insight
for the analysis of the spanning tree that we build
subsequently. Since the overlay tree may result in
having cycles, our main algorithm for constructing a
spanning tree extends the overlay tree algorithm to
obtain a competitive ratio of O(log3 D).

We perform simulation to compare the cost of the
spanning tree with trees from several prior related
work and a few well known trees (Minimum Span-
ning Tree and Shortest-Paths Tree). For comparison,
we generate the trees and costs by simulation using
NetworkX [17]. The simulations corroborate the ana-
lytical results and show that the oblivious spanning
tree provides very competitive costs and in fact pro-
vides better costs than the well known trees.

1.3 Related Work

1.3.1 Non-Oblivious SSBB

There has been a lot of research work in the area of
approximation algorithms for network design. Since
network design problems have several variants with
several constraints, only a partial list has been men-
tioned in the following paragraphs.

SSBB problems have been primarily considered in
both Operations Research and Computer Science liter-
atures in the context of flows with concave costs. SSBB
problem was first introduced by Salman et al. [16].
They presented an O(log n)-approximation for SSBB in
Euclidean graphs by applying the method of Mansour
and Peleg [18]. Bartal’s tree embeddings [19] can be
used to improve their ratio to O(log n log log n). A
O(log2 n)-approximation was given by Awerbuch et al.
[20] for graphs with general metric spaces. Bartal et al.
[21] further improved this result to O(log n). Guha [22]
provided the first constant-factor approximation to
the problem, whose ratio was estimated to be around
9000 by Talwar [23].

Some other special cases of the problem have also
constant factor approximations. Algorithms by Ku-

mar et al. [24] and Gupta et al. [25] provide con-
stant factor approximation algorithms for the rent-or-
buy variation of the problem. They provide a 76.8-
approximation algorithm for the splittable-SSBB prob-
lem. Talwar [23] proposed an LP rounding approach
for the SSBB problem with an approximation ratio
of 216. Raja Jothi et al. [26] provide an improve-
ment over Talwar’s with a 145.6-approximation and
guaranteeing that each flow follows a single path
to the sink. Their work also proposes a technique
for the splittable-flow SSBB problem which reduces
the previous best ratio of 72.8 to αK which is less
than 65.49 for all K-types of cables (each type has a
specified capacity and cost per unit length).

Another variant is the “capacitated” buy-at-bulk
network design problem where each edge (link) of
the network has an upper-bound on the amount of
demand flows it can route through it. This problem
is otherwise known as network loading problem. Many
heuristic and branch-cut approaches have been used
to solve such problems. Frangioni et al. [27] show
that a non-trivial 0-1 reformulation of the Multi-
Commodity Network Design (MCND) provides the
same LP bound obtained by adding exponentially
many residual capacity inequalities to the LP relax-
ation of the general integer formulation. Gendron
textitet al. [28] provide a survey of methods that
solve MCND, particularly through LP relaxations. The
methods highlighted are the simplex-based cutting
plane algorithms, Lagrangean relaxation and heuris-
tics. Öncan [29] provides a fast approximate reason-
ing algorithm, which is based on the Esau-Williams
savings heuristic and fuzzy logic rules to solve this
problem.

1.3.2 Oblivious SSBB
Below, we present the related work in oblivious SSBB
and Table 1 summarizes most these results and com-
pares our work with their’s. What distinguishes our
work with the others’ is the fact that we provide a
spanning tree while others provide an overlay tree
that may have cycles.

Goel et al. in [3] build an overlay tree on a graph
that satisfies the triangle-inequality. Their technique
is based on a maximum matching algorithm that
guarantees (1 + log k)-approximation, where k is the
number of sources. Their solution is oblivious with
respect to the fusion-cost function f . An overlay tree,
if projected to a graph, may not be a tree (could have
cycles). In a related paper [32], Goel et al. construct (in
polynomial time) a set of overlay trees from a given
general graph such that the expected cost of a tree for
any f is within an O(1)-factor of the optimum cost
for that f .

Jia et al. in [30] build a Group Independent Span-
ning Tree Algorithm (GIST) that constructs an over-
lay tree for randomly deployed nodes in an Eu-
clidean 2 dimensional plane. The tree (that is obliv-
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TABLE 1: Our results and comparison with previous results for data-fusion schemes. n is the total number of
nodes in the topology, k is the total number of source nodes. Note that our work gives a spanning tree and
others provide an overlay tree that may have cycles.

Related
Work

Algorithm
Type

Graph
Type

Oblivious
Function f

Oblivious
Sources

Approx
Factor Tree Type

Lujun Jia
et al. [30]

Deterministic
Random
Deployment

× X O(log n) One Overlay

Lujun Jia Deterministic Arbitrary Metric × X O( log4 n

log log(n)
) Universal Steiner

Tree (Overlay)

et al. [31] Deterministic Doubling Metric × X O(log(n)) Universal Steiner
Tree (Overlay)

Ashish Goel
et al. [3]

Randomized
General Graph
△-inequality

X × O(log k) One Overlay

Ashish Goel
et al. [32]

Probabilistic General Graph X × O(1) Multiple Overlay

Anupam Gupta Randomized General Graph X X O(log2 n) Multiple Overlay

et al. [33] Randomized Low Doubling X X O(log n) Multiple Overlay

This paper Deterministic
Low Doubling
Dimension

X X O(log3 D) One Spanning

ious to the number of data sources) simultaneously
achieves O(log n)-approximate fusion-cost and O(1)-
approximate delay. However, their solution assumes
a constant fusion-cost function. We summarize and
compare the related work in Table 1.

Lujun Jia et al. [31] provide approximation
algorithms for TSP, Steiner Tree and set cover
problems. They present a polynomial-time
(O(log(n)), O(log(n)))-partition scheme for general
metric spaces. An improved partition scheme for
doubling metric spaces is also presented that
incorporates constant dimensional Euclidean spaces
and growth-restricted metric spaces. The authors
present a polynomial-time algorithm for Universal
Steiner Tree (UST) that achieves polylogarithmic
stretch with an approximation guarantee of
O(log4 n/ log log(n)) for arbitrary metrics and derive
a logarithmic stretch, O(log(n)) for any doubling,
Euclidean, or growth-restricted metric space over n
vertices.

Gupta et al. [33] develop a framework to model
oblivious network design problems and give algorithms
with poly-logarithmic competitive ratio. They develop
oblivious algorithms that approximately minimize the
total cost of routing with the knowledge of aggre-
gation function, the class of load on each edge and
nothing else about the state of the network. Their
results show that if the aggregation function is sum-
mation, their algorithm provides a O(log2 n) com-
petitive ratio and when the aggregation function is
max, the competitive ratio is O(log2 n log log n). The
authors claim to provide a deterministic solution by
derandomizing their approach. But, the complexity of
this derandomizing process is unclear.

Chuzhoy et al. [34] consider the Fixed Charge Net-

work Flow (FCNF) problem and show that this prob-
lem and several other basic network design problems
cannot be approximated better than Ω(log log n) unless
NP ⊆ DTIME(nO(log log logn)). They show that this
inapproximability threshold holds for the Priority-
Steiner Tree problem, single-sink Cost-Distance prob-
lem and the single-sink FCNF problem.

A lower bound for the summation aggregation
function is provided in the online Steiner tree problem
by Imase and Waxman [35]. This provides an Ω(log n)
competitive ratio for planar graphs. However, the spe-
cific planar graph they used is not of low doubling-
dimension. For this reason, we provide an alternative
lower bound for low doubling graphs, in particular
for two dimensional grids.

Organization

In the next section, we present some definitions and
notations used throughout the rest of the paper. Sec-
tion 3 provides the description and analysis of an
overlay tree which will be useful for the analysis
of the spanning tree that we build later. In section
4, we describe a spanning tree algorithm. Section 5
contains the modified spanning tree construction algo-
rithm. Section 6 provides the analysis of the modified
spanning tree as well as the main theorem of this
paper. Section 7 discusses the lower bound analysis.
In section 8, we briefly describe our simulation results
comparing our tree with several well-known trees.
Finally, we discuss our contribution and future work
in section 9.

2 DEFINITIONS

Consider a weighted graph G = (V,E,w), w : E −→
R≥1. Let s ∈ V be the sink node. For any two nodes
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u, v ∈ V let dist(u, v) denote the distance between u, v
(measured as the total weight of the shortest path that
connects u and v). Given a subset V ′ ⊆ V , we denote
dist(u, V ′) the smallest distance between u and any
node in V ′. Let D denote the diameter of G, that is,
D = maxu,v∈V dist(u, v). For any path p denote its
length (number of edges) as |p|.

A set of nodes I is said to be a d-independent set if
for each pair u, v ∈ I , u 6= v, dist(u, v) ≥ d. Given a set
of nodes H ⊆ V and parameter d, we define Maximal
Independent Set of G for distance d as I = MIS(G,H, d)
to be an arbitrary maximal d-independent set of nodes
in G such that H ⊆ I . Note that, to begin with, the
nodes in the given set H must also be d-independent.
MIS(G,H, d) can be constructed in polynomial time
with a simple greedy algorithm.

Given a graph G = (V,E), the r-neighborhood of any
vertex u ∈ V denoted N(u, r), is defined as the set
of nodes whose distance is at most r from u; namely,
N(u, r) = {v | dist(u, v) ≤ r}. The r-neighborhood of a
set of vertices V ′ ∈ V denoted by N(V ′, r), is defined
as the set of nodes whose distance is atmost r from
any node in v′. We adapt the definition of doubling-
dimension graph from [36], [37].

Definition 2.1 (doubling-dimension of a Graph). The
doubling-dimension of a graph G is the smallest ρ such that
every r-neighborhood is a subset of the union of at most
2ρ sets of r/2-neighborhoods. If ρ is constant, then we say
that G is of low doubling-dimension.

Observation 2.2. For a graph with doubling-dimension
ρ, any 1-neighborhood contains at most 2ρ nodes. Any 2k-
neighborhood, can be covered by at most 2(k−l)ρ number of
2l-neighborhoods, where k ≥ l ≥ 0.

Lemma 2.3. In any 2k-neighborhood, the size of any 2l-
independent set of nodes does not exceed 2(k−l+3)ρ, where
k ≥ l ≥ 0.

Proof: Let U be 2k-neighborhood of a node v.
Let I be a 2l-independent set of nodes in the 2k-
neighborhood of a node v. If 0 ≤ l ≤ 2, then
|I| ≤ |U | ≤ 2(k+1)ρ ≤ 2(k−l+3)ρ (from Observation
2.2). If, l ≥ 3, from Observation 2.2, U can be covered
by at most 2(k−l+3)ρ number of 2l−3-neighborhoods.
Therefore, have that |I| ≤ 2(k−l+3)ρ.

3 OVERLAY TREE

We describe how to construct an overlay tree from
a connected graph G = (V,E). This will be useful
for the design and analysis of the spanning tree
algorithm.

The overlay tree T = (VT , ET ) is built as follows.
Let κ = ⌈logD⌉, where D is the diameter of graph G.
The overlay tree T consists of κ+1 levels of node sets,
VT = I0 ∪ · · · ∪ Iκ, which are selected in a top down
manner. The root of T is s and Iκ = {s}. Given Ii+1,
we define Ii = MIS(G, Ii+1, 2

i). The leaves of T are

all the nodes in G, namely, I0 = V . Members of Ii are
also called leaders at level i. Note that some leaders
could belong to multiple levels (eg., the sink s is a
member of all levels). For any node u ∈ Ii, i < κ, its
parent in T is chosen to be a leader in Ii+1∩N(u, 2i+2−
2) which is closest to s (a parent is guaranteed to exist
due to the maximal independent set property of Ii+1).

For every edge (u, v) ∈ ET , where u ∈ Ii and v ∈
Ii+1, we select one of the shortest paths from u to
v to be the designated path from u to v to represent
edge (u, v). In case u = v, the designated shortest path
has length zero. For any node v the tree T defines a
unique path q(v) = (e0, e1, . . . , eκ−1) ∈ T from the leaf
v to the root s. The path q(v) is translated to a unique
path p(v) = (p0(v), p1(v), . . . , pκ−1(v)) from v to s in G
by replacing each edge ei ∈ q(v) with the respective
designated shortest path pi(v). We will refer to pi(v)
as the layer-i subpath of p(v).

3.1 Basic Properties of Overlay Tree

For each node u ∈ Ii, let Zu
i denote all the leaves in T

which appear in the subtree of T rooted at u at level
i. The overlay tree T naturally defines a hierarchical
partition of G because for any v 6= u, Zu

i 6= Zv
i and

for all y ∈ G, y ∈ Zx
i for any x.

We will use the following parameters for the anal-
ysis of overlay trees. Please note that the same set
of parameters with appropriately modified values
will be later used in section 6 for the modified tree
analysis.

µi = 2i+2 //upper bound on |pi(u)|

δi = 2i+2 //upper bound on the radius of Zu
i

φi = 2i //lower bound on dist(s, Zu
i ), u 6= s

ξi = 2δi + 2φi //coloring radius

χ = 27ρ //coloring of Ii with radius ξi

For each path pi(v) we have |pi(v)| ≤ 2i+2− 2 < µi,
and hence we obtain:

Observation 3.1. For any node v ∈ V , |pi(v)| < µi.

Lemma 3.2. For any v ∈ Zu
i , dist(v, u) < δi.

Proof: Let p′(v) = (p0(v), p1(v), . . . , pi−1(v)) be the
respective path in the overlay tree from v to u. From
Observation 3.1, |pj(v)| < µj = 2j+2. Thus, |p′(v)| =∑i−1

j=0 |pj(v)| <
∑i−1

j=0 2
j+2 < 2i+2 = δi.

Lemma 3.3. N(s, 2i − 1) ⊆ Zs
i .

Proof: Consider a node v ∈ Zs
i , with v 6= s.

Suppose that v ∈ Ij , where j < i. Let ℓj+1 denote the
parent of v. According to the parent selection criterion,
ℓj+1 ∈ Ij+1 ∩N(v, 2j+2 − 2) and ℓj+1 is closest to s.

We first show that if v ∈ N(s, 2i − 1) then ℓj+1 ∈
N(s, 2i − 1). We only need to show that B = Ij+1 ∩
N(s, 2i − 1) 6= ∅. Let rv denote the shortest path from
v to s. If |rv| ≤ 2j+2 − 2 then s ∈ B, and B 6= ∅.
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Suppose that |rv| > 2j+2− 2. Take a node x ∈ rv such
that dist(x, v) = 2j+1 − 1. Let rx denote the subpath
of rv from x to s. If we consider a neighborhood
N(x, 2j+1 − 1), then, there is a node y ∈ Ij+1 such
that y ∈ N(x, 2j+1 − 1) and dist(x, y) ≤ 2j+1 − 1. Let
ry denote the shortest path from y to s. We have that
|ry| ≤ |rx|+ 2j+1 − 1 = |rv|. Consequently, y ∈ B, and
B 6= ∅.

We can easily see that if v ∈ Ii−1 and v ∈ N(s, 2i−1),
then the parent of v is s, and thus v ∈ Zs

i . Using an
induction on j = i − 1, . . . , 0, we obtain that if v ∈ Ij
and v ∈ N(s, 2i− 1) then v ∈ Zs

i . Consequently, when
we consider j = 0, we obtain that N(s, 2i − 1) ⊆ Zs

i .

From Lemma 3.3, we obtain the following corollary:

Corollary 3.4. For any u ∈ Ii, u 6= s, dist(s, Zu
i ) ≥ φi.

Let Xi = (Ii, EXi
), be a graph such that for any two

u, v ∈ Ii, (u, v) ∈ EXi
if and only if dist(u, v) ≤ ξi.

Lemma 3.5. Graph Xi admits a vertex coloring with at
most χ colors.

Proof: Let v ∈ Ii. The nodes adjacent to v in Ii is
the set Y = N(v, ξi) ∩ Ii. Since Ii is a 2i-independent
set, and ξi = 2δi + 2φi = 2i+3 + 2i+1 ≤ 2i+4, from
Lemma 2.3, we obtain |Y | ≤ 2((i+4)−i+3)ρ = 27ρ.
Consequently, graph Xi has degree at most 27ρ − 1,
and by a greedy algorithm it can be colored with at
most χ = 27ρ colors.

3.2 Competitive Analysis of Overlay Tree

Let A ⊆ V denote an arbitrary set of source nodes.
Let C∗(A) denote the cost of the of the optimal path
set from A to s. Let C(A) denote the cost of the
paths given by the overlay tree T . We will bound the
competitive ratio C(A)/C∗(A).

The cost C(A) can be bounded as a summation of
costs from the different layers as follows. For any edge
e let ϕe,i(A) = {pi(v) : (v ∈ A) ∧ (e ∈ pi(v))} be the
set of layer-i subpaths that use edge e. Recall that the
fusion-cost function f : Z

+ → R
+ is concave, non-

decreasing and has the subadditive property f(x1 +
x2) ≤ f(x1) + f(x2), ∀x1, x2, (x1 + x2) ∈ Z

+ where
f(0) = 0. Denote by Ce,i(A) = f(|ϕe,i(A)|) · we the
cost on the edge e incurred by the level-i subpaths.
Since f is subadditive, we get Ce(A) ≤

∑κ−1
i=0 Ce,i(A).

Let Ci(A) =
∑

e∈E Ce,i(A) denote the cost incurred
by the layer-i subpaths. Since C(A) =

∑
e∈E Ce(A),

we have that:

C(A) ≤
κ−1∑

i=0

Ci(A). (1)

Let Au
i = A ∩ Zu

i . We obtain the following lower
bound on C∗(A):

Lemma 3.6. For any ξi-independent set I ′ ⊆ Ii, C
∗(A) ≥

R(I ′), where R(I ′) =
∑

u∈I′\s f(|A
u
i |) · φi.

Proof: From Lemma 3.2, any node in Au
i is at dis-

tance at most δi−1 from u. Since any pair u, v ∈ I ′\{s},
u 6= v, are at least ξi = 2δi + 2φi distance apart, any
two nodes x ∈ Au

i and y ∈ Av
i are at least 2φi distance

apart. From Corollary 3.4, s /∈ N(Au
i , φi−1). Let Y (Au

i )
be the set of edges with one node in N(Au

i , φi−1) and
the other outside N(Au

i , φi − 1). The set Y (Au
i ) forms

a cut that has to be crossed by the paths in Au
i in

order to reach s. The smallest cost for crossing the
cut is when the paths of Au

i are combined through
the fusion function f . Therefore, each path from Au

i

requires length at least φi in order to reach s. Thus,
we have that the optimal cost of sending the demands
from Au

i to s is at least f(|Au
i |) · φi. Since for each

u ∈ I ′ \ s the respective cuts are disjoint, we obtain:
C∗(A) ≥

∑
u∈I′\s f(|A

u
i |) · φi.

Lemma 3.7. Ci(A) ≤ Qi, where Qi =∑
u∈Ii\{s}

f(|Au
i |) · µi.

Proof: Note that ϕe,i(A) =
⋃

u∈Ii
ϕe,i(A

u
i ). Since f

is subadditive, for any edge e,

Ce,i(A) = f(|ϕe,i(A)|) · we ≤
∑

u∈Ii

f(|ϕe,i(A
u
i )|) · we.

Since for e ∈ pi(u), |ϕe,i(A
u
i )| = |A

u
i |, and for e /∈ pi(u),

|ϕe,i(A
u
i )| = 0, using Observation 3.1 we obtain:

Ci(A) ≤
∑

u∈Ii

f(|Au
i )|) · |pi(u)| ≤

∑

u∈Ii\{s}

f(|Au
i )|) · µi.

Lemma 3.8. Ci(A) ≤ C∗(A) · χ · µi/φi.

Proof: From Lemma 3.5, graph Xi accepts a vertex
coloring with at most χ colors. Let Iji denote the set
of nodes of Xi which receive color j ∈ Ψ = {1, . . . , χ}.
Note that Ii =

∑
j∈Ψ Iji , and Iji ∩I

k
i = ∅ for any j 6= k.

Let Qj
i =

∑
u∈Ij

i
\{s} f(|A

u
i |) · µi. We have that Qi =

∑
j∈Ψ Qj

i . Let Qj∗

i = maxj∈Ψ Qj
i . Thus, Qi ≤ |Ψ|·Q

j∗

i ≤

χ ·Qj∗

i . From Lemma 3.7, we have that Ci(A) ≤ Qi ≤

χ · Qj∗

i . Further, from Lemma 3.6, C∗(A) ≥ R(Ij
∗

i ) =

Qj∗

i ·φi/µi. Consequently, Ci(A) ≤ C∗(A) ·χ ·µi/φi.
Since A is chosen arbitrarily, the following theorem

follows immediately from Equation 1 and Lemma 3.8:

Theorem 3.9 (Oblivious Competitive Ratio of Overlay
Tree). The oblivious competitive ratio of the overlay tree T
is C.R.(T ) ≤ χ · (1 + logD) ·maxi{µi/φi}.

From Theorem 3.9, we immediately obtain the fol-
lowing corollary when we replace the values of the
parameters.

Corollary 3.10. The oblivious competitive ratio of the
overlay tree T is C.R.(T ) = O(27ρ · logD).

4 SPANNING TREE CONSTRUCTION

We start with an informal description of the con-
struction of the spanning tree. We build the tree in
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a hierarchical manner that has κ = O(logD) levels. A
formal description appears in Algorithm 1. The terms
and notations used here are the same as defined for
the overlay tree construction.

Algorithm 1: Spanning Tree

Input: Graph G with sink s.
Output: A spanning tree Ts.

1 P ← ∅; Iκ ← {s} ; // κ← ⌈logD⌉
2 P reg ← ∅; P pr ← ∅ ; // List of regular and
pruned paths

3 foreach level i = κ− 1 to 0 do
4 Ii ←MIS(G, Ii+1, 2

i);
5 foreach v ∈ Ii do
6 pi(v)← FindPath(v, i);
7 if pi(v)

intersects any path at level > i at point u
then

// Prune path pi(v) by removing
segment from u to ℓ

8 p′i(v)← path segment from v to u;
9 P pr

i ← P pr
i ∪ p′i(v);

10 else
11 P reg

i ← P reg
i ∪ pi(v);

12 end
13 end
14 end

15 P ←
⋃i=κ−1

i=0 P reg
i ∪

⋃i=κ−1
i=0 P pr

i ;
16 return Ts ; // Formed by paths in P

The construction of the hierarchical levels of in-
dependent nodes is top-down. Ii is computed by
MIS(G, Ii+1, 2

i), for 0 ≤ i ≤ κ− 1. Ii will contain all
the 2j-independent nodes of higher levels j, i < j ≤ κ
as well as a 2i-independent set of nodes. We enforce
the constraint that s ∈ Ii for every Ii. Note that each
node v ∈ Ii \ Ii+1 has to be within distance 2i+2 − 2
to at least one node in Ii+1 (otherwise v must be a
member of Ii+1).

Paths are also constructed in a top-down fashion.
The path from any level i, denoted pi(v), starts at
some leader v at level i and ends at a leader at level
i + 1. The set of all paths at level i is denoted as Pi

and the set of all paths of all levels is denoted by
P = {Pκ−1, Pκ−2, . . . , P2, P1, P0}. The path computa-
tion is detailed in the function FindPath.

The main objective of FindPath function is to
ensure that any node u at level i is in N(s, 2i − 1)
and that all the nodes in that neighborhood falls
inside the subtree Zs

i rooted at s at level i. The func-
tion FindPath enforces this condition by computing
paths that have the following properties:

1) If there is a node u at level i ≤ j + 3, a shortest
path to s is directly built.

2) If there is a node u at level i > j+3 and is close to
a fixed ring rk, then, it finds a (i+1)-level leader

Function FindPath(u, j)

Input: Node u at level j.
Output: A path pj(u), that connects u to

ℓj+1 ∈ Ij+1.

1 Let rk be fixed rings with radius 2k − 1 around s,
∀k ≤ κ and k > j + 3;

2 if dist(u, s) ≤ 2j+3 − 1 then
3 ℓj+1 ← s;
4 pj(u)← Shortest path from u to ℓj+1;
5 return pj(u);
6 end
7 Let rk be the first fixed ring intercepted by the

shortest path from u to s;
8 if dist(u, rk) ≤ 2j+2 − 2 then
9 Let y be the intersection point on the ring rk

with the shortest path from u to s ;
// dist(u, y) ≤ 2j+2 − 2

10 Let q1 be a path segment from u to y;
11 Let x be a point on the shortest path from u

to s and dist(y, x) = 2k−1 − 1;
12 Let q2 be a path segment from y to x;
13 u′ ← v ∈ N(s, 2k − 1) ∩ Ij+1 and

dist(x, v) ≤ 2k−1 − 1;
14 Let q3 be a path segment from x to u′;
15 pj(u)← q1 + q2 + q3;
16 return pj(u);
17 end
18 if dist(u, rk) > 2j+2 − 2 then
19 Let x be a point on the shortest path from u

to s and dist(u, x) = 2k−1 − 1;
20 Let q1 be a path segment from u to x;
21 u′ ← v ∈ N(s, 2k − 1) ∩ Ij+1 and

dist(x, v) ≤ 2k−1 − 1;
22 Let q2 be a path segment from x to u′;
23 pj(u)← q1 + q2;
24 return pj(u);
25 end

inside the (2k− 1)-ring. Once a leader is chosen,
a special path pi(u) is built from u to ℓi+1. Path
pi(u) is built such that for each node v 6= u on
pi(u), dist(v, s) ≤ dist(u, s). The existence of such
a leader ℓi+1 is guaranteed.

The Function FindPath ensures that if path pi(u)
crosses a fixed ring rk, then, the path does not cross
back and go outside rk. In order to satisfy this prop-
erty, FindPath guarantees to find a leader inside rk.
Hence, any path from a node that is inside N(s, 2i−1)
stays within that neighborhood. This guarantees that
N(s, 2i − 1) ⊆ Zs

i . Details are in Lemma 6.3.

When paths for all levels are built, the resulting
structure may not be a tree. It could result in a graph
that might have intersecting paths. Define regular
paths as paths that do not intersect any (higher-level)
path on their way to their end-nodes. The paths of
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Pκ−1, are regular paths, since there were no higher-
level paths to intersect and are included in P reg

κ−1.
Define pruned paths as those paths that intersect

paths of higher level. If a path pi(v) intersects a path
pj(v

′) (j > i) along its way to ℓi+1, pi(v) is pruned
from the intersection point to its destination. Such
paths are included in P pr

i . This pruning of intersecting
paths ensures the structural property of a spanning
tree (see Figure 1).

Note that regular paths of the same level could
intersect and continue on different directions to reach
a common leader. In this case, one of the paths is
modified to use the same segment as the other after
the intersection point. Another scenario is when two
paths (say from u and v of level i) intersect at m and
proceed to their respective end nodes x and y. In this
case, either v or u will choose a common leader and
appropriately modify its path. In both these scenarios,
the resulting paths remain regular and avoids cycles
when they overlap. Note that in both the cases, the
path segments, after intersection, should have the
same length. We have not mentioned this aspect in
Algorithm 1.

The spanning tree algorithm executes in polynomial
time with respect to the size of the graph.

5 MODIFIED TREE CONSTRUCTION

The pruned paths in the spanning tree T will not have
leaders as end-nodes. To ensure that end-nodes of all
paths are leaders, we modify T to T . The main goal
is to merge pruned paths to form longer paths whose
end nodes are leaders in some level. We then find
‘pseudo-leaders’ Ii among the intermediate nodes in
the merged paths that serve as end nodes for these
pruned paths.

We begin with an overview of the modified tree
construction. We construct T from T by assigning al-
ternate leaders to those paths whose ‘upper’ sections
have been pruned. We first begin by assigning levels
to all the nodes of regular paths by AssignLevels
function in AssignLevels and including those paths in
T . Then, we begin a top-down, level-by-level process
where we ‘modify’ the pruned paths by extending
the pruned paths to their newly assigned alternate
leaders. Note that a modified path could be a con-
catenation of multiple pruned paths. Then, we assign
levels to the nodes of the recently modified path as
well and include this modified path in T . The end
of this process results in a modified tree T . A more
formal description appears in Algorithm 2 Modified
Tree .

Define AssignLevels(pi(v), H, i), where H is a
pair of end-nodes of pi(v), to assign levels to all the
nodes of pi(v) by identifying maximal independent
nodes (excluding the end nodes of pi(v)). This is given
in more detail in the function AssignLevels. Levels
are assigned in the range (i−1) to 0. A modified path

is connected to an alternate leader called pseudo-leader
by the function ModifyPath(pi(u), pj(v)) which
chooses the nearest level-(i+1) node on pj(v) from the
intersection point. The existence of a pseudo-leader in
any given path pj(v), j > i, is justified by the Lemma
5.1.

Function AssignLevels(pi(v), H, i)

Input: Path pi(v), set of end-nodes H of pi(v) ,
level i.

Output: Assignment of levels to all nodes in
pi(v).

1 Lλ ← φ ; // Set of 2λ-independent nodes
2 for λ← (i− 1) to 0 do

// Find 2λ-independent nodes at
levels λ = (i− 1), (i− 2), . . . , 1, 0.

3 Lλ ←MIS(pi(v), H, 2λ);
4 Assign level λ to nodes in Lλ.
5 end

Function ModifyPath(pi(u), pj(v))

Input: Paths pj(v) and pi(u) where pi(u)
intersects pj(v) and j > i

Output: A modified path pi(u).

// Let pi(u) start from u /∈ pj(v) and
intersect at y ∈ pj(v) along its
path to its leader ℓi+1.

1 v′ ← Identify a level-(i+ 1) node v′ ∈ pj that is
close to y and in the direction of s;

2 pai (u)← subpath from u to y in pi(u);
3 pbi (y)← subpath from y to v′ in pj(v);
4 p̄i(u)← pai (u) + pbi (y) ; // Concatenate pai (u)
and pbi (y).

5 return pi(u);

Lemma 5.1 (Presence of a Pseudo-Leader). The
ModifyPath(pi(u), pj(v)) function guarantees selection
of a (i+ 1)-level pseudo-leader.

Proof: Suppose path pi(u) intersects a higher-level
path pj(v), i < j. Let the start-node of pi be u and let
the end-node of pj(v) be w. Note that a path pj(v) goes
from level j to level j+1. There could be two cases for
the presence of a pseudo-leader in pj(v). If level of w is
i+1, then, w itself acts as a pseudo-leader for u. If level
of w is greater than i+1, then, pj(v) must have some
nodes (within its end-nodes) that have been assigned
to level i+1 (by the AssignLevels function) . Hence,
in either case, a pseudo-leader is guaranteed to be
found in pj(v) for u.

Consider that we are at some level i where 0 ≤ i ≤
κ−1 and suppose that there are several pruned paths
in Pi. Let pi(u) ∈ Pi be one such path and let y ∈ pj(v)
be the intersection point, where j > i. A pseudo-leader,
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Algorithm 2: Modified Tree

Input: Spanning Tree T rooted at s.
Output: A modified tree T .

1 T ← φ ; // T = P = {Pκ−1, Pκ−2, . . . , P1, P0}
// Assign Levels to all nodes in all

regular paths in T.
2 i← κ− 1 ; // start from second level
from top

3 while i ≥ 0 do
4 foreach pi(v) ∈ P reg

i do
// v and w are the start and end

nodes of path pi
5 H ← {v, w} ; // v is at same level

as that of i.
6 AssignLevels (pi(v), H , i);
7 T ← T ∪ pi(v);
8 end
9 i← i− 1;

10 end

// Pruned paths in T - Modify paths
and assign levels.

11 i← κ− 2;
12 while i > 0 do
13 foreach pi(u) ∈ P pr

i do
14 pi(u)← ModifyPath(pi(u), pj(v)) ;

// pi(u) intersects pj(v), j > i and
v′ be the elected pseudo-leader.
pj(v) may be a modified path
itself.

15 T ← T ∪ pi(u);
16 H ← {u, v′} ; // u and v′ are the

start and end nodes of pi(u).
17 AssignLevels (pi(u), H , i);
18 end
19 i← i− 1;
20 end

21 return T ;

v′, is chosen on pj(v) using ModifyPath (pi(u), pj(v))
in ModifyPath . This pseudo-leader is chosen in such
a way that it is closer to both s and y. Such a leader
is always guaranteed to exist because the connection
from a pruned path occurs to a modified path that
has already elected new pseudo-leaders towards the
direction of s. Note that this may alter Ij to Ij by
replacing the original leader by the pseudo-leader.
The path pi(u) is extended from y to v′ and this new
extended path, denoted by pi(u), replaces pi(u) in the
modified tree T . The the upper bound on the length
of pi(u) is given by Lemma 6.1. Once a new path
pi(u) is established, all the nodes in it are assigned
levels using (AssignLevels(pi(u), H, i)), where H
is the set of end-nodes of pi(u)). This procedure of
modifying pruned paths, replacing the old pruned
paths by new, extended, modified paths and assigning

levels to all nodes in those paths is repeated for all
levels down to 0. The resulting tree is a modified tree
with normal leaders and pseudo-leaders for respective
types of paths.

Figure 1 gives an example of intersecting path and
its modification to reach a pseudo-leader and form
a modified path. At level κ − 2, we see there is a
path from u to v. The path from b′ to v′ intersects
the former path at x. This path is pruned from the
point of intersection x till v′ and a new connection is
made from x to v, resulting in a new path from b′ to
v.

6 ANALYSIS OF MODIFIED TREE

We will analyze the performance of the modified tree
T . The analysis is similar to the analysis of the overlay
tree in section 3. We will focus on finding in T the
respective values of the parameters µi, δi, φi, ξi and
χ given in Section 3.1. With these values, we can
immediately apply the results of section 3.2 to obtain
a competitive ratio of T .

The modified tree T naturally defines a hierarchical
partition of G. This tree has κ levels of pseudo-leaders
I0 to Iκ = s. For each node u ∈ Ii, let Z

u

i denote all the
leafs in T which appear in the subtree of T rooted at u
at level i. For our analysis, we will use the following
parameters:

µi = 2i+3 //upper bound on |pi(u)|

δi = 2i+3 //upper bound on the radius of Z
u

i

φi = 2i //lower bound on dist(s, Z
u

i ), u 6= s

ξi = 2δi + 2φi //coloring radius

χ = 217ρ log2 D //coloring of Ii with radius ξi

A path pji (v) could be intersected by multiple lower-
level paths. Even though the leaders at a level i
are sufficiently far off, due to intersection by other
paths, the leader at level i might be close to many
leaders of lower level paths. However, the number of
such leaders that are close is limited. Lemmas 6.5, 6.6
and 6.7 establishes the maximum number of pseudo-
leaders in a given neighborhood.

Lemma 6.1. |pi(u)| < µi.

Proof: Consider a path pi(u) ∈ T that starts at
u /∈ pj(v), (j > i), and intersects another path pj(v)
at y ∈ pj(v). Since pi(u) is a pruned path, its length
from u to the intersection point y is at most 2i+2 − 3
(if it was 2i+2 − 2 or more, point y would have been
its original leader). ModifyPath will attempt to seek
an (i + 1)-level node (pseudo-leader) on pj(v) that is
close to y and in the direction of s (Lemma 5.1). Note
that y itself cannot be the pseudo-leader for u because,
if it was, then, pi(u) would not have been a pruned
path. The distance from y to a pseudo-leader v′ on
pj(v) would be at most 2i+2−2 because if this distance
was more than 2i+2−2, we would have found another
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Fig. 1: Pruning and Tree Modification.

pseudo-leader v′′ that is 2i+1 distance away from v′

and closer to y. This is due to the presence of (2i+1)-
independent set nodes on this path pj(v) computed by
AssignLevels. Note that y cannot be an end-node
of pj(v) and v′ could be one of the end-nodes of pi(v).
Hence, the length of pi(u), denoted by µi, could be at
most (2i+2 − 3) + (2i+2 − 2) < 2i+3. Note that pj(v)
itself could be a stretched pruned path and the upper
bound holds irrespective of the length of pj(v).

Lemma 6.2. For any v ∈ Z
u

i , dist(v, u) < δi.

Proof: Consider a path pi(v) ∈ Z
u

i . In the worst
case, this path could be a concatenation of several
modified paths, ranging from level 0 to i−1. The total
length of pi(v) would be equal to the sum of maxi-
mum lengths of each of those segments:

∑i−1
j=0(2

i+2) <

2i+3.

Lemma 6.3. N(s, 2i − 1) ⊆ Z
s

i .

Proof: Consider a node v ∈ N(s, 2i − 1), v 6= s.
Suppose that v ∈ Ij , where j < i. Let ℓj+1 denote the
parent of v. This parent ℓj+1 could be a pseudo-leader
on a modified path pj(v).

We observe that all the nodes in N(s, 2i − 1) use
internal special paths to s due to FindPath algo-
rithm. This is because a path from a node v to its
leader is always towards s. A pseudo-leader ℓj+1 for a
modified path can be found within 2(2i+2−2) distance
from v such that ℓj+1 is within N(s, 2i− 1) and closer
to sink s, due to Lemma 6.1. Since the pseudo-leader
of v is found inside N(s, 2i− 1), v ∈ Z

s

i . By induction
on j = i − 1, . . . , 0, we obtain that if v ∈ Ij and
v ∈ N(s, 2i − 1), then v ∈ Z

s

i . Consequently, when
we consider j = 0, we obtain that N(s, 2i − 1) ⊆ Z

s

i .

From Lemma 6.3, we obtain the following corollary:

Corollary 6.4. For any u ∈ Ii, u 6= s, dist(s, Z
u

i ) ≥ φi.

Lemma 6.5 (Max path segments). The total number of
path segments p(v) ∈ T at level i or higher that cross
N(x, 2i+5) is at most 210ρ · (κ− i+ 1).

Proof: We know, by construction, that the length

of a path pi+j(v) ∈ T is at most 2i+j where 0 ≤ j ≤
(κ − i) and that there is at most one leader ℓi+j ∈ Ii
within N(x, 2i+j

2 ). Since we are looking at the number
of path segments pi+j(v) that go through N(x, 2r),
where r = i + 5, consider a large neighborhood
N(x, (2i+j +2r)) and determine the number of neigh-

borhoods of radius 2i+j

2 ; N(x, 2i+j

2 ). If r < (i+j), then,
(2i+j +2r) < 2 · 2i+j . From Lemma 2.3, the number of
path segments at level i or higher that cross N(x, 2r)
is at most 2ρ((i+j+1)−(i+j−1)+3) = 25ρ. If r ≥ (i + j),
then, (2i+j +2r) < 2 · 2r = 2r+1. From Lemma 2.3, the
number of path segments at level i or higher that cross
N(x, 2r) is at most 2ρ((r+1)−(i+j−1)+3) = 2ρ(r−i+5).
Since r = i+5, max(24ρ, 2ρ(r−i+5)) = max(24ρ, 210ρ) =
210ρ. For all paths that span the levels from i to κ, the
total number of path segments that cross N(x, 2i+j−1)
is equal to 210ρ · (κ− i+ 1).

Lemma 6.6 (Max modified paths in a path segment).
Consider a path segment p(v) ∈ T that crosses N(x, 2i+5).
The total number of modified paths p(v) ∈ T at level i
or higher that use nodes in p(v) ∩ N(x, 2i+5) is at most
27ρ · (κ− i+ 1).

Proof: Let Q = p(v) ∩ N(x, 2r), where r = i + 5.
From Lemma 6.1, we know that the maximum length
of any modified path pi+j(v) would be 2i+j+3. To
find the total number of modified paths pi+j(v) that
passes through Q, we consider a larger neighborhood

N(x, 2i+j+3+2r) and find the number of N(y, 2
i+j+3

2 )
that would cover the larger neighborhood. Note that
each pi+j(v) has start node in Ii+j . If r < (i + j + 3),
then, (2i+j+3 + 2r) < 2 · 2i+j+3 = 2i+j+4. By Lemma
2.3, the number of path segments at level i or higher
that cross N(x, 2r) is at most 2ρ((i+j+4)−(i+j+2)+3) =
25ρ. If r ≥ (i + j + 3), then, (2i+j+3 + 2r) < 2 ·
2r = 2r+1. From Lemma 2.3, the number of path
segments at level i or higher that cross N(x, 2r) is
at most 2ρ((r+1)−(i+j+2)+3) = 2ρ(r−i+2). We consider
max(24ρ, 2ρ(r−i+2)) = max(24ρ, 27ρ) = 27ρ for our
analysis. Since j ∈ [0, (κ−i)], the total number of paths
that would cross N(x, 2i+j+2) is equal to 27ρ ·(κ−i+1).



11

Lemma 6.7. The total number of pseudo-leaders at level i,
which are inside N(x, 2i+5) is at most 217ρ · (κ− i+ 1)2.

Proof: From Lemma 6.5, there are 210ρ · (κ− i+1)
path segments pi+j(v) ∈ T , j ≥ 0, crossing N(x, 2r),
where r = i + 5. From Lemma 6.6, each such path
segment can have multiple modified path segments at
level i or higher passing through it (≤ 27ρ ·(κ− i+1)),
the total number of modified path segments that cross
N(x, 2r) would be at most 217ρ ·(κ− i+1)2. This gives
also an upper bound to the number of pseudo-leaders
at level i or higher.

Let Xi = (Ii, EXi
), be a graph such that for any two

u, v ∈ Ii, (u, v) ∈ EXi
if and only if dist(u, v) ≤ ξi.

Lemma 6.8. Graph Xi admits a vertex coloring with at
most χ = 217ρ · (κ− i+ 1)2 colors.

Proof: Let v ∈ Ii. The nodes adjacent to v in Ii is
the set Y = N(v, ξi) ∩ Ii. Since Ii is a 2i-independent
set, and ξi = 2δi+2φi ≤ 2 ·2i+3+2 ·2i = 2i+4+2i+2 ≤
2i+5. From Lemma 6.7, we obtain |Y | ≤ 217ρ·(κ−i+1)2.

Consequently, graph Xi has degree at most [217ρ ·
(κ− i+ 1)2]− 1, and by a greedy algorithm it can be
colored with at most χ = 217ρ ·(κ−i+1)2 ≤ 217ρ log2 D
colors.

Now, the remaining part of the analysis identical
to that in Overlay Tree (3.2), where instead of the
parameters µi, δi, φi, ξi and χ, we use µi, δi, φi, ξi and
χ. We derive the competitive ratio of the modified tree
as below.

Theorem 6.9 (Oblivious Competitive Ratio of Modi-
fied Tree). The oblivious competitive ratio of the modified
tree T is C.R.(T ) ≤ χ · (1 + logD) ·maxi{µi/ξi}.

From Theorem 6.9, we immediately obtain the fol-
lowing corollary when we replace the values of the
parameters.

Corollary 6.10. The oblivious competitive ratio of the
modified tree T is C.R.(T ) = O(217ρ log3 D).

7 LOWER BOUND

We now present an overview of the technique used for
computing the lower-bound. The lower-bound given
by Imase and Waxman in [35] doesn’t work in our
case. Their technique works for non-low-doubling-
dimension planar graphs. Therefore, we give a new
lower-bound for the spanning tree construction for
low doubling-dimension graphs.

For our study, we consider a special class of planar
graphs commonly called grid graphs or lattice graphs.
A grid graph G is an Euclidean n×n graph for some
positive integer n where the nodes are situated at each
of the n2 grid points. Any two vertices are connected
by an edge if and only if their Euclidean distance is
one unit and a node has at most 4 neighbors. For
example, see figure 4.

Let there be an arbitrary tree T that spans the grid
vertices. Assume that the root r of the tree T is one of
the corners of the grid. We compare the cost of a path
from a set of grid vertices to the root r to the cost of
the tree path of those vertices.

We show that there exists a vertical (or horizontal)
line in the grid that contains pairs of nodes whose
distances in T sum to θ(n log n), whereas , the shortest
path along the grid vertices would be Ω(n).

Define a Ux-Path as a path between any two adja-
cent nodes in an n×n grid. Define a reference node to
a Ux-Path as one of its end nodes. All the distances
in any Ux-Path will be measured from its respective
reference node.

A Ux-Path could extend at least x/2 − 1 distance
from its reference node. A Ux-Path has the following
properties:

1) The total length of the path is at least x− 1.
2) The Ux-Path has a node that is x/2 away from

its reference node. In other words, the path will
intersect a node in its x/2-radius from one of its
end nodes. Informally, we call it ‘width’.

Consider any two adjacent nodes u and v (with
respect to G) that forms a Ux-Path. Let u be its
reference node. Let there be a node p ∈ Ux-Path such
that dist(u, p) ≥ x/2−1. If the vertical distance of node
p from u is greater than or equal to the horizontal
distance of it from u, then, we say that the Ux-Path
is vertical. Otherwise, it is horizontal. We shall refer to
such paths as V-Paths and H-Paths respectively.

Lemma 7.1. In a x× x subgrid of G, there is at least one
Ux-Path in T with its end-nodes in the perimeter of the
subgrid.

Proof: For contradiction, let us suppose that all
the pairs of nodes in the subgrid have a Ux-Path of
length at most x− 1. This formation will lead to two
observations. The center (a square of unit length) of
the subgrid will not be reached by any of the paths.
This will result in a cycle. This leads to a contradiction.
Hence, there must be at least one Ux-Path that is
longer that x− 1.

Define an x-class to be a decomposition of G into
x × x subgrids where two adjacent subgrids share a
common edge. The number of such subgrids would
be n2/x2. There will be log n classes of such subgrids
based on the value of x, (= n, n/2, n/4, . . . , 1).

Let Ux/2-Core be a x/2×x/2 subgrid centered within
an x × x subgrid of G as given in Figure 2. We
observe that the Ux/2-Paths from adjacent node pairs
along the perimeter of the Ux/2-Core would extend
either internally or externally to a maximum distance
(width) of x/4. The minimum distance they would
extend will be x/8.

Each x × x subgrid will have either a H-Path or a
V-Path in it, as shown in Fig 3. This identifies the
‘type’ of that subgrid (namely H-Type or V-Type).
Consider a certain x-class decomposition of G. There
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Fig. 2: Ux/2-Paths originating from a x/2×x/2 subgrid
centered in a x× x subgrid of G.

will be a mix of H-Type and V-Type subgrids totaling
n2/x2 subgrids that constitutes this decomposition. If
the number of H-Type subgrids is larger (> n2/2x2)
than the number of V-Type subgrids, then, we say that
the x-class decomposition is of type H. Otherwise,
it is of type V. Therefore, out of the log n classes of
decomposition of G, some of them will be “H-Type”
and some will be “V-Type”. Without loss of generality,
assume that the majority is of H-Type.

Consider a H-Type x-class of G. Define x-width
column as one of the columns in G where G is di-
vided into several columns of width x. Consider a
vertical line ℓ ∈ G of length n. This line will span
n/x subgrids. Those n/x subgrids will possibly be a
mixture of H-Type and V-Type subgrids. Observe that
ℓ will intersect zero or more (≤ n/x) H-Paths present
in those subgrids. We say that ℓ is a ‘good vertical line’
for the x-class (GVLx) if it intersects a constant (n/2x)
number of H-Paths at a position less than or equal to
3/4th of the ‘width’ of those H-Paths measured from
their respective end-nodes. The constraint associated
with the intersection point on the H-Path is to ensure
that the length of the U-Path from the intersection
points still remains significantly long.

Lemma 7.2 gives the total number of GVLs in G. We
choose the one that intersects the largest number of
H-Paths (c1 is the largest among all) and refer to that
line as GV L∗

x. For each of the log n classes of subgrids,
there will be a respective GV L∗

x (or a GHL∗
x if the

class is a V-Type).

Lemma 7.2. The total number of GVLs in an x-class of
G is 3n/128.

Proof: Consider a H-Type x-class decomposition
of G. The ‘width’ of any H-Path in a subgrid is at
least x/8. Hence, the number of vertical lines that

GVL X-width column

Fig. 3: An example of a GVL in a grid where each
x× x subgrid has either an H-Path or a V-Path.

can intersect such a H-Path is x/8. But a GVL would
intersect only within 3/4th of the width of any H-Path.
On an average, in an x-width column, there will be n

2x
H-paths. And, by pigeonhole principle, on an average,
at least half of the columns in G will have average
number of H-Paths. Therefore, the total number of
GVLs in G for x-class will be n

2x ·
1
2 ·

x
8 ·

3
4 = 3n

128 .

A GVL for a class n/2k will have 2k such pairs
of vertices. Each pair of these vertices forms a H-
Path of length θ(n/2k). Now, we shift our focus to
finding one GVL for all the log n classes. To find such
a line, we first find GVLs for all the individual classes
n, n/2, n/4, . . . , 1. We form an overlay of all such GVLs
and find the one that overlaps all the classes. Such a
GVL would be the line that would have pairs of nodes
that has U -paths of all the different lengths, and each
path would contribute a length of n.

Lemma 7.3. There is a GVL (denoted by GVL∗) that
is common to a constant fraction of the total number of
horizontal classes.

Proof: The number of classes that are of type
H is at least logn

2 . The number of GVLs in all the
logn
2 classes will be 3n

128
logn
2 = 3n logn

256 . Therefore, the
number of GV L∗s that overlaps a constant number of

these classes would be
3n log n

256

n = 3 logn
256 . This proves

the existence of at least one GV L∗.
Now, we are ready to present the central theorem

of this section.

Theorem 7.4. There exists a set S of nodes in G such
that (i) S constitutes θ(n) nodes (ii) Optimal tree T ∗ for
S has cost O(n) and (iii) The induced subtree T (S) has
Ω(n log n) cost.

Proof: From Lemma 7.3, we observe that GVL∗

crosses H-Paths that belong to different (a constant
number of) x-classes. For an arbitrary class xi, it will
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GVL * S

u

Fig. 4: Paths in an n× n grid.

have θ(n/xi) paths of length θ(n/xi). An example of
this scenario can be seen in Fig 4. Since there will be
a constant number of classes (≥ log n/2) that belong
to H-Type, the total cost of the induced paths will be
xi(n/xi)+xj(n/xj)+ . . . = θ(n log n). Hence, the least
cost along the tree path would be Ω(n log n).

Note that there will be overlaps in the H-Paths
from different classes. An H-Path from an xi-class can
contain an H-Path from an xj-class where xi > xj .
The overlaps can go further such that an H-Path from
an xi-class can contain one or more H-Paths from
classes that are smaller that xi. In effect, the number of
overlaps will halve the number of H-paths of smaller
classes and hence the effective path length is half of
its contribution.

From Lemma 7.4, we obtain the following corollary:

Corollary 7.5. In any n × n grid, any spanning tree T
will have C.R.(T ) = Ω(log n).

8 SIMULATION RESULTS

We simulated our algorithm, denoted by Oblivious
Spanning Tree (OST) and compared its performance
(fusion-cost) with GRID GIST [30] and other common
trees such as MST (Minimum Spanning Tree) and SPT
(Shortest-Paths Tree). We used an n×n grid topology
for our simulation using NetworkX [17]. n × n grids
are a special case of doubling-dimension graphs and
they fall under a variation of the Steiner tree problem
called “Rectilinear Steiner Problem” (RSP) where the
tree structure has only vertical and horizontal lines
that interconnect all points and is proved to be NP-
Complete [38]. Since calculating a minimum weight
tree structure in an n x n grid topology (a doubling-
dimension graph) is essentially an RSP, the problem
we are addressing is NP-Hard.

We build a single spanning tree in a grid with
n2 = 1600 nodes. We simulate it for random sets of
data sources, up to 1445, that are randomly placed.

Fig. 5: fusion-cost for varying set of source nodes in
a 1600-node grid.

The random data sets (of known size) are gener-
ated using Python’s random sampling method with-
out replacement from the given population. Note
that GRID GIST is a special algorithm designed for
grids and ours is a generalized algorithm. Hence,
GRID GIST performs slightly better than OST (in
Fig 5).

9 CONCLUSIONS AND FUTURE WORK

We provide a spanning tree algorithm for a vari-
ant of the single-sink buy-at-bulk network design
problem in low constant doubling-dimension graphs.
Contrary to many related work where the source-
destination pairs were already given, or when the
source-set was given, we assumed the obliviousness
of the set of source nodes. Moreover, we considered
an unknown fusion-cost function at every edge of
the tree. We presented nontrivial upper and lower
bounds for the cost of the set of paths in the span-
ning tree. We have demonstrated that a simple, de-
terministic, polynomial-time algorithm based on ap-
propriately defined distance-based independent sets
can provide single spanning tree for data fusion. We
have shown that this algorithm guarantees (log3 D)-
approximation. As part of our future work, we are
looking into the same problem on planar graphs,
arbitrary graphs and also the general buy-at-bulk
network design problem.
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