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Abstract—We propose a distributed solution for a canonical task in wireless sensor networks—the binary detection of interesting

environmental events. We explicitly take into account the possibility of sensor measurement faults and develop a distributed Bayesian

algorithm for detecting and correcting such faults. Theoretical analysis and simulation results show that 85-95 percent of faults can be

corrected using this algorithm, even when as many as 10 percent of the nodes are faulty.
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1 INTRODUCTION

WIRELESS sensor networks are envisioned to consist of
thousands of devices, each capable of some limited

computation, communication, and sensing, operating in an
unattended mode. According to a recent National Research
Council report, the use of such networks of embedded
systems “could well dwarf previous revolutions in the
information revolution” [26]. These networks are intended
for a broad range of environmental sensing applications from
vehicle tracking to habitat monitoring [9], [13], [15], [26].

In general, sensor networks can be tasked to answer any
number of queries about the environment [22]. We focus on
one particular class of queries: determining event regions in
the environment with a distinguishable characteristic. As an
example, consider a network of devices that are capable of
sensing concentrations of some chemical X; an important
query in this situation could be “Which regions in the
environment have a chemical concentration greater than �

units?” We will refer to the process of getting answers to
this type of query as event region detection.

Event region detection is useful in and of itself as a useful
application of a sensor network. While event region
detection can certainly be conducted on a static sensor
network, it is worthwhile pointing out that it can also be
used as a mechanism for nonuniform sensor deployment.
Information about the location of event regions can be used
to move or deploy additional sensors to these regions in
order to get finer-grained information.

Wireless sensor networks are often unattended, autono-
mous systems with severe energy constraints and low-end
individual nodes with limited reliability. In such conditions,

self-organizing, energy-efficient, fault-tolerant algorithms
are required for network operation. These design themes
will guide the solution proposed in this paper to the
problem of event region detection.

To our knowledge, this is the first paper to propose a
solution to the fault-event disambiguation problem in sensor
networks. Our proposed solution, in the form of Bayesian
fault recognition algorithms, exploits the notion that mea-
surement errors due to faulty equipment are likely to be
uncorrelated, while environmental conditions are spatially
correlated. We show through theoretical and simulation
results that the optimal threshold decision algorithm we
present can reduce sensor measurement faults by as much as
85-95 percent for fault rates up to 10 percent.

We begin with a short introduction to some of the prior
work in the area of wireless sensor networks before
proceeding to discuss the event region detection problem
and our solution in greater detail.

1.1 Wireless Sensor Networks

A number of independent efforts have been made in recent
years to develop the hardware and software architectures
needed for wireless sensing. The challenges and design
principles involved in networking these devices are dis-
cussed in a number of recent works [1], [4], [12], [13], [26]. A
good recent survey of sensor networks can be found in [34].

Self-configuration and self-organizing mechanisms are
needed because of the requirement of unattended operation
in uncertain, dynamic environments. Some attention has
been given to developing localized, distributed, self-config-
uration mechanisms in sensor networks [10], [20] and
studying conditions under which they are feasible [23].

Sensor networks are characterized by severe energy
constraints because the nodes will often operate with finite
battery resources and limited recharging. The energy
concerns can be addressed by engineering design at all
layers. It has been recognized that energy savings can be
obtained by pushing computation within the network in the
form of localized and distributed algorithms [4], [21], [22].
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One of the main advantages of the distributed comput-
ing paradigm is that it adds a new dimension of robustness
and reliability to computing. Computations done by
clusters of independent processors need not be sensitive
to the failure of a small portion of the network. Wireless
sensor networks are an example of large scale distributed
computing systems where fault tolerance is important. For
large scale sensor networks to be economically feasible, the
individual nodes necessarily have to be low-end inexpen-
sive devices. Such devices are likely to exhibit unreliable
behavior. Therefore, it’s important to guarantee that faulty
behavior of individual components does not affect the
overall system behavior. Some of the early work in the area
of distributed sensor networks focuses on reliable routing
with arbitrary network topologies [17], [18], characterizing
sensor fault modalities [5], [6], tolerating faults while
performing sensor integration [19], and tolerating faults
while ensuring sensor coverage [16]. A mechanism for
detecting crash faults in wireless sensor networks is
described in [25]. There has been little prior work in the
literature on detecting and correcting faults in sensor
measurements in an application-specific context. We now
discuss the canonical problem of event region detection.

The optimal Bayesian decision algorithm we present in
this paper is closely related to the classic voting algorithms
studied in distributed applications [35], [36]. The basic idea
in voting is to get a quorum of nodes to agree on an
operation before commitment. In the context of sensor
networks, voting algorithms (such as unanimous voting,
majority voting, m-out-of-n voting, and plurality voting)
have been recommended as a mechanism for fusing the
decisions of multimodal sensors with low communication
overhead [37].

2 EVENT REGION DETECTION

Consider a wireless network of sensors placed in an
operational environment. We wish to task this network to
identify the regions in the network that contain interest-
ing events. For example, if the sensors monitor chemical
concentrations, then we want to extract the region of the
network in which these concentrations are unusually
high. It is assumed that each sensor knows its own
geographical location, either through GPS or through
RF-based beacons [27].

It is helpful to treat the trivial centralized solution to the
event region detection problem first in order to understand
the shortcomings of such an approach. We could have all
nodes report their individual sensor measurements, along
with their geographical location directly to a central
monitoring node. The processing to determine the event
regions can then be performed centrally. While concep-
tually simple, this scheme does not scale well with the size
of the network due to the communication bottlenecks and
energy expenses associated with such a centralized scheme.
Hence, we would like a solution in which the nodes in an
event region organize themselves and perform some local
processing to determine the extent of the region. This is the
approach we will take.

Even under ideal conditions, this is not an easy problem
to solve due to the requirement of a distributed, self-

organized approach. However, if we take into account the

possibility of sensor measurement faults, there is an

additional layer of complexity. Can unreliable sensors

decide on their own if their measurement truly indicates a

high event value or if it is a faulty measurement? In general,

this is an intractable question. It is true, however, that the

sensor measurements in the operation region are spatially

correlated (since many environmental phenomena are),

while sensor faults are likely to be uncorrelated. As we

establish in this paper, we can exploit such a problem

structure to give us a distributed, localized algorithm to

mitigate the effect of errors in sensor measurements.
Fig. 1 shows a sample scenario. In this situation, we have

a grid of sensors in some operational area. There is an event

region with unusually high chemical concentrations. Some

of the sensors shown are faulty in that they report

erroneous readings.
The first step in event region detection is for the nodes to

determine which sensor readings are interesting. In general,

we can think of the sensor’s measurements as a real

number. There is some prior work on systems that learn the

normal conditions over time so that they can recognize

unusual event readings [28]. We will instead make the

reasonable assumption that a threshold that enables nodes

to determine whether their reading corresponds to an event

has been specified with the query or otherwise made

available to the nodes during deployment.
A more challenging task is to disambiguate events from

faults in the sensor readings since an unusually high

reading could potentially correspond to both. Conversely, a

faulty node may report a low measurement even though it

is in an event region. In this paper, we present probabilistic

decoding mechanisms that exploit the fact that sensor faults

are likely to be stochastically uncorrelated, while event

measurements are likely to be spatially correlated. In

analyzing these schemes, we will show that the impact of

faults can be reduced by as much as 85-95 percent, even for

reasonably high fault rates.
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Fig. 1. Sample scenario: A distributed sensor network with uncorrelated

sensor faults (denoted as “x”) deployed in an environment with a single

event region (dashed circle).



3 FAULT RECOGNITION

Without loss of generality, we will assume a model in which
a particularly large value is considered unusual, while the

normal reading is typically a low value. If we allow for
faulty sensors, sometimes such an unusual reading could be

the result of a sensor fault, rather than an indication of the
event. We assume environments in which event readings

are typically spread out geographically over multiple
contiguous sensors. In such a scenario, we can disambig-

uate faults from events by examining the correlation in the
reading of nearby sensors.

Let the real situation at the sensor node be modeled by a

binary variable Ti. This variable Ti ¼ 0 if the ground truth is
that the node is a normal region and Ti ¼ 1 if the ground

truth is that the node is in an event region. We map the real
output of the sensor into an abstract binary variable Si. This

variable Si ¼ 0 if the sensor measurement indicates a
normal value and Si ¼ 1 if it measures an unusual value.

There are thus four possible scenarios: Si ¼ 0; Ti ¼ 0

(sensor correctly reports a normal reading), Si ¼ 0; Ti ¼ 1

(sensor faultily reports a normal reading), Si ¼ 1; Ti ¼ 1

(sensor correctly reports an unusual/event reading), and
Si ¼ 1; Ti ¼ 0 (sensor faultily reports an unusual reading).

While each node is aware of the value of Si, in the presence
of a significant probability of a faulty reading, it can happen

that Si 6¼ Ti. We describe below a Bayesian fault recognition
algorithm to determine an estimate Ri of the true reading Ti

after obtaining information about the sensor readings of

neighboring sensors.
In our discussions, we will make one simplifying

assumption: The sensor fault probability p is uncorrelated
and symmetric. In other words,

P ðSi ¼ 0jTi ¼ 1Þ ¼ P ðSi ¼ 1jTi ¼ 0Þ ¼ p: ð1Þ

The binary model can result from placing a threshold on the

real-valued readings of sensors. Let mn be the mean normal
reading and mf the mean event reading for a sensor. A

reasonable threshold for distinguishing between the two
possibilities would be 0:5ðmn þmfÞ. If the errors due to

sensor faults and the fluctuations in the environment can be
modeled by Gaussian distributions with mean 0 and a

standard deviation �, the fault probability p would indeed
be symmetric. It can be evaluated using the tail probability
of a Gaussian, the Q-function, as follows:

p ¼ Q
ð0:5ðmf þmnÞ �mnÞ

�

� �
¼ Q

mf �mn

2�

� �
: ð2Þ

We know that the Q-function decreases monotonically.

Hence, (2) tells us that the fault probability is higher when
ðmf �mnÞ is low, when the mean normal and event
readings are not sufficiently distinguishable, or when the

standard deviation � of the sensor measurement errors. The
assumption that sensor failures are uncorrelated is a

standard, reasonable assumption because these failures
are primarily due to imperfections in manufacturing and

not a function of the nodes’ spatial deployment. The
algorithms and analysis presented in this paper may be

extended to nonsymmetric errors in a straightforward

manner; the symmetry assumption is made primarily for
ease of exposition.

We also wish to model the spatial correlation of event
values. Let each node i have N neighbors (excluding itself).
Let’s say the evidence Eiða; kÞ is that k of the neighboring
sensors report the same binary reading a as node i, while
N � k of them report the reading :a, then we can decode
according to the following model for using the evidence:

P ðRi ¼ ajEiða; kÞÞ ¼
k

N
: ð3Þ

Note that, in networks that are deployed with high
densities, nearby sensors are likely to have similar event
readings unless they are at the boundary of the event
region. In this model, we have that a sensor gives equal
weight to the evidence from each neighbor. More sophis-
ticated models may be possible, but this model commends
itself as a robust mechanism for unforseen environments.

Now, the task for each sensor is to determine a value for
Ri given information about its own sensor reading Si and
the evidence Eiða; kÞ regarding the readings of its neigh-
bors. The following Bayesian calculations provide the
answer:

P ðRi ¼ ajSi ¼ b; Eiða; kÞÞ ¼
P ðRi ¼ a; Si ¼ bjEiða; kÞÞ

P ðSi ¼ bjEiða; kÞÞ
¼ P ðSi¼bjRi¼aÞP ðRi¼ajEiða;kÞÞ

P ðSi¼bjRi¼aÞP ðRi¼ajEiða;kÞÞþP ðSi¼bjRi¼:aÞP ðRi¼:ajEiða;kÞÞ

� P ðSi¼bjTi¼aÞP ðRi¼ajEiða;kÞÞ
P ðSi¼bjTi¼aÞP ðRi¼ajEiða;kÞÞþP ðSi¼bjTi¼:aÞP ðRi¼:ajEiða;kÞÞ

;

ð4Þ

where the last relation follows from the fact that Ri is meant
to be an estimate of Ti. Thus, we have, for the two cases
ðb ¼ aÞ, ðb ¼ :aÞ:

Paak ¼ P ðRi ¼ ajSi ¼ a;Eiða; kÞÞ ¼
ð1� pÞ k

N

ð1� pÞ k
N þ pð1� k

NÞ

¼ ð1� pÞk
ð1� pÞkþ pðN � kÞ

ð5Þ

P ðRi ¼ :ajSi ¼ a;Eiða; kÞÞ ¼ 1� P ðRi ¼ ajSi ¼ a;Eiða; kÞÞ

¼ pðN � kÞ
ð1� pÞkþ pðN � kÞ :

ð6Þ

Equations (5), (6) show the statistic with which the sensor
node can now make a decision about whether or not to
disregard its own sensor reading Si in the face of the
evidence Eiða; kÞ from its neighbors.

Each node could incorporate randomization and an-
nounce if its sensor reading is correct with probability Paak.
We will refer to this as the randomized decision scheme.

An alternative is a threshold decision scheme,
which uses a threshold 0 < � < 1 as follows: If
P ðRi ¼ ajSi ¼ a;Eiða; kÞÞ > �, then Ri is set to a and the
sensor believes that its sensor reading is correct. If the
metric is less than the threshold, then node i decides that its
sensor reading is faulty and sets Ri to :a.

The detailed steps of both schemes are depicted in
Table 1, along with the optimal threshold decision scheme,
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which we will discuss later in the analysis. It should be

noted that, with either the randomized decision scheme or

the threshold decision scheme, the relations in (5) and (6)

permit the node to also indicate its confidence in the

assertion that Ri ¼ a.
We now proceed with an analysis of these decoding

mechanisms for recognizing and correcting faulty sensor

measurements.

4 ANALYSIS OF FAULT-RECOGNITION ALGORITHM

In order to simplify the analysis of the Bayesian fault

recognition mechanisms, we will make the assumption that,

for all N neighbors of node i, the ground truth is the same.

In other words, if node i is in an event region, so are all its

neighbors and, if i is not in an event region, neither are any

of its neighbors. This assumption is valid everywhere

except at nodes which lie on the boundary of an event

region. For sensor networks with high density, this is a

reasonable assumption as the number of such boundary

nodes will be relatively small. We will first present results
for the randomized decision scheme.

Let gk be the probability that exactly k of node i’s N
neighbors are not faulty. This probability is the same
irrespective of the value of Ti. This can be readily verified:

gk ¼
N

k

� �
P ðSi ¼ 0jTi ¼ 0ÞkP ðSi ¼ 1jTi ¼ 0ÞðN�kÞ

¼ N

k

� �
P ðSi ¼ 1jTi ¼ 1ÞkP ðSi ¼ 0jTi ¼ 0ÞðN�kÞ

¼ N

k

� �
ð1� pÞkpðN�kÞ:

ð7Þ

With binary values possible for the three variables corre-
sponding to the ground truth Ti, the sensor measurement Si,
and the decoded message Ri, there are eight possible
combinations. The conditional probabilities corresponding
to these combinations are useful metrics in analyzing the
performance of this fault recognition algorithm.

Consider first the probability P ðRi ¼ 0jSi ¼ 0; Ti ¼ 0Þ.
This is the probability that the algorithm estimates that
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TABLE 1
Decision Schemes for Fault Recognition



there is no event reading when the sensor is not faulty and

indicates that there is no event.

P ðRi ¼ 0jSi ¼ 0; Ti ¼ 0Þ

¼
XN
k¼0

P ðRi ¼ 0jSi ¼ 0; Ti ¼ 0; Eið0; kÞÞ ¼
XN
k¼0

Paakgk:
ð8Þ

In a similar manner, we can derive the following expres-

sions for all these conditional probabilities:

P ðRi ¼ ajSi ¼ a; Ti ¼ aÞ ¼ 1� P ðRi ¼ :ajSi ¼ a; Ti ¼ aÞ

¼
XN
k¼0

Paakgk

ð9Þ

P ðRi ¼ :ajSi ¼ :a; Ti ¼ aÞ ¼ 1� P ðRi ¼ ajSi ¼ :a; Ti ¼ aÞ

¼
XN
k¼0

PaakgN�k:

ð10Þ

These metrics suffice to answer questions such as the

expected number of decoding errors �, obtained by

marginalizing over values for Si.

alpha ¼ P ðRi ¼ 1jTi ¼ 0Þno þ P ðRi ¼ 0jTi ¼ 0Þnf

¼ 1�
XN
k¼0

Paakðgk � gN�kÞ
 !

n:
ð11Þ

The reduction in the average number of errors is therefore

ðnp� �Þ=np.
We can also now talk meaningfully about �, the average

number of sensor faults corrected by the Bayesian fault

recognition algorithm. The conditional probabilities in (9)

and (11) tell us about this metric:

� ¼ 1�
XN
k¼0

PaakgN�k

 !
np: ð12Þ

A related metric is �, the average number of faults

uncorrected:

KRISHNAMACHARI AND IYENGAR: DISTRIBUTED BAYESIAN ALGORITHMS FOR FAULT-TOLERANT EVENT REGION DETECTION IN... 5

TABLE 2
Summary of Notation for Analysis of Fault-Recognition



� ¼
XN
k¼0

PaakgN�k

 !
np: ð13Þ

The Bayesian fault recognition algorithm has one setback
—while it can help us correct sensor faults, it may introduce
new errors if the evidence from neighboring sensors is
faulty. This effect can be captured by the metric �, the
average number of new errors introduced by the algorithm:

� ¼ P ðRi ¼ 1jSi ¼ 0; Ti ¼ 0Þð1� pÞno

þ P ðRi ¼ 0jSi ¼ 1; Ti ¼ 1Þð1� pÞnf

¼ 1�
XN
k¼0

Paakgk

 !
ð1� pÞn:

ð14Þ

These metrics are shown in Fig. 2 with respect to the
sensor fault probability p. While it can be seen that, for
p < 0:1 (10 percent of the nodes being faulty on average),
over 75 percent of the faults can be corrected. However, the
number of new errors introduced � is seen to increase
steadily with the fault-rate and starts to affect the overall
reduction in errors significantly after about p ¼ 0:1.

Let us now consider the threshold decision scheme. The
following theorem tells us that we can view the threshold
scheme from an alternate perspective.

Theorem 1. The decision threshold scheme with � is equivalent

to picking an integer kmin such that node i decodes to a value

Ri ¼ Si ¼ a if and only if at least kmin of its N neighbors

report the same sensor measurement a.

Proof. Recall that, in this scheme, Ri ¼ a () Paak > �. It
suffices to show that Paak increases monotonically with k

since, in this case, for each �, there is some kmin beyond
which Ri is always set to a. We can rewrite (5) as follows:

Paak ¼
ð1� pÞk

kð1� 2pÞ þ pN
: ð15Þ

The monotonicity can be shown by taking the derivative
of this with respect to a continuous version of the
variable k:

) dðPaakÞ
dk

¼ pð1� pÞN
ðkð1� 2pÞ þ pNÞ2

> 0: ð16Þ

Specifically, kmin is given by the following expression,

derived by relating (15) to the parameter �:

kmin ¼ pN�

1� p� ð1� 2pÞ�

� �
: ð17Þ

tu

The first question this previous theorem allows us to

answer is how the metrics described in (8)-(14) change for

the decision threshold scheme. In this scheme, we have that,

if k � kmin of its neighbors also read the same value a, the

node i decides on Ri ¼ a. Thus, we can replace Paak in (8)-

(14) with a step function Uk, which is 1 for k � kmin and 0

otherwise. This is equivalent to eliminating the Paak term

and summing only terms with k � kmin. Thus, for the

decision threshold scheme, we have that:

P ðRi ¼ ajSi ¼ a; Ti ¼ aÞ ¼ 1� P ðRi ¼ :ajSi ¼ a; Ti ¼ aÞ

¼
XN

k¼kmin

gk

ð18Þ

P ðRi ¼ :ajSi ¼ :a; Ti ¼ aÞ ¼ 1� P ðRi ¼ ajSi ¼ :a; Ti ¼ aÞ

¼
XN

k¼kmin

gN�k

ð19Þ

� ¼ 1�
XN

k¼kmin

ðgk � gN�kÞ
 !

n ð20Þ

� ¼ 1�
XN

k¼kmin

gN�k

 !
np ð21Þ
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Fig. 2. Metrics for the Bayesian fault recognition algorithm with

randomized decision scheme (N = 4).

Fig. 3. Metrics for the Bayesian fault recognition algorithm with optimal

threshold decision scheme (N = 4).



� ¼
XN

k¼kmin

gN�k

 !
np ð22Þ

� ¼ 1�
XN

k¼kmin

gk

 !
ð1� pÞn: ð23Þ

The following is a strong result about the optimal

threshold decision scheme.

Theorem 2. The optimum threshold value which minimizes �,

the average number of errors after decoding, is �� ¼ ð1� pÞ.
This threshold value corresponds to k�min ¼ 0:5N .

Proof. As the goal is to find the kmin and � which minimize

�, it is helpful to start with the definition of �. From (23),

we have that:

� ¼ 1�
XN

k¼kmin

ðgk � gN�kÞ
 !

n

¼ 1�
XN

k¼kmin

N

k

� �
ð1� pÞkpðN�kÞ � pkð1� pÞðN�kÞ
� � !

n:

ð24Þ

We examine the behavior of the expression in the

summand:

ð1� pÞkpðN�kÞ � pkð1� pÞðN�kÞ
� �
¼ pkð1� pÞk pðN�2kÞ � ð1� pÞðN�2kÞ

� �
:

ð25Þ

For p < 0:5, this expression is negative for N > 2k, zero

for N ¼ 2k, and positive for N < 2k. In the expression for

�, as we vary kmin by decreasing it by one at a time from

N , we get additional terms with negative contributions

while kmin > 0:5N and positive contributions once

kmin < 0:5N . It follows that � achieves a minimum when

kmin ¼ k�min ¼ 0:5N .
To determine what value of � this corresponds to, we

can utilize (17). We have that

pN��

1� p� ð1� 2pÞ�� ¼ 0:5N

) p�� ¼ 0:5ð1� p� ð1� 2pÞ��Þ
) ��ðp� pþ 0:5Þ ¼ 0:5ð1� pÞ

) �� ¼ ð1� pÞ:

ð26Þ

tu

The above theorem says that the best policy for each

node (in terms of minimizing �, the average number of

errors after decoding) is to accept its own sensor reading if

and only if at least half of its neighbors have the same

reading. This is an intuitive result, following from the

equal-weight evidence model that we are using (3). This

means that the sensor nodes can perform an optimal

decision without even having to estimate the value of p.

This makes the optimal-threshold decision scheme pre-

sented in Table 1 an extremely feasible mechanism for

minimizing the effect of uncorrelated sensor faults.

5 SIMULATION RESULTS

We conducted some experiments to test the performance of
the fault recognition algorithms. The scenario consists of
n ¼ 1; 024 nodes placed in a 32� 32 square grid of unit area.
The communication radius R determines which neighbors
each node can communicate with. R is set to 1ffiffi

n
p

�1
so that

each node can only communicate with its immediate
neighbor in each cardinal direction. All sensors are binary:
They report a “0” to indicate no event and a “1” to indicate
that there is an event. The faults are modeled by the
uncorrelated, symmetric, Bernoulli random variable. Thus,
each node has an independent probability p of reporting a
“0” as a “1” or vice versa. We model correlated events by
having l single point-sources placed in the area and
assuming that all nodes within radius S of each point-
source have a ground truth reading of 1, i.e., detect an event
if they are not faulty. For the scenario for which the
simulation results are presented here, l ¼ 1; S ¼ 0:15.

We now describe the simulation results. The most
significant way in which the simulations differ from the
theoretical analysis that we have presented thus far is that
the theoretical analysis ignored edge and boundary effects.
This can play a role because, at the edge of the deployed
network, the number of neighbors per node is less than that
in the interior and, also, the nodes at the edge of an event
region are more likely to erroneously determine their
reading if their neighbors provide conflicting information.
Such boundary nodes are the most likely sites of new errors
introduced by the fault recognition algorithms presented
above. In general, because of this, we would expect the
number of newly introduced errors to be higher than that
predicted by the analysis.

Fig. 4 shows a snapshot of the results of a sample
simulation run. The sensor nodes are depicted by dots; the
nodes indicated with bold dots are part of the circular event
region. An “x” indicates a faulty node (before the fault
recognition algorithm), while an “o” indicates a node with
erroneous readings after fault recognition. Thus, nodes with
both an “x” and “o” are nodes whose errors were not
corrected, while nodes with an “x” but no “o” are nodes
whose errors were corrected and nodes with no “x” but an
“o” are nodes where a new error has been introduced by the
fault-recognition algorithm. It can be seen that many of the
remaining errors are concentrated on the boundaries of the
event region on the top right.

Figs. 5, 6, and 7 show the important performance
measures for the fault recognition algorithm with the
optimal threshold decision scheme from both the simula-
tion as well as the theoretical equations. The key conclusion
from these plots is that the simulation matches the
theoretical predictions closely in all respects except the
statistic of newly introduced errors, where, understandably,
the border effects in the simulation result in higher values.
More concretely, these figures show that well over
85-95 percent of the total faults can be corrected even when
the fault rate is as high as 10 percent of the entire network.

Fig. 8 illustrates the performance of the threshold
decision scheme with respect to the threshold value �.
Again, the simulation and theoretical predictions are in
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close agreement. The optimal value of the threshold � is
indeed found to correspond to a kmin of 0:5N .

As mentioned before, many detection errors occur at the
boundary of the event region. This is because the assump-
tion that all neighbors should have the same reading fails,
by definition, at this border. Now, the relative number of
nodes at the boundary of an event region (compared to the
number of nodes within the region) decreases as the size of
the event region increases. We should therefore expect to
see the algorithm perform better as the event region
increases. This is shown by Fig. 9, which measures the
improvement in the average fraction of errors corrected in
the event region.

Finally, we comment on the impact of the parameter N ,
the number of neighbors of each node, on the performance
of the algorithms we have proposed. There are essentially
two ways to increase N—by increasing the sensor density
or by increasing the communication range of each node. All
other factors remaining the same, increasing N by increas-

ing the deployed density of sensors can significantly
improve the performance of the algorithm. This is because
this would allow a greater sampling of a spatially correlated
event. However, increasing N by keeping the density the
same and increasing the communication range can have the
opposite effect. Increasing the communication range can
effectively increase the number of nodes that are at the
“boundary” of the event region—potentially increasing the
number of nodes at which incorrect decisions are made by
the Bayesian algorithms. Both these effects were observed in
our simulations.

6 CONCLUSIONS

With recent advances in technology, it has become feasible
to consider the deployment of large-scale wireless sensor
networks that can provide high-quality environmental
monitoring for a range of applications. In this paper, we
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Fig. 5. Normalized number of errors corrected and uncorrected with the

optimal threshold decision scheme.

Fig. 6. Normalized number of new errors introduced with the optimal

threshold decision scheme.

Fig. 4. A snapshot of the simulator showing the errors before and after

fault recognition with optimal threshold (p = 0.1).

Fig. 7. Normalized reduction in average number of errors for the optimal

threshold decision scheme.



developed a solution to a canonical task in such networks—
the extraction of information about regions in the environ-
ment with identifiable events.

One of the most difficult challenges is that of distin-
guishing between faulty sensor measurements and unusual
environmental conditions. To our knowledge, this is the
first paper to propose a solution to the fault-event
disambiguation problem in sensor networks. Our proposed
solution, in the form of Bayesian fault-recognition algo-
rithms, exploits the notion that measurement errors due to
faulty equipment are likely to be uncorrelated, while
environmental conditions are spatially correlated.

We presented two Bayesian algorithms, the randomized
decision scheme and the threshold decision scheme, and
derived analytical expressions for their performance. Our
analysis showed that the threshold decision scheme has
better performance in terms of the minimization of errors.
We also derived the optimal setting for the threshold
decision scheme for the average-correlation model. The
proposed algorithm has the additional advantage of being
completely distributed and localized—each node only
needs to obtain information from neighboring sensors in
order to make its decisions. The theoretical and simulation
results show that, with the optimal threshold decision
scheme, faults can be reduced by as much as 85 to 95 percent
for fault rates as high as 10 percent.

We should note that the extension to nonsymmetric fault
probabilities is straightforward and does not affect the basic
conclusions of this paper. There are a number of other
directions in which this work on fault recognition and fault
tolerance in sensor networks can be extended. We have dealt
with a binary fault-event disambiguation problem here. This
could be generalized to the correction of real-valued sensor
measurement errors: Nodes in a sensor network should be
able to exploit the spatial correlation of environmental
readings to correct for the noise in their readings (the noise
models would be different from the binary 0-1 failures
considered in this work). Another related direction is to
consider dynamic sensor faults where the same nodes need

not always be faulty. Much of the work presented here can

also be extended to dynamic event region detection to deal

with environmental phenomena that change location or

shape over time. We would also like to see the algorithms

proposed in this paper implemented and validated on real

sensor network hardware in the near future.

ACKNOWLEDGMENTS

This research was funded in part by US Defense Advanced

Research Projects Agency N66001-00-1-8946, US Office of

Naval Research N00014-01-0712, and the US Department of

Energy through Oak Ridge National Lab.

REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting
the World with Wireless Sensor Networks,” Proc. Int’l Conf.
Acoustics, Speech and Signal Processing (ICASSP 2001), May 2001.

[2] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM/IEEE Int’l Conf. Mobile Computing
and Networks (MobiCom 2000), Aug. 2000.

[3] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann,
“Impact of Network Density on Data Aggregation in Wireless
Sensor Networks,” Proc. 22nd Int’l Conf. Distributed Computing
Systems (ICDCS ’02), July 2002.

[4] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor Networks,”
Proc. ACM/IEEE Int’l Conf. Mobile Computing and Networks
(MobiCom ’99), Aug. 1999.

[5] K. Marzullo, “Implementing Fault-Tolerant Sensors,” TR89-997,
Dept. of Computer Science, Cornell Univ., May 1989.

[6] L. Prasad, S.S. Iyengar, R.L. Kashyap, and R.N. Madan, “Func-
tional Characterization of Fault Tolerant Interation in Distributed
Sensor Networks,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 21, no. 5, Sept./Oct. 1991.

[7] N. Lynch, Distributed Algorithms. Morgan Kauffman, 1997.
[8] B.A. Forouzan, Data Communications and Networking. McGraw-

Hill, 2001.
[9] A. Cerpa et al., “Habitat Monitoring: Application Driver for

Wireless Communications Technology,” Proc. 2001 ACM SIG-
COMM Workshop Data Comm. in Latin America and the Caribbean,
Apr. 2001.

[10] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring
sEnsor Networks Topologies,” Proc. INFOCOM, 2002.

KRISHNAMACHARI AND IYENGAR: DISTRIBUTED BAYESIAN ALGORITHMS FOR FAULT-TOLERANT EVENT REGION DETECTION IN... 9

Fig. 8. Normalized reduction in average number of errors with respect to

the threshold value in the threshold decision scheme (p = 0.25,

�� ¼ 1� p ¼ 0:75).

Fig. 9. Average fraction of errors corrected in the event region, with

respect to the size of the event region.



[11] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D.
Estrin, and D. Ganesan, “Building Efficient Wireless Sensor
Networks with Low-Level Naming,” Proc. 18th ACM Symp.
Operating Systems Principles, Oct. 2001.

[12] W.W. Manges, “Wireless Sensor Network Topologies,” Sensors
Magazine, vol. 17, no. 5, May 2000.

[13] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network
Sensors,” Comm. ACM, vol. 43, no. 5, pp. 551-558, May 2000.

[14] S. Singh, M. Woo, and C.S. Raghavendra, “Power-Aware Routing
in Mobile Ad-Hoc Networks,” Proc. ACM/IEEE Int’l Conf. Mobile
Computing and Networks (MOBICOM ’98), pp. 76-84, Oct. 1999.

[15] J. Warrior, “Smart Sensor Networks of the Future,” Sensors
Magazine, Mar. 1997.

[16] K. Chakrabarty, S.S. Iyengar, H. Qi, and E.C. Cho, “Grid Coverage
of Surveillance and Target Location in Distributed Sensor
Networks,” IEEE Trans. Computers, vol. 51, no. 12, pp. 1448-1453,
Dec. 2002.

[17] S.S. Iyengar, M.B. Sharma, and R.L. Kashyap, “Information
Routing and Reliability Issues in Distributed Sensor Networks,”
IEEE Trans. Signal Processing, vol. 40, no. 2, pp. 3012-3021, Dec.
1992.

[18] S.S. Iyengar, D.N. Jayasimha, and D. Nadig, “A Versatile
Architecture for the Distributed Sensor Integration Problem,”
IEEE Trans. Computers, vol. 43, no. 2, Feb. 1994.

[19] L. Prasad, S.S. Iyengar, R.L. Rao, and R.L. Kashyap, “Fault-
Tolerant Sensor Integration Using Multiresolution Decomposi-
tion,” Physical Rev. E, vol. 49, no. 4, Apr. 1994.

[20] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, “Protocols for
Self-Organization of a Wireless Sensor Network,” IEEE Personal
Comm., vol. 7, no. 5, pp. 16-27, Oct. 2000.

[21] M. Chu, H. Haussecker, and F. Zhao, “Scalable Information-
Driven Sensor Querying and Routing for Ad Hoc Heterogeneous
Sensor Networks,” Proc. Int’l J. High Performance Computing
Applications, 2002.

[22] P. Bonnet, J.E. Gehrke, and P. Seshadri, “Querying the Physical
World,” IEEE Personal Comm., vol. 7, no. 5, Oct. 2000.

[23] B. Krishnamachari, R. Bejar, and S.B. Wicker, “Distributed
Problem Solving and the Boundaries of Self-Configuration in
Multi-Hop Wireless Networks,” Proc. Hawaii Int’l Conf. System
Sciences (HICSS-35), Jan. 2002.

[24] R. Min et al., “An Architecture for a Power-Aware Distributed
Microsensor Node,” Proc. IEEE Workshop Signal Processing Systems
(SiPS ’00), Oct. 2000.

[25] S. Chessa and P. Santi, “Crash Faults Identification in Wireless
Sensor Networks,” Computer Comm., vol. 25, no. 14, pp. 1273-1282,
Sept. 2002.

[26] D. Estrin et al., “Embedded, Everywhere: A Research Agenda for
Networked Systems of Embedded Computers,” Nat’l Research
Council Report, 2001.

[27] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low Cost
Outdoor Localization for Very Small Devices,” IEEE Personal
Comm., vol. 7, no. 5, pp. 28-34, Oct. 2000.

[28] R.A. Maxion, “Toward Diagnosis as an Emergent Behavior in a
Network Ecosystem,” Emergent Computation, S. Forrest, ed. MIT
Press, 1991.

[29] V.D. Park and M.S. Corson, “A Highly Adaptive Distributed
Routing Algorithm for Mobile Wireless Networks,” Proc. INFO-
COM, 1997.

[30] N. Megiddo, “Linear Time Algorithm for Linear Programming in
R3 and Related Problems,” SIAM J. Computers, vol. 12, no. 4,
pp. 759-776, 1983.

[31] M.E. Dyer, “Linear Time Algorithms for Two and Three-Variable
Linear Programs,” SIAM J. Computers, vol. 13, no. 1, pp. 31-45,
1984.

[32] B. Cain, T. Speakman, and D. Towsley, “Generic Router Assist
(GRA) Building Block Motivation and Architecture,” RMT Work-
ing Group, Internet-Draft < draft-ietf-rmt-gra-arch-01.txt> , work
in progress, Mar. 2000.

[33] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and
G.J. Minden, “A Survey of Active Network Research,” IEEE
Comm. Magazine, vol. 35, no. 1, pp. 80-86, Jan. 1997.

[34] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
Survey on Sensor Networks,” IEEE Comm. Magazine, vol. 40, no. 8,
pp. 102-114, Aug. 2002.

[35] D.K. Gifford, “Weighted Voting for Replicated Data,” Proc. ACM
Symp. Operating Systems Principles, 1979.

[36] R.H. Thomas, “A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases,” ACM Trans. Database
Systems, vol. 4, pp. 180-209, 1979.

[37] L.A. Klein, Sensor and Data Fusion Concepts and Applications. SPIE,
Apr. 1993.

Bhaskar Krishnamachari received the Bache-
lors degree in electrical engineering with a four-
year full-tuition scholarship from The Cooper
Union for the Advancement of Science and Art in
1998. He received the Master’s degree and the
PhD degree in electrical engineering from
Cornell University in 1999 and 2002, under a
four-year university graduate fellowship. Since
Fall 2002, he has been an assistant professor in
the Department of Electrical Engineering at the

University of Southern California (USC) and holds a joint appointment in
the Department of Computer Science. His previous research has
included work on critical density thresholds in wireless networks, data
centric routing in sensor networks, mobility management in cellular
telephone systems, multicast flow control, heuristic global optimization,
and constraint satisfaction. His current research is focused on the
discovery of fundamental principles and the analysis and design of
protocols for next generation wireless sensor networks. He is a member
of the IEEE.

Sitharama Iyengar (IEEE Fellow, ACM Fellow,
AAAS Fellow) has been involved with research
in high-performance algorithms, data structures,
sensor fusion, data mining, and intelligent
systems since receiving the PhD degree (in
1974 from Mississippi State University) and the
MS degree from the Indian Institute of Science
(1970). He is the chairman and Roy Paul Daniels
Chaired Professor of Computer Science at
Louisiana State University and is also Satish

Dhawan Chaired Professor at the Indian Institute of Science. His
publications include 13 widely used textbooks and more than 280
research papers in refereed journals and conferences. He has been a
visiting professor at the Jet Propulsion Laboratory-California Institute of
Technology, Oak Ridge National Laboratory, the Indian Institute of
Science, and the University of Paris. He has served as associate editor
and as guest editor for several journals including the IEEE Transactions
on Knowledge and Data Engineering, IEEE Transactions on Systems,
Man, and Cybernetics, IEEE Transactions on Software Engineering,
Journal of Theoretical Computer Science, Journal of Computer and
Electrical Engineering, Journal of the Franklin Institute, Journal of
American Society of Information Science, and the International Journal
of High Performance Computing Applications. He is a series editor for
Neuro-Computing of Complex Systems for CRC Press. In 1998, he won
the IEEE Computer Society Technical Achievement Award for out-
standing contributions to data structures and algorithms in image
processing and sensor fusion problems. He was awarded the
Distinguished Alumnus Award at the Indian Institute of Science in
March 2003.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004


