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Abstract—Path length, path reliability, and sensor energy-con-
sumption are three major constraints affecting routing in resource
constrained, unreliable wireless sensor networks. By considering
the implicit collaborative imperative for sensors to achieve overall
network objectives subject to individual resource consump-
tion, we develop a game-theoretic model of reliable, length and
energy-constrained, sensor-centric information routing in sensor
networks. We define two distinct payoff (benefit) functions and
show that computing optimally reliable energy-constrained paths
is NP-Hard under both models for arbitrary sensor networks.
We then show that optimal length-constrained paths can be com-
puted in polynomial time in a distributed manner (using ( )
messages) for popular sensor network implementations using
geographic routing. We also develop sensor-centric metrics called
path weakness to measure the qualitative performance of different
routing schemes and provide theoretical limits on the inapprox-
imability of computing paths with bounded weakness. Heuristics
for computing optimal paths in arbitrary sensor networks are
described along with simulation results comparing performance
with other routing algorithms.

Index Terms—Energy-efficiency, network design, path weak-
ness, reliable routing.

I. INTRODUCTION

EMBEDDED sensor networks are massively distributed
systems for sensing and in situ processing of spatially

and temporally dense data. They consist of large numbers of
autonomous, interconnected sensory nodes (sensors), which
continuously sense and store attributes of locally occurring
phenomena, [12] and can be deployed on a large scale in re-
source-limited and harsh environments such as seismic zones,
ecological contamination sites, or battlefields [2]. Network
tasks are executed by routing and cooperative processing of
sensed information [12], [15].

The untethered and unattended nature of sensors in wire-
less sensor networks severely constrains the types of feasible
routing algorithms. In data-centric information routing [3], [6],
interest queries are disseminated through the sensor network for
retrieving named data, i.e., data satisfying specific attributes.
Further, data can be aggregated or combined at intersecting
nodes along the routing tree to reduce data implosion. Packets
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must be forwarded along low-cost paths; minimizing overall en-
ergy consumption (aggregate path energy cost) is one possible
routing metric [7], [11], [13]. However, such routing strategies
may result in uneven energy depletion across sensor nodes and
expedite network partition. Thus, it would seem preferable for
sensors to forward packets based on local communication costs.

While energy-efficiency is an important parameter, sev-
eral applications require the deployment of sensors in haz-
ardous/hostile environments, where sensors can fail or be
compromised by adversaries [17], [18] and, therefore, the
reliability of a data transfer path from reporting to querying
sensor(s) is a second critical metric. However, reliable routing
paths obtained through forwarding decisions based on local
energy choices may be quite long, leading to energy depletion
at more sensors, while also increasing delay. Thus, path length
is a third critical routing metric affecting both energy efficiency
and sensor lifetime.

Note that while energy costs are local, path reliability and
path length are global or network-wide metrics. Thus, routing
strategies for the sensor network must be derived by optimizing
these criteria simultaneously. In other words, sensors must co-
operate to maximize network wide objectives (such as reporting
queries via reliable short paths) without compromising their
own survivability (as measured by their energy consumption).
This paradigm can be labeled as sensor-centric [8]. Sensor-cen-
tric network components have to behave intelligently to find the
right tradeoffs between efficient energy consumption and net-
work-wide objectives. Obviously, network operability will be
prolonged if a critically energy deficient node can survive longer
by abstaining from a route rather than taking part for a small gain
in overall reliability, latency or length.

In [15], the authors describe data-centric routing algo-
rithms for sensor networks that take both energy constraints
and quality-of-service considerations into account. Shah and
Rabaey [14] show that the lowest energy path may not always be
the optimal for long-term network connectivity. Their scheme
probabilistically uses suboptimal paths to provide substantial
gain. However, none of these protocols explicitly optimize
route reliability and length in conjunction with minimizing
communication costs.

Game-theory provides a natural framework to model the for-
mation of multiply constrained routing paths by sensor-centric
nodes. Specifically, sensors can be modeled as players in a
routing game with appropriate strategies and utility functions
(payoffs) that eventually lead to reliable-length-energy con-
strained routing paths/trees in the network. In this paper, we
develop a simple game-theoretic model with different utility
functions and analytically derive fundamental limits on the
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performance of such routing strategies. We develop several
sensor-centric metrics for measuring the quality (suboptimality)
of routing paths. Simulation results demonstrate the potential
of heuristic algorithms based on the game-theoretic approach
for modeling cooperative sensor behavior. We summarize our
main results as follows.

• We propose two different sensor-centric payoff functions
for modeling the routing game resulting in the optimal reli-
able energy-constrained query routing tree (the RQR tree).
Model II is more strategically constrained than model I
and results in more reliable paths from sources to sink as
compared with model I. Computing optimal trees under
both models is NP-Hard.

• Rather than place explicit constraints on path length,
we implicitly model this metric by considering reliable
energy-constrained routing under a geographic routing
regime. We show that optimal RQR paths under both
payoff models can be easily found in polynomial time
in such networks and the routing protocol can be imple-
mented in a distributed manner.

• We propose sensor-centric metrics for evaluating the
quality of routing paths/trees for data-aggregated routing
in arbitrary sensor networks and derive inapproxima-
bility results on computing paths of bounded weakness.
Simulation results comparing the weakness of paths ob-
tained using a team-game-based routing heuristic called
fair-team-RQR with some well known routing algorithms
and identifying ranges of costs and probabilities in which
they perform favorably are shown.

II. GAME-THEORETIC RELIABLE ENERGY-CONSTRAINED

ROUTING MODEL

We first formally define the problem of RQR in a sensor
network in game-theoretic terms and analyze the game subject
to the additional constraint of path length in the next section.
Given an unreliable energy-constrained network, how can we
induce the formation of a maximally reliable data aggregation
tree from reporting sensors (sources) to the query originating
node (sink), where every sensor is “smart,” i.e., it can tradeoff
individual costs with network-wide benefits. This optimally re-
liable data aggregation tree (henceforth, the optimal RQR tree)
will naturally be distinct from standard multicast trees, such as
the Steiner tree [5] or shortest path trees, which minimize overall
network costs and, therefore, cannot represent the outcome of
self-interested sensors. The solution to this problem lies in de-
signing a routing game with utility (payoff) functions, such that
its Nash equilibrium [4] corresponds to the optimal RQR tree.

The proposed game-theoretic model for reliable energy-con-
strained routing consists of sensors modeled as players de-
noted by the set . We consider the
following attributes of the system which form the components
of the routing game. Note that while we describe these attributes
using a static model, a dynamic extension would view them in
terms of snapshots representing successive operational periods.

A. Costs

We model two types of costs in the network: communication
costs and participation costs that model the cost to a sensor of
deciding to participate in a given route.

1) Communication Costs: Communication between neigh-
boring sensors in the network is implemented via the under-
lying medium access control (MAC) protocol. The energy cost
of transmission is proportional to the distance between sensors
[2]. We abstract the transmission link cost between neighboring
sensors by . Note that can refer to either per-bit
(packet) costs or per-flow costs. While the former cost remains
constant over an operational period (assuming immobile sen-
sors), the flow costs are actually functions of the total amount
of incoming flow to a sensor node and, thus, are affected by (and
in turn affect the formation of) the routing topology. Also, for
ease of presentation of our model, we assume that packet recep-
tion costs are zero, but can be incorporated in a straightforward
manner.

2) Participation Costs: Our routing model should be rig-
orous enough to allow sensors to choose whether or not to
participate in the routing process. By incorporating a participa-
tion cost to each sensor, we can analytically model situations
where a sensor will collaborate in the query routing process
only if the value of its information and the reliability of the
reporting path gives it a positive payoff, thereby reducing un-
necessary querying traffic. In other words, this cost is really
an implicit benefit to all sensors not participating, since the
cost of forwarding is eliminated. We abstract the participation
cost at sensor by

is modeled as a function of events affecting the lifetime
of the sensor, such as the remaining battery life , the current
traffic flow through the node and the amount of processing
power currently being consumed . A sensor that chooses not
to participate in any routing traffic (perhaps a sensor with ex-
tremely low-energy levels relative to its neighbors) can then turn
itself off for a certain period to conserve energy.1

B. Strategies

Each node’s strategy is a binary vector
, where ( ) represents sensor

’s choice of sending/not sending a data packet to sensor .
Since a sensor typically relays a received data packet to only one
neighbor, we assume that a node forms only one link for a given
source and destination pair of leader nodes. In general, a sensor
node can be modeled as having a mixed strategy [4], i.e., the

’s are chosen from some probability distribution. However,
in this paper, we restrict the strategy space of sensors to only
pure strategies. Furthermore, in order to eliminate some trivial
equilibria (such as all paths with no short-circuits, the empty net-
work, etc.), each sensor’s strategy is constrained to be nonempty
and strategies resulting in a node linking to its ancestors (i.e.,
routing loops) are disallowed. Consequently, the strategy space
of each sensor is such that for exactly
one sensor and for all other sensors, such
that no routing loops are formed. Under these assumptions each

1Here, we do not consider the specific protocol required to implement this
participation mechanism (such as [1]). Our objective is to consider routing im-
plications of this abstraction of individual sensor self-interest.
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meaningful strategy profile becomes a reverse
tree , rooted at the sink .

C. Benefits

Next, we abstract the benefits to a sensor for participating in
the routing game.

1) Path Reliability: Since we wish to model reliable energy-
constrained routing, the reliability of the realized routing path is
a benefit to the sensors participating in it. We model path reli-
ability using sensor failure probabilities. We assume that node

can fail with a probability . We make no
assumptions about correlations in these probabilities, since the
model primarily requires the values of partial path reliability,
which we assume can be obtained. As before, while we assume
static failure probabilities in developing our model, a dynamic
extension would view the network in terms of failure probability
snapshots in successive operational periods. Also, for simplicity,
we assume that the sink node never fails.

2) Information Value: Under the data-centric paradigm a
query is sent from the sink node to the nodes in .
The query may match the attributes of data stored at each to
varying degrees. This data has to be reported back to and
aggregated along the way, if feasible. Information is routed
to through an optimally chosen set (via the routing game)

of intermediate nodes who form neighbor communi-
cation links. Our model should select data transfer paths based
on the importance of the data being reported. For example,
popular data items representing successful query matches must
be treated differently and routed over more reliable paths even
at higher costs, as the penalty for nondelivery is more severe.
We abstract this idea of information retrieval by attaching
a value to the data retrieved from each sensor ,

, ( for nodes whose sensor data does not
satisfy the specified attributes of the query).

Note that since we are modeling self-interested sensors, we
should account for nodes with valuable information but selfish
behavior, i.e., nodes saving energy by deliberately not partici-
pating in the routing. For example, this could include compro-
mized sensors which are suppressing information. One way to
stimulate such nodes is via a punishment mechanism that values
future information coming from a node propoprtional to the
number of previous routes it participated in.

3) Benefit Functions: Sensors (players) in the routing game
get benefits by making appropriate strategy choices. We can in-
duce collaborative behavior to achieve a joint goal (reliability)
among sensors within a noncooperative game by defining net-
work-wide or shared benefits. Consider a strategy profile

resulting in a tree rooted at , where denotes the
strategy chosen by all the other players except player . Since
the network is unreliable and every sensor that receives data has
an incentive in its reaching , the benefit to any sensor
on must be a function of the path reliability from onwards.
Since the routing protocol includes data aggregation, should
also be a function of the expected value of information that can
reach . Hence, benefit , where
denotes the path reliability from onwards to and is
the value expectation function.

Fig. 1. Sensor benefits with data aggregation.

Consider the data-aggregation tree shown in Fig. 1. Let
denote the value of the data at node and

the set of its parents. We now describe two simple benefit models
based on the form of .

Benefit Model I:

(1)

Model I captures the “memoryless” property of information
transfer on a path, i.e., once information has reached a particular
sensor its benefits in forwarding that information are not con-
strained by the choices of its ancestors and depend only on the
survival probabilities of sensors from onwards. Note, how-
ever, that costs may depend on the choices of ancestral sensors
in the tree. Data aggregation is assumed to be additive in the
figure.

Benefit Model II:

(2)

For example, the benefit to sensor in the figure is
. Unlike model I, here

we model as obtaining information from its parents only if
they survive with the given probabilities. The value of informa-
tion at corresponds to the path reliability up to . Ancestral
actions reflected in this expected value also affect ’s choice of
potential next-hop neighbors, since ’s benefits are partly de-
pendent on the reliability of partial paths from its ancestors.

D. Payoffs

Let be any valid strategy profile resulting in a tree
rooted at . The payoff at node under can be written as

if
otherwise

Definition 1: A strategy is said to be a best response of
player to if

Let denote the set of player ’s best response to .
A strategy profile is said to be an optimal RQR
tree if for each , i.e., sensors are playing a
Nash equilibrium [4]. In other words, the payoff to a node on
the optimal tree is the highest possible, given optimal behavior
by all other nodes. A node may get higher payoffs by selecting
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a different neighbor on another tree, however, it can only do so
at the cost of suboptimal behavior by (i.e., reduced payoffs to)
some other node(s). The above features of our game-theoretic
model allow sensors to rationally decide by computing best re-
sponses whether or not to participate in routing data of a given
significance. Thus, link formation in the network occurs by a
process of simultaneous reasoning at each node, leading to a
path from each with nonzero value to . It can be shown
for this particular game that sequential reasoning by nodes in
order of selection will also produce exactly the same equilib-
rium paths.

Note that under the definitions above, there may be a con-
tinuum of Nash equilibria corresponding to different optimal
trees. Equilibria corresponding to more reliable paths are more
desirable and the system should be made to converge to such
points. When choosing between strategies (paths) with equal
payoffs, nodes should always select edges leading to higher
path reliability. In this context, the information value parameter
has a significant impact on the number of equilibria/reliability
of these trees. Higher information values will bias equilibrium
points toward more reliable trees. For a simple example, con-
sider equilibrium paths from a single source with value to
the sink. If there are two equilibrium paths, with reliabilities
and , where , increasing the value of will propor-
tionately increase the payoff from the path more than the
path, thereby removing the latter path as an equilibrium point.
Note that the particular benefit model also has a significant im-
pact on the number of equilibria and their reliabilities. We can
state the following.

Observation 1: Benefit model I induces more reliable
equilibrium paths from source to destination compared with
model II.

Clearly, model II is more strategically constrained than model
I since all nodes on an equilibrium path share the same reliability
benefit. Downstream nodes under model I can choose more re-
liable paths over edges that would be infeasible under model II.
The reliability benefit in model II, (i.e., partial path reliabilities
from the given node onwards) are decreased by the expected
value factor (i.e., partial path reliability up to the given node).
Thus, model I makes more edges in the network feasible, and
hence potentially fewer and more reliable equilibrium points.

Given our assumption of additive data aggregation, many of
the results that hold for reliable energy-constrained routing from
a single source to the sink (i.e., RQR paths) also hold for routing
from multiple sources to sink (i.e., the RQR tree). Hence, in
the next few sections, we present our results mainly in terms of
single source-sink paths and when necessary the result is stated
in terms of trees.

III. OPTIMAL RQR COMPUTATION IN

ARBITRARY SENSOR NETWORKS

We first analyze the complexity of computing the optimally
reliable data aggregation path (the RQR path) and tree (the RQR
tree) under both payoff models in arbitrary sensor networks. In
the next section, we consider some popular implementations of
sensor-net architectures and show that the RQR computation

is tractable and can in fact be easily computed in a distributed
manner.

Result 1: Let be the optimal RQR path for routing data of
value from a single reporting sensor to the sink node
in a sensor network , where . Computing is
NP-Hard under benefit models I and II.

The proof for both models follows by reduction from the
Hamiltonian path problem [5]. For details of model II, please
see [9].

Corollary 1: Given an arbitrary sensor network with
sensor success probabilities , costs , and data of value

to be routed from each sensor to the sink , com-
puting the optimally reliable data aggregation tree (the RQR
tree) is NP-Hard for both payoff models.

For arbitrary sensor networks, both the RQR-path and RQR-
tree problems remain NP-Hard for the special case when nodes
have equal success probabilities. However, the case when all
edges have the same cost is much simpler.

Observation 2: For both benefit models, given
and for all , the most reliable tree is always
optimal. For uniform , the optimal RQR tree is also the one
with least overall cost.

We now identify some sufficient conditions for to be op-
timal when the probabilities of node survival are nonuniform.
Let and be subsequent nodes on the most reliable tree.
Denote by , the reliability of the most reliable path from to

with being the reliability along any alternative path from
. Let , where is any

neighbor not on the optimal path and is defined similarly.
Proposition 1: Given and , tree

will be optimal under payoff model I if

for all on .
Proposition 2: Given and , tree

will be optimal under payoff model II if

for all and on .
For brevity, we do not include the proofs of the propositions.

IV. OPTIMAL RQR COMPUTATION IN

GEOGRAPHICALLY ROUTED SENSOR NETWORKS

Thus far, we have modeled reliable energy-constrained
routing. However, energy efficiency and sensor lifetime are
also affected by the length of routing paths since longer paths
result in energy consumption at more sensors. Reliable query
routing must, therefore, be addressed in terms of sensor-centric
energy efficiency, as well as path length. We consider the RQR
problem for sensor networks in which sensors are restricted to
following a geographic routing regime. Geographically routed
sensor networks are a popular implementation of sensor-net
architectures [16]. The strategy space of each sensor in the
geographically routed RQR game includes only those neighbors
closer to the destination than itself. Routing paths under this
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regime are, thus implicitly length-constrained. For each sensor,
the set of downstream neighbor nodes to a given destination
can be found using protocols such as GFG [19] and greedy
perimeter stateless routing (GPSR) [10].

Let be an arbitrary sensor network following geographic
routing with sensor success probabilities , communication en-
ergy costs , and data of value to be routed from a single
reporting sensor to the sink node , where .
We assume static/fixed communication energy costs and no par-
ticipation costs. While the RQR problem is NP-Hard for gen-
eral sensor networks, we show that it becomes surprisingly easy
when we add the additional constraint of path-length.

Lemma 1: Let be the longest geographically routed path
from to in . Then, can determine its optimal RQR
neighbor under both benefit models in steps.

Proof: We first note the following simple observation. In
a geographically routed network, all feasible routing paths from

to any node and from to the sink intersect only at . If
any other such node existed, it would have to be geographically
closer than to both (since it is on a feasible path from
to ), as well as (since it is on a feasible path from to ),
which is impossible.

Let represent the reliability of the optimal RQR
path from to , transmitting information of value . From
the observation above, merely needs to know optimal values
to from each of its downstream neighbors. Let represent
this set. Then, the optimal neighbor for is

(3)

for model I, since each node transmits information of value ,
and

(4)

for model II, where is the expected value of information re-
ceived at from a given upstream neighbor. The number of
such values is proportional to the number of paths from to

, which can be exponentially large. However, these values can
be divided into disjoint, contiguous intervals in , which
makes next-hop selection much easier.

The lemma can now be formally proved by induction. Con-
sider node whose longest path to the destination is of length
one. Under payoff model I, its optimal choice is to link directly
to . Under payoff model II, it will link directly to for all
values . is unreachable for smaller values
of . Hence, at node the optimal choices are divided into
tuples consisting of (two) value intervals and optimal path re-
liabilities corresponding to each interval. During the step
of the algorithm, all nodes with follow the same rea-
soning, based on the optimal choices of downstream nodes in
step . In payoff model I, optimal next-hop choices are
unique for each node. However, in model II, each node has mul-
tiple optimal neighbors, based on a division of the incoming in-
formation value into disjoint intervals in . As we show
in the distributed algorithm, these intervals are polynomial in
number and calculated at each node on the basis of intersections

of value intervals and optimal reliabilities from its downstream
neighbors.

A. Distributed Implementation of Length-Constrained RQR

Let be the set of downstream
next-hop neighbors of . For each node in this set, let
the expected values of incoming information be divided into

disjoint consecutive intervals , where

( for payoff model I). Let and
denote the (open) left and (closed) right endpoints and

let be the optimal path reliability from onwards for
information of expected value in the given interval . When
information of expected value arrives at and is forwarded,
the expected value of information at is (under payoff
model II). Therefore, each value interval at corresponds
to an equivalent “stretched” interval at with left endpoint

and right endpoint . Henceforth, the
notation refers to the stretched interval at rather than the
actual interval at .

Let represent the payoff to sensor on sending
information of value to downstream neighbor . Note
that the payoff function is continuous and increasing through the
entire range of (as increases the payoff can only increase).
We can, therefore, assume that all intervals give a positive payoff
since intervals with negative or zero payoff can be identified and
removed. The following lemma shows that the payoff optimality
of two intersecting intervals at different neighbors and
can be determined using a single fixed point.

Lemma 2: If for
, then for all

. If the two payoffs are equal at the fixed point,
then throughout the intersection
iff .

The lemma follows by definition of the payoff function in
(2). Thus, to compare two different intervals, we only need to
evaluate their payoff at the smallest intersecting point.

The following distributed algorithm at each node enables
computation of the optimal length-constrained RQR path. We
assume that upstream and downstream neighbors of each node
are known a priori. The output of the algorithm is the set of dis-
joint and contiguous information value intervals at along with
the reliability and next-hop neighbor on the optimal path from

to for each interval. Once this information is computed
at each node, it creates a packet labeled OPT-PKT containing
tuples , and forward it to each of
its upstream neighbors, i.e., OPT-PKT are sent in the reverse
direction of data transfer. The algorithm maintains the interval
with the current highest payoff and uses the increasing and
continuous property of the payoff function to compute the next
interval. refers to the neighboring sensor corresponding to
interval . is the payoff from interval at its left endpoint
except when comparing payoffs in two intervals, in which case
it is calculated at the smallest intersecting point. Finally,
is the path reliability from onwards for information value in

. at left endpoints and are calculated a priori.
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ALGORITHM OPT-NEXT-NEIGHBOR
At each sensor :
If Received(OPT-PKT) from all neighbors in

Do
1. Create sorted list of left

endpoints of all intervals (excluding
endpoint 0)

2. .
3. ;
4. ;
5. ;
6. ;
7. while is nonempty Do
8. ; /* Remove minimum

element from head of list */
9. if ( ) Do

/* Indicates end of current value
interval */

10. ;
11. ;
12. ;
13. ;
14. end if /* else can never be optimal

so take no action. */
15. end while

The algorithm begins when receives OPT-PKT from all of
its downstream neighbors. The running time of the algorithm is
dominated by step 1 which merges sorted interval lists
from each neighbor. Let be the total number
of intervals. Step 1 can be done in time. Step
2 finds the interval with the highest payoff among the begin-
ning intervals of all the neighbors and takes time. All
other steps can be performed in time. Hence, we have the
following.

Result 2: The optimal length-constrained RQR path in a
sensor network with geographic routing can be computed in
a distributed manner using reverse directional flooding with

total messages for both benefit models, where is the
number of edges in the the sensor network. Optimal neighbors
at each node can be found in time for payoff model I
and time for payoff model II.

For the rest of the paper, we focus on fundamental aspects of
the RQR problem for sensor networks with arbitrary (nongeo-
graphic) routing.

V. QUALITY-OF-ROUTING (QoR): MEASURING

PATH WEAKNESS

We now consider the following fundamental performance
issue: How do we evaluate the suboptimality of routing paths in
sensor networks.2 Such a QoR metric is straightforward for tra-
ditional routing algorithms that optimize a single (end-to-end)
attribute such as energy cost, reliability, or latency. However, in
the game-theoretic context where reliable energy-constrained

2We assume a single source and destination pair and, hence, focus on routing
paths rather than trees.

routes in the network are derived as the equilibrium of sensor
strategies, a new sensor-centric metric is necessary for evalu-
ating and comparing different suboptimal paths. For example,
one path may yield high payoffs for sensor with low payoffs
for sensor , while the exact opposite situation may prevail
on another path. We now define several sensor-centric QoR
metrics for evaluating arbitrary routing paths based on the idea
of node “weakness.” This route evaluation paradigm essentially
quantifies the suboptimality of a node participating in a given
route, i.e., how much a node would have gained by deviating
from the current path to an optimal one.

Let be any path from the source sensor to the sink node
. Consider any node on with ancestors .

Let be the optimal RQR path for routing information of
value (i.e., the expected value under any benefit model) to

from in the subgraph , assuming such a
path exists. Thus, represents the best that node can do,
given the links already established by nodes and
assuming optimal behavior from nodes onward, downstream.
Define the node weakness of in path as

represents the payoff deviation for under the given
strategy profile (path) . A positive node weakness represents
the fact that is suboptimal for , while a negative one indi-
cates that is benefiting more from this path (at the expense
of some other sensor). if no optimal path from

exists (for example, all of ’s neighbors might have very
high communication/participation costs and cannot participate
in any path). Note that can take on any value. We now
define the following metrics for evaluating the suboptimality of
routing paths.

1) Path Weakness: .

identifies the maximum degree to which a
node on the current path can gain by making a different
strategy choice. The weakness metric embodies the idea
that a path is only as good as its weakest node and allows
us to rank the “vulnerability” of different paths.

2) Weakness Differential :
.

While the path weakness metric highlights only the
worst-off node, this describes the disparity between the
worst-off node (the one most likely to deviate to a new
strategy choice) and the best-off node, under the current
outcome of the routing game . A small weakness dif-
ferential value provides some indication of the fairness
of the given path.

Observation 3: if and only if is the
Nash equilibrium (optimal) path of the game and positive for all
nonoptimal paths.

Thus, paths with low weakness and weakness differential
values are closer to the optimal and, hence, preferable. Note that
the two weakness metrics can be similarly defined for data-ag-
gregation trees. Given a sensor on any tree , its weakness
can be calculated as its payoff deviation from the optimal tree
that would have been obtained, given the expected value at that
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Fig. 2. Network illustrating inapproximabilty of path weakness metrics.

sensor along with the distribution of values in the remaining
nodes in the graph.

A. Inapproximability of RQR-Path With Bounded Weakness

Next, we compute bounds for finding paths with low weak-
ness. We will show that there exist networks where it is not
easy to find paths of bounded weakness or differential by con-
structing a specific instance whose best suboptimal paths satisfy
certain weakness characteristics.

Consider an arbitrary sensor network as shown
in Fig. 2 with the following parameters. The vertex set is the
union of vertex set with nodes , and .
is an arbitrary network, where .
contains information of value to be routed to . The
edge set for is the union of disjoint edge sets ,

, and
. Participation costs are set to zero. Communi-

cation costs are fixed and represented by the following edge
costs-edges in cost , edge costs and edge
costs , where . The node success probabilities
are for all , and .

We now look at the optimal strategy choices for nodes in
on any path from to , under benefit model II. The analysis
for benefit model I is very similar and, hence, omitted. Note that

is reachable only through and . Any path to that does
not contain provides a benefit of to all nodes on the path.
All other paths provide a benefit of to all nodes on the path.
Therefore, any path to via not involving provides the
maximum payoff of to nodes in on that path and a
payoff of to . gets a higher payoff if it is an ancestor of
on any path. Thus, if is visited before , it will prefer to link
to any nonvisited node in instead of linking directly to .
This path will eventually lead to via and provide a payoff
of to all nodes on that path except and a payoff of
to . Note, however, that if is visited first (before ), it can
only link directly to since all other paths to via yield a
negative payoff for and, hence, are suboptimal.

Consider the following four paths. ,
for any , , and

consisting of a Hamiltonian path
in followed by and .

Assume that exists in . If so, we can easily show the
following node weakness values for each path:

(5)

(6)

(7)

(8)

We do not consider other paths that consist of visits to nodes
in interleaved between visits to and or paths that visit

before as they can be shown to have the same weakness
characteristics as the above paths.

We can now conclude the following path weakness metrics:

(9)

(10)

Finally, we have

(11)

Since is an arbitrary subgraph of , the above result im-
plies the existence of infinitely many graphs without any sub-
optimal paths of weakness or weakness differential bounded by

. A similar analysis can be carried out for benefit
model I. We have the following result, which is an improvement
over [9].

Result 3: Under both benefit models I and II, there exists
no polynomial time algorithm to compute approximately op-
timal RQR paths of weakness or differential weakness less than

unless .
Proof: Let be an algorithm that outputs a path with

weakness less than in polynomial time. For the given
, choose with probabilities and costs as described above. We

can then use as a decision algorithm to solve the Hamiltonian
path problem in . If a Hamiltonian path exists in , it is the
only path with weakness less than in and will, there-
fore, be output by . Algorithm will return some other path
in (which can be verified as non-Hamiltonian in polynomial
time) only if no Hamiltonian path exists in . Thus, is a poly-
nomial time decision algorithm for solving the Hamiltonian path
problem. This is impossible unless .

B. Path Weakness Heuristics

Theorem 3 indicates the infeasibility of finding approx-
imately optimal RQR paths of small weakness/differential
in arbitrary sensor networks. Here, we present some easy to
compute heuristics based on a fair-team version of the RQR
game (called FTRQR), for finding approximate RQR paths.
Simulation results presented in the next subsection verify that
the FTRQR heuristic has low path weakness and compares
favorably with other standard routing algorithms.

Define a “team” version of the RQR game as one in which
all nodes on the path share the payoff of the worst-off node on
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it [9]. Rather than maximizing individual payoffs as in the orig-
inal game, nodes in the team model compromise by selecting
next-neighbors that maximize the shared least possible payoff.
Formally, the payoffs to nodes in the network under strategy
choice leading to path are as follows:

if

otherwise
(12)

where is the value of information at node and is
the reliability of path from to formed under strategy
choice . The Nash equilibrium of this team game is the path
from source to destination containing the node with the max-
imum minimum cost-reliability tradeoff over all paths. In case of
multiple equilibria, the path with highest reliability is selected.

While the above heuristic finds the path maximizing the
payoff of the lowest payoff node, the disparity in individual
payoffs (as defined in the original RQR game) between the
best and worst-off nodes on the equilibrium path can be con-
siderable. Thus, the node weakness of individual sensors on
this path can also differ considerably and the path weakness,
as well as the differential weakness might be high. Therefore,
a heuristic that minimizes the differential path weakness (i.e.,
differences in individual node payoffs) of the equilibrium path
will lead to: 1) more equitable sensor energy expenditures and
2) should potentially decrease the path weakness. However,
such a heurstic might lead to less reliable paths. Since achieving
energy fairness at the cost of reliability is against the overall
routing objective, hence, the new equilibrium should also sat-
isfy the original team notion of the RQR game. We, therefore,
propose a composite heuristic labeled FTRQR, as shown in
(13) at the bottom of the page.

The first component above addresses the team payoff aspect
while the second component attempts to ensure that individual
payoffs are as close to the team payoff as possible. The param-
eter limits the impact of the payoff fairness criterion. Naturally,
a weighted version of the two components is also possible.

The FTRQR heuristic bears some similarity to the standard
bottleneck shortest path problem, which minimizes the cost of
the longest edge on the path from the source to the destination
node. The optimal FTRQR path can be interpreted as the bottle-
neck path to node with the highest path reliability and lowest
cost differential.

C. Experimental Results

In this section, we compare the path weakness characteristics
of several standard routing algorithms along with the FTRQR
team-game-based heuristic. We have used the following setup
in our simulations: We consider routing from a single source
containing information of value to the sink on a 20-node

Fig. 3. p = 0:5, c � 0:06.

random graph with 30% edge density, a uniform node survival
probability, and random edge costs from a given parameter
range. Edge costs are assumed static and node participation
costs are set to zero. For each set of node success probabilities
and edge costs, we evaluate the path weakness for routing paths
under benefit model II from 15 source and destination pairs
generated using: 1) the FTRQR heuristic; 2) the most reliable
path (MRP); 3) the cheapest next-node path (CNP); and 4) the
overall least-cost path (MCP). Equations (2) and (4) can be
obtained using Djikstra’s algorithm. The CNP is obtained by
sequentially following the cheapest link out of each node that
leads to the destination. For simplicity, whenever the algorithms
produce paths with negative payoffs for some nodes, we set the
path weakness value to one.

Analysis: Our simulation results are illustrated in Figs. 3–6.
We are interested in finding ranges of costs and node success
probabilities in which the different standard algorithms perform
well. Initially, we model more unreliable and costly networks
with low success probabilities and relatively high edge costs.

In Fig. 3, we keep the node success probability at 0.5 and the
maximum edge cost at 0.06. This restricts the length of the op-
timal path since edge costs soon outweigh reliability benefits for
nodes on long paths. In this case, MRP, the shortest path, always
coincides with the optimal path despite the low node success

if

otherwise

(13)
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Fig. 4. p = 0:995, c � 0:06.

probability. FTRQR, because of its reliability component, also
has very low weakness and coincides with the optimal in most
cases. However, the cost-based algorithms, especially CNP have
very high weakness since they result in much longer paths from
source to destination. (Typically, CNP will result in the longest
path since it minimizes individual node costs without regard to
reliabilities).

In Fig. 4, we increase the node success probability dramati-
cally to 0.995 keeping the maximum edge cost the same at 0.06.
In this case, longer optimal paths are possible and routes based
solely on maximizing reliability should not perform too well.
This is clearly illustrated by the relatively higher path weakness
values for MRP. Conversely, the CNP metric now (as compared
with Fig. 3) has much lower weakness. Since nodes are more
reliable now, the longer paths generated by CNP are not too
suboptimal. However, FTRQR outperforms CNP since it com-
bines reliability, as well as cost to a limited extent. Note that the
MCP heuristic also does surprisingly well, even though it is ex-
clusively based on minimizing total edge cost. Minimizing total
edge costs in many cases (with low-maximum edge costs) will
yield short paths with low edge cost variation on the path. Since
all nodes in our simulations are set to have the same success
probabilities, the reliability of the MCP paths will be quite high
along with low individual edge costs. Hence, MCP performs
well. Note that this feature of high reliability with low costs is
shared by the FTRQR heuristic and this is why both heuristics
perform well. However, we suspect that when node probabilities
are nonuniform, MCP will perform poorly since MCP paths are
likely to have low reliabilities, whereas the FTRQR heuristic
trades off reliability and costs and should have low weakness
even in such cases.

Fig. 5. p = 0:98, c � 0:04.

Fig. 6. p = 0:999, c � 0:029.

In Fig. 5, we decrease both maximum edge costs and prob-
abilities slightly. The path weakness of MCP increases slightly
(lower node success probabilities lead to lower MCP path relia-
bilities). MCP is slightly outperformed by FTRQR which con-
forms to the above intuition.

Finally, in Fig. 6, we consider a highly reliable network with
very low edge costs. Now, optimal paths can have longer lengths
without sacrificing reliability. Therefore, CNP which tends to
have a longer length, has lower path weakness now. MRP has
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higher path weakness due the presence of large number of paths
(including low individual edge cost paths) with high reliabilities.
The FTRQR heuristic, which trades off path reliability and cost
differences performs well as expected.

Based on these simulations, in summary, we can state that the
sensor-centric paradigm works best in highly reliable yet low
cost networks. For unreliable networks, using the MRP heuristic
is preferable. When success probabilities are uniform or within
a very narrow range along with low maximum edge costs, MCP
is a good heuristic. CNP rarely produces paths of comparatively
low weakness. The FTRQR heuristic performs quite well in
most cases and has low path weakness as it inherits the relia-
bility characteristics of MRP in unreliable networks and that of
the cost optimizing algorithms in higly reliable networks

VI. CONCLUSION

We have shown that game theory offers a promising frame-
work for modeling reliable length-energy constrained routing in
sensor networks. By modeling sensors as rational agents within
a routing game, we can demonstrate the ability of sensors to co-
operatively (globally) route packets subject to their own (local)
energy constraints. Several payoff models and utility functions
are possible, and we have illustrated just two of these possibili-
ties. For each utility function, several Nash equilibria exist. An
interesting and open issue is the stability of the network under
dynamic routing scenarios. Specifically, how stable is the Nash
equilibrium of the RQR game in a dynamic environment, where
links and sensors fail periodically and will the system converge
to a particular equilibrium. Another interesting problem is the
efficiency and practicality of implementing optimal RQR pro-
tocols in hierarchical (clustered) sensor networks. Is it benefi-
cial to compute optimal paths within each cluster for routing to
gateway nodes (that handle intercluster routing).

While the optimal routing problem turns out to be compu-
tationally hard for arbitrary sensor networks, polynomial time
solutions for the optimally reliable paths/trees are presented
for geographically routed sensor networks. We present two
metrics for evaluating the QoR paths labeled path weakness
and show the inapproximability of finding paths of bounded
weakness in arbitrary sensor networks. However, our exper-
imental results show that standard routing mechanisms like
most reliable or cheapest energy paths are usually good. Our
game-theoretically oriented algorithm–FTRQR compares fa-
vorably to the other standard routing algorithms.
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