
International Symposium on Electronic Imaging , January 2005,
 San Jose, California

On optimal mapping of visualization pipeline onto linear arrangement
of network nodes

Mengxia Zhua, Qishi Wub, Nageswara S. V. Raob, S. Sitharama Iyengara*

a Department of Computer Science, Louisiana State University, Baton Rouge, LA, USA 70803;

b Computer Sci. and Math. Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA 37831

ABSTRACT
This paper discusses algorithmic and implementation issues of optimally mapping a visualization pipeline onto a linear
arrangement of wide-area network nodes to minimize the total delay. The first network node typically is a data source,
the last node could be a display device ranging from a personal computer to a powerwall, and each intermediate node
could be a workstation or computational cluster. This mapping scheme appropriately distributes the filtering, geometry
generation, rendering, and display modules of the visualization pipeline to the linear arrangement of network nodes to
make efficient use of the computing resources at end nodes and also the network bandwidth between them. A regression
based network daemon is developed to measure the available bandwidth on a transport link. We present an analytical
formulation of this problem by taking into account the computational power of nodes, the bandwidths between them, and
the sizes of messages exchanged between visualization modules. We propose a polynomial-time optimal algorithm that
uses the dynamic programming method to compute the mapping with the minimum total delay. An OpenGL-based
remote visualization system is implemented and deployed at three geographically distributed nodes for preliminary
experiments.

Keywords: Remote visualization, visualization pipeline, bandwidth measurement, network mapping

1. INTRODUCTION
A remote visualization system can potentially enable an end user equipped with a simple display device and network
access to visualize large volumes of scientific data that resides at powerful remote visualization servers. Such large data
sets are difficult to be generated or stored at end user nodes, which typically have limited computing and storage
resources. A simple version of a remote visualization system consists of a remote data source acting as a server, a local
rendering/display terminal acting as a client, zero or more intermediate hosts, and a network connecting them all
together. The overall performance of such a remote visualization system critically depends on how efficiently its
visualization pipeline is mapped onto the network nodes. In particular, this mapping determines the execution times of
various modules and the transmission times of data exchanged between them, thereby deciding the total time of the
visualization pipeline. In this paper, we address both analytical and implementation aspects of realizing an optimal
mapping of a visualization pipeline when the network nodes form a linear arrangement.

Many existing remote visualization systems [11,12,13] employ a predetermined partition of the visualization pipeline
and typically send fixed-type data streams such as raw volume data, filtered data, geometric objects, or frame buffer (FB) to
remote end nodes for visualization. In general, the task of a client node can be quite varied depending on the data sent by
its predecessor module in the pipeline: it can range from geometry generation from raw data, to rendering OpenGL
commands, to displaying frame buffers. In some commercial client-server visualization systems, the server typically
generates the geometry (usually in a vendor-specific format) and sends it to the client, where it is rendered and displayed.
While in others, OpenGL commands are sent from the server to the client that in turn “interprets” them. While such
schemes are common, they are not always optimal for high performance visualizations that typically deal with large data
sizes and complex data structures. Particularly over wide-area connections, this problem is further compounded by

* Further author information: (Send correspondence to Nageswara S. V. Rao)
Mengxia Zhu: Email: zhum@ornl.gov; Telephone: 1 865 576-7210
Qishi Wu: Email: wuqn@ornl.gov; Telephone: 1 865 576-5603
Nageswara S. V. Rao: Email: raons@ornl.gov; Telephone: 1 865 574-7517
S. Sitharama Iyengar: Email: iyengar@csc.lsu.edu; Telephone: 1 225 578-1252

limited network bandwidths and time-varying dynamics of network conditions. In certain data sets, the geometry is much
simpler than the data itself, in which case it is appropriate to ship the geometry across the network. On the other hand,
for fractal data sets, the geometry is much more complicated than the data, and hence it is more efficient to ship the data
rather than the geometry. Such variations may occur in data sets generated even in a single domain such as supernova
computations [17]. In general, the network bandwidths and exchange data sizes together with processing times must be
taken into account to optimally map a visualization pipeline onto network nodes.

Considerable research efforts have been underway in designing flexible remote visualization systems that distribute
visualization subtasks across network nodes. Bowman et al [8] proposed a performance prediction framework to predict
processing times of visualization modules using linear models and network bandwidth using Network Weather Service
[18]; these predictions are used to obtain a suitable mapping of the visualization pipeline. Luke et al [9] constructed
Semotus Visum, a flexible remote visualization framework capable of multiple partition scenarios. They run their tests
using different partition schemes on a local network and the corresponding performances are measured [9]. ARTE [14]
implements an adaptive delivery of 3D model by keeping track of the available client, server and network resources. The
original 3D data is converted to selected modalities that are best suited for rendering and transmission [14]. In these
works, the mapping of visualization modules to network nodes is accomplished by empirical testing and manual
configuration.

We analytically formulate a problem of optimizing the total delay of a visualization pipeline by considering the times
for transmission, computation and rendering. This formulation enables us to analyze the algorithmic aspects and
optimality of mapping the visualization pipeline onto a given linear arrangement of wide-area network nodes. We
consider a simple case where each node is capable of executing any visualization module with a special role played by
the end nodes. The first network node is a data source, and can also perform other tasks such as filtering, geometry
generation, or rendering. The last node is capable of displaying the frame buffer but can also perform other visualization
subtasks; it could be equipped with a simple terminal or a more sophisticated device such as a powerwall or a tiled
display. The intermediate nodes are capable of performing all visualization subtasks, and they could be workstations,
computational clusters, or custom rendering engines.

This characterization is a simplified abstraction of real remote visualization systems wherein the nodes often have
specialized functionalities such as high-performance storage, cluster-based rendering and tiled displays. Despite this
simplification, this model highlights the inherent computational aspects of realizing an optimal mapping. An optimal
mapping must make efficient use of the computing resources at the nodes and also the network bandwidths between
them to allocate the modules such as filtering, geometry generation, rendering, and display, to various nodes. We present
a polynomial-time optimal solution using dynamic programming to compute a mapping with the minimum total delay
considering processing times and connection bandwidths. The computational complexity of the solution is ()O n k× ,
where is the number of visualization modules and 1n + 1k + is the number of network nodes in a linear arrangement.
We implemented an OpenGL-based remote visualization system and deployed it at three geographically distributed
nodes. Some preliminary experiments are run on this client/server-based remote visualization system.

The rest of the paper is organized as follows. In Section 2, we describe a simple visualization pipeline and a remote
visualization framework, which form the basis for our analytical model. In Section 3, we first describe a bandwidth
measurement method based on [5], and then present our partition schemes using dynamic programming-based
algorithms for total delay minimization. Implementation details and test results are provided in Section 4. We finally
conclude our work in Section 5.

2. REMOTE VISUALIZATION SYSTEM

2.1. Visualization pipeline
The large volumes of data generated in scientific or medical applications have to be appropriately retrieved and mapped
onto a 2D display device to be “visualized” by human operators. This visualization process involves several steps that
form the so-called visualization pipeline or visualization network [1]. Fig. 1 shows a simple visualization pipeline along
with the flow of data produced at each pipeline module. In many scientific applications, the raw data usually takes a
multivariate format and is organized in structures such as CDF, NetCDF, and HDF [2,3,4]. The filtering module extracts
the information of interest from the data source in order to improve processing efficiency and save communication
resources as well. The decision on rendering techniques to be employed is first made in the transformation module,

which typically uses a surface fitting technique (such as isosurface extraction) to derive 3D geometries (such as
polygons), or uses transfer functions to perform color and opacity classifications for each voxel based on its attribute.
Rendering module converts the transformed geometric or volumetric data in 3D view coordinates to a pixel-based image
in 2D screen coordinates. In most of the existing graphics systems, the visual properties of a raster image such as color,
opacity, and depth is stored and carried in a frame buffer for final display on a display device.

filtering

transformation
(topological surface

construction, volumetric
transfer function)

rendering
framebufferfiltered data

transformed data
(geometric model,
volumetric values)raw dataData

source

Display

Figure 1. A general visualization pipeline and its data flow of remote visualization system.

In the stand-alone mode, all these visualization modules reside on the same computing node. It is worthwhile
pointing out that Fig. 1 is a diagrammatic description of highly abstracted visualization components; for instance, the
rendering module itself might involve several stages of vertex transformations in the OpenGL environment. The
visualization pipelines of real applications may significantly vary due to the disparate implementation procedures and the
use of different visualization techniques.

2.2. Framework for remote visualization system design
The block diagram in Fig. 2 illustrates a baseline framework for visualization systems that employ optimal pipeline
partitioning and automatic network mapping. Since many scientific applications generate terabyte or even petabyte data,
which makes it very difficult to run computation-intensive visualization modules on a single desktop computer. Hence
we first perform a parallel computing to explore the parallelism in the modules and the computational capability
provided by the nodes with high-performance computing (HPC) resources, such as clusters. The connection bandwidths
over the underlying transport network are estimated using active traffic measurements. Based on the bandwidth
measurements, sizes of data to be processed, and computational complexities of visualization modules, a decomposition
and mapping of the pipeline is then performed. The visualization pipeline is decomposed into groups, which are then
mapped one-to-one to the computing nodes distributed in the transport network.

Parallel cluster computing
(vertical splits)

Visualization pipeline
partitioning

Network mapping

Network node deployment
and topology construction

Bandwidth and
delay measurement

Figure 2. Architecture for remote visualization system.

The design procedure forms a closed loop as shown in Fig. 2 because the execution of each design block depends on
the input from another. In a practical implementation, we generally start with computing node deployment and network
topology construction. For example, the site of data source is a priori known, and the location of a remote client is
determined whenever it initiates a ‘visualization” connection with the server. The information collected on networking
and computing resources can be used to select optional intermediate nodes with specific visualization and/or computing
facilities. In this paper, we consider a simple case where all intermediate nodes and their order along the visualization

pipeline are known in advance so that a surjective mapping is required. Such knowledge can be obtained from the
information about the available network nodes and their capabilities. Despite the simplification, this case highlights some
of the salient features of mapping the visualization pipeline, while avoiding the combinatorial complexity of choosing a
suitable “ordered path” embedded in the network.

2.3. Analytical model
We now describe an analytical model for the visualization pipeline decomposition and its network mapping. The
visualization pipeline consists of n+1 sequential modules, which are denoted by

 as shown in Fig. 3. Module 1 2 1 1 1, , , , , , , , , , , , ,u u v w x x nM M M M M M M M M− − −K K K K K 1+ 1, 2, ,jM j n= K + performs a
computational task of complexity jc on data of size 1jm − received from its upstream module 1jM − and generates data of
size jm , which is then sent over a network link to its downstream module 1jM + for further processing. A linear
arrangement consists of computing nodes 1 2, , , ,k kN N N N 1+K , which are geographically distributed over the network.
Node with a normalized computing power, 1,2, ,iN i k= K † is connected to its downstream neighbor node ip 1iN + with
a forward link of bandwidth and minimum link delay . The minimum link delay is mostly contributed by the
link propagation and queuing delay, and is much smaller than the bandwidth-constrained delay in most cases.

iL ib id

M1 Mu-1 Mu Mv-1 Mw Mx-1

N1 Nk Nk+1N2

G1 G2 Gk

mu-1 mv-1

control data: a1

p1 pk+1

c1 cu-1 cu cv-1 cw cx-1

p2 pk

control data: a2

Mx Mn+1

mx-1

cx cn+1

Gk+1control data: ak

L1(b1, d1) L2(b2, d2) Lk(bk, dk)

L1
*(b1

*, d1
*)

L2
*(b2

*, d2
*)

Lk
*(bk

*, dk
*)

Figure 3. Pipeline partitioning and network mapping.

We decompose the visualization pipeline into visualization groups denoted by . The data flow
between two adjacent groups is the one produced by the last module in the upstream group; for example in Fig. 3, we
have . The client residing in the destination group sends control data

, such as simulation parameters, filter types, visualization modes, and view parameters, to preceding

visualization groups through backward links for interactive operations. For
forward links which support large amounts of visualization data, we usually ignore the minimum link delay

 occurred on the link . Furthermore, the control data generally ranges from several bytes to several
thousand bytes, and is often much smaller than the visualization data and therefore its transport time is also assumed to
be negligible. Under these conditions, the objective of the decomposition and mapping problem of the visualization
pipeline is to minimize the total time given by:

1 2 1, , , ,k kG G G G +K

1 1 2 1() , () , , ()u v km G m m G m m G m− −= = =K 1x− 1kG +

, 1,2, ,ia i k= K

, 1,2, ,iG i k= K * * *(,), 1,2, ,i i iL b d i k= K

, 1,2, ,id i k= K iL

()
1 1

1
1 1 1 2 1

()1
i i

i

k k k k
i

computing transport G L j j
i i i j G and j ii i

m G
T T T T T c m

p b

+ +

−
= = = ∈ ≥ =

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑ ⎟

, (1)

†For simplicity, we use a normalized quantity to indicate a node’s computing power without detailing its memory size, processing
speed, and computing capabilities in different ways such as numeric and graphics.

where we also assume that the transport time between modules within one group on the same computing node is
negligible.

Note that in Fig. 3, we assume that the set of computing nodes in the underlying transport network are preselected
along with their order in the visualization pipeline. However, in a general model, except for the data source and the
remote client, the number and order of the intermediate nodes are not always predetermined for an optimal mapping of
the visualization pipeline. Indeed as shown in Fig. 2, the computer node deployment (both location and order) and
visualization pipeline decomposition often strongly interact with each other during the entire system design process. The
general model shown in Fig. 2 has a more complicated structure and therefore requires a more sophisticated solution. It
is interesting to note that there may not be any intermediate nodes in some scenarios, which results in the simplest
topology for remote visualization, i.e. one server and one client.

3. MAPPING FOR REMOTE VISUALIZATION SYSTEM
In this section, we present a linear regression model to estimate link bandwidth using active traffic measurement based
on [5], and then propose an approach based on dynamic programming to solve the visualization pipeline decomposition
and mapping problem.

3.1. Bandwidth measurement
The link bandwidth is the fastest rate at which data can be generated and sent along the link, while the available link
bandwidth is the spare bandwidth of the link “left over” after the cross traffic. Due to complex traffic distributions over
wide-area networks, and the non-linear nature of transport protocol dynamics (in particular TCP), the throughput
achieved in actual message transfers is often different from both the link and available bandwidths, and typically
contains a random component. The effective path bandwidth is defined as the throughput achieved by a flow using the
given transport method under certain cross traffic conditions. The notion of effective bandwidth is specific to the
employed transport protocol and is related to both link and available bandwidth perhaps in a complicated way. The
active measurement technique we apply here is to estimate the effective path bandwidth based on [5]. Note that a link
here may correspond to a multi-hop physical path over a wide-area network.

There are three main types of delays involved in the message transmission over computer networks, namely, link
propagation delay pd imposed at the physical layer level, equipment-associated delay mostly incurred by processing
and buffering at the hosts and routers, and bandwidth-constrained delay

qd

BWd determined by the available bandwidth and
data size. Due to the time-varying network cross traffic, the delay often experiences a high level of randomness.
Also, since the transport protocol reacts to the competing traffic on the links, the delay

qd

BWd may also exhibit
randomness particularly over congested wide-area connections. We have the following expression [5] for the end-to-end
delay or message delay in transmitting a message of size r on a path P with l hops:

, ,
1

(,) (,) (() (,))
l

BW p i q i
i

d P r d P r d P d P r
=

= + +∑ , (2)

In this paper we consider large message sizes so that only the first term of the above equation is significant. Let
EBW(P) denote the effective bandwidth of path P such that the message delay can be approximated by the linear
model:

(,)d P r

1(,)
()

d P r r
EBW P

≈ , (3)

The active measurement technique is employed to estimate the effective bandwidth of a link. A measurement node
generates a set of test messages of various sizes, sends them over an outgoing link through a transport channel such as a
TCP flow, and measures the corresponding end-to-end delays. This process is repeated several times for each message
size and the average delay is calculated. Once the average end-to-end delays for messages of different sizes are
determined on an outgoing link, we apply a linear regression to fit the measured points [5]. The message delay
measurements between two transport daemons deployed at Louisiana State University (LSU) and Oak Ridge National
Laboratory (ORNL) as well as its corresponding linear regression estimate are illustrated in Fig. 4. The measurement of
the end-to-end delay for each message size is carried out three times. From this figure, we estimate that the effective path

bandwidth of this virtual link to be about 1.0 Mbps. We emphasize that the measurements are collected using the same
transport method that will be used by the visualization module. If measurements are collected by tools such as Iperf, or
NWS [18], they must be appropriately translated into the effective bandwidth seen by the pipeline modules.

Message Sizes vs. End-To-End Delays

0

2

4

6

8

0 100 200 300 400 500 600 700 800 900 1000

message size (Kbytes)
en

d-
to

-e
nd

 d
el

ay
 (s

)

Figure 4. End-to-end message transmission delay measurements between LSU and ORNL.

3.2. Decomposition and mapping
The visualization pipeline needs to be decomposed into several groups and assigned to the preselected computer nodes
so that the total delay is minimized. Intuitively, a more general version of this problem is quite similar to the classical
graph clustering problem, which is NP-complete in most cases. Approximate solutions may be found by the branch-and-
bound technique but in exponential time [10]. However, since our visualization system is linearly deployed on a set of
computer nodes arranged in a predetermined order, we are able to solve this problem in polynomial time.

We present an algorithm to minimize both the transport and computation time as stated in Eq(1). As discussed earlier,
there are n messages of sizes jm flowing between the visualization modules of complexity jc , , k network
links with bandwidths , and k+1 processing nodes each with processing speed .

 denotes the minimal total delay with the first j messages (namely the first j+1 visualization modules) mapped
onto the first i network links.

1,2, ,j = K n
1, 1, 2, ,ib i k= K , 1, 2, ,sp s k= +K

(,)T i j

m1 mj-1 mj

p1 p2 pi-1 pi

b1 bi-1

pi+1

m2

bi

T(i-1,j-1)

T(i,j-1)

Figure 5. Dynamic programming for minimal transport delay time.

Then can be computed recursively based on the following dynamic programming equations: (,)T i j

1

1

1 , 1 , 1

1

(1, 1)
(,) min

(, 1)

j j j

i

i tok j to n i j j j

i

m c mT i j bi p
T i j

c mT i j p

+

+

= = ≤ +

+

⎧ ⎫− − + +⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪− +
⎪ ⎪⎩ ⎭

, (4)

where the base conditions are computed as 1

11 1
(,)

c c
i i i

i ii i

m c mT c c b
+

+= =

= +∑ ∑ p on the diagonal line and

1

11
(0,)

c
w w

w

c mT c p
+

=

= ∑ in the first row, . The complexity of this algorithm is in the order of 1,2, ,c = K k ()O n k× .

In Equation (4), takes the minimal of two scenarios as illustrated in Fig. 5. In scenario 1, we map the last
message

(,)T i j

jm to the last link . The transport time on this mapped link together with the computing time of the last
module on the last node is then added to , which is the sub-problem of size i-1 and j-1. In scenario 2, we do
not map the last message

ib
(1, 1)T i j− −

jm on any link, which means that the last two modules are both executed on the last node, and
then the problem directly reduces to the sub-problem of size i and j-1 with the addition of the computing time of the last
module on the last node. Fig. 6 shows the dynamics of 2D matrix construction for computing . The entries of the
diagonal line and first row are entered beforehand. In order to fill up the whole upper triangle, the calculation sweeps
across the matrix from left to right and from top to bottom. For example, consider the back tracing path of . We
first visit and , of which is already known from the base case and is calculated from

 and , which is in turn calculated from and . Once the base cases are reached, the tracing
process will stop and bounce back to its starting point. The complexity of this algorithm is . Note that an
additional matrix is needed to record the mapping scheme for the winner of each comparison along with the
computation. On the diagonal line with an equal number of links and messages, we simply map all messages one-to-one
onto links in a linear order. For each comparison step, the mapping scheme matrix either inherits the mapping scheme
from that of by adding module

(,)T i j

(3, 4)T
(2,3)T (3,3)T (3,3)T (2,3)T

(2,2)T (1, 2)T (1,1)T (0,1)T
(O n k×)

(, 1)T i j − 1jM + to the last group, or appends a separate group with message j to the
mapping scheme of . (1, 1)T i j− −

i

j

0

1

2

3

.

.

.

1 2 3 4 n-2 n-1 n

k

T(3,4)

T(2,3)

T(3,3)

T(2,2)

T(1,2)T(1,1)

T(0,1)

T(k,n)

Figure 6. Construction of a 2D matrix of T(i,j) for dynamic programming.

4. IMPLEMENTATION AND CASE STUDY
Our remote visualization system is deployed at three nodes located at North Carolina State University (NCSU), ORNL,
and LSU as shown in Fig. 7. Our parallel isosurface extraction computation is implemented on Orbitty cluster at NCSU,
which consists of 23 computer nodes (total of 92 CPUs each at 2.4GHz). Linux workstations with 3GHz CPU are used
as hosts at ORNL and LSU. The current data channel and control channel are built upon TCP. New transport protocol
can easily be plugged in replace of the default TCP in our system.

Our cluster-based remote visualization system provides the following functionalities:

• Scalar glyphs: A dot representation is used to represent a scalar value at each position. The scales and the
colors of the dots reflect the scalar values.

• Isosurfaces: Surfaces of a scalar field with the same value are produced. The surfaces are also colored
according to the different isovalues.

• Vector glyphs: Arrows are used to represent the vector at each data point. The direction, magnitude, and
color of an arrow are set by the corresponding vector value.

• Volume rendering: Fastvox 1.0 [15], an OpenGL-based API, is embedded into our system to perform the
volume rendering using the ray casting algorithm.

• Dynamic monitor and steering: The functions provided above are post-processing procedures. This function
enables client to monitor the data dynamically generated at the server end on the fly. Client end can steer the
data generation by sending back control feedback parameters in the course.

Computer

Computer

LSU

NCSU
ORNL

Headnode

Slavenode

Slavenode

Slavenode

Slavenode

Figure 7. Remote visualization system deployments.

The user interface of our remote visualization system and a 2D pressure map generated by a hydrodynamics
simulation of a supernova evolution [17] are displayed in Fig. 8.

Figure 8. User interface at client end.

In this initial implementation, our system runs in a simple client/server mode without considering intermediate nodes;
note, however, that partition still needs to be optimized albeit among only two network nodes since the exact data sizes
exchanged between them decides the total delay. It can be viewed as a special case of linear arrangement of nodes,
namely only two nodes are preselected. However, the system is capable of accepting intermediate nodes with complex
network topologies using the algorithms described in Sect. 3.2. In the current deployment, the server designates proper
visualization modules to the clients and calculates the estimated delay time based on the information on the visualization
entity size and bandwidth estimates. The server can either send raw data, geometry data, or FB to the client. The decision
is made automatically by the server to minimize the total delay. Several experiments are conducted between two hosts,
one located at LSU as a server and ORNL as a client.

Since the server and client at these two locations have approximately the same computational capacity, the mapping
scheme that incurs the least transport time leads to the minimal total delay. Correspondingly, the link with the minimal
message size is mapped onto the network link. Table 1 illustrates the estimated transport time with different sizes of
messages transmitted between the server and client. The measured bandwidth EBW and the minimum link delay denoted
by d are dynamically measured by our network daemons deployed at LSU and ORNL. Only the one-way bandwidth and
minimum delay from server to client are measured. The message size for raw data, 3D geometry and FB are estimated at

the server. The estimated transport delay represented as is computed as: delayT _ 8
delay

Msg sizeT d
EBW

×
= + . Note that the

computing times are not explicitly included in the table because they are negligible compared to the transport times in
these cases.

Table 1. Partition test.

 Dimension Estimated
Bandwidth

Minimum
Delay

Raw size / delay Geometry size /
delay

FB size / delay

Cube1 10x6x8 0.284Mbps 0.032sec 8 K / 0.257sec 1K / 0.032sec 1.8M/50.73sec

Cube2 50x20x39 0.300Mbps 0.034sec 610K / 16.3sec 16K / 0.46sec 1.8M/48.03sec

Cube3 150x210x139 0.277Mbps 0.033sec 71.6M / 34.4min 2.4M / 69.34sec 1.8M/52.01sec
Hand 256x256x80 0.239Mbps 0.033sec 81.9M / 45.69min NA 1.8M/60.28sec

Case 1: The cube 1 data has a very small size of geometry and raw data. The transfer of the FB, which is much larger
than either raw data or geometry data size, incurs transport delay of about 51 seconds. In this case, the server can choose
to send either raw data or geometry data to client ends in less than one second.

Case 2: The cube 2 data has a larger raw data size than cube 1. The delay for sending raw data is about 16 seconds,
which is not desirable for interactive operations. Since its small size of geometry data only needs less than one second of
transport time, the server obviously chooses to send the geometry data instead of the raw data.

Case 3: The cube 3 data has a raw data size of 71.6 Mbytes. It would take more than half an hour for raw data
transmission, which is simply not unbearable for practical use. The calculation shows that the geometry data size is
similar to the FB size and either of them takes about one minute to transmit. In general, with comparable data size,
sending geometry data is always preferable to sending the FB because the regeneration of FB introduces additional
traffic upon the changes on the view parameters at client ends. Alternatively, server can reduce the rendering resolution
level to achieve interactivity at the expense of accuracy.

Case 4: A CT scanned hand data provided by Fastvox has a raw data size of 81.9 Mbytes, which would incur unbearable
transport time. Since the volume rendering is employed, we only need to decide whether to send raw data or FB to the
client in this case.

In all cases above, the minimum link delay is at least an order smaller than the total delay of the visualization
pipeline. In dealing with large data sets, the rendering module may be located on the server where the raw data is
generated. Such a server can exploit the data locality, disk I/O bandwidth, memory, and parallel processing for
accelerating the visualization pipeline. The size of frame buffer generated by the rendering process is mainly decided by
the display screen width, screen height no matter how big the dataset is. A typical display window with 1000x600 pixels
has a size of 1.8Mbytes, which is not a very big burden for most transport links. In case of lower bandwidth links, the
display window can be scaled down to reduce the frame buffer size, and in addition, a lower resolution level can be
chosen.

5. CONCLUSION AND FUTURE PLAN
In this paper, we proposed a framework and a mathematical model for an automatic mapping of a visualization pipeline
onto a linear arrangement of computer nodes. Our objective is to minimize the total delay of the visualization pipeline by
considering both message transport and module computations. Dynamic programming methods are proposed to compute
an optimal mapping of the visualization modules assuming that we know which intermediate nodes to use and in what
order to use them. Selection of suitable subset of intermediate hosts and their order of deployment from a larger set of
diverse nodes on a wide-area network is an obvious and more realistic extension of our model. Nodes with high
bandwidth links and high computational capacity serve as good candidates to be selected as intermediate nodes. This
problem is, however, much more complex, and is akin to the NP-complete graph partitioning problems. It would be of
future interest to study various formulations of this class of problems form the viewpoints of computational complexity
and practical implementation.

Since the control data has a much smaller volume than the visualization data, we ignored its transport time in our

analytical formulation. However, for prompt response and accurate steering in most real-time remote collaboration
applications, the control channel always imposes higher stability requirements on transport performance than the data
channel. It would of future interest to explicitly include the terms corresponding to the control channels into the total
delay of the pipeline. Such formulation appears to be more complex than the case studied here, and it would be
interesting to see if the dynamic programming method can be extended to this case.

Our implementation takes a simple client and server form. In the future, we plan to strengthen our system to include
intermediate hosts and deploy our system over dedicated networks, such as DOE UltraSceince Net [19], for experimental
testing. As the datasets sizes reach terabytes, the transport delays within the pipeline could be prohibitively high even
over dedicated high throughput networks. One obvious solution is to speed up the transport process. But most existing
remote visualization systems (including ours) use the default TCP for both data and control message transmission.
Newer transport protocols based on stochastic approximation methods for throughput stabilization and maximization
[7,16] have been developed to overcome the limitations of default TCP or UDP in terms of throughput, stability and
dynamics. We plan to incorporate these new transport methods in our remote visualization system at a later stage.

ACKNOWLEDGMENTS
Authors thank Professor John Blondin of North Carolina State University for providing us the code for computing the
hydrodynamics of supernova and also for providing us an access to their computational and networking facilities. This
research is sponsored by the High Performance Networking Program of the Office of Science, U.S. Department of
Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, the Defense Advanced Projects Research
Agency under MIPR No.~K153, and by National Science Foundation under Grants No. ANI-0229969 and No. ANI-
335185.

REFERENCES
1. A. Kaufman, “Trends in visualization and volume graphics”, Scientific Visualization Advances and Challenges,

IEEE Computer Society Press, 1994.
2. http://hdf.ncsa.uiuc.edu/
3. http://nssdc.gsfc.nasa.gov/cdf/cdf_home.html
4. http://my.unidata.ucar.edu/content/software/netcdf/index.html
5. N. S.V. Rao, Y.C. Bang, S. Radhakrishnan, Q.Wu, S.S. Iyengar, and H. Cho, “NetLets: Measurement-based

routing daemons for low end-to-end delays over networks”, in Computer Communications, 26, no. 8, pp. 834-844,
2003.

6. G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner, and J.T. Klosowski, “A stream-Processing
framework for interactive rendering on clusters”, in ACM Transactions on Graphics, 21, pp.693-702, July 2002.

7. Q. Wu, “Control of transport dynamics in overlay networks”, Ph.D. dissertation, Dept of Computer Science,
Louisiana State University, 2003.

8. I. Bowman, J. Shalf, and K. Ma, “Performance modeling for grid-based visualization”, submitted to Parallel
Graphics and Visualization 2004.

9. E.J. Luke and C.D. Hansen, “Semotus Visum: a flexible remote visualization framework”, in IEEE Visualization
2002, Proc.Visualization02, pp.61-68, 2002.

10. P. Fränti, O. Virmajoki and T. Kaukoranta, "Branch-and-bound technique for solving optimal clustering", in Int.
Conf. on Pattern Recognition (ICPR'02), Québec, Canada, 2, pp.232-235, August 2002.

11. http://www.ceintl.com/products/ensight.html
12. http://www.paraview.org/HTML/Index.html
13. http://www.aspect-sdm.org/
14. I.M. Boier-Martin, “Adaptive graphics”, in IEEE Computer Graphics and Applications, 2, no.1, pp.6-10, Jan-Feb

2003.
15. http://www.digitalmedics.de/html/fastvox.html
16. Q. Wu, N.S.V. Rao, “A class of reliable UDP-based transport protocols based on stochastic approximation,”

manuscript submitted.
17. Terascale Supernova Initiative, http://www.phy.ornl.gov/tsi
18. Network Weather Service, http://nws.cs.ucsb.edu
19. DOE UltraScienceNet, http://www.csm.ornl.gov/ultranet

http://hdf.ncsa.uiuc.edu/
http://nssdc.gsfc.nasa.gov/cdf/cdf_home.html
http://my.unidata.ucar.edu/content/software/netcdf/index.html
http://graphics.stanford.edu/~mhouston/
http://graphics.stanford.edu/~renng/
http://www-id.imag.fr/egpgv04/
http://www-id.imag.fr/egpgv04/
http://www.ceintl.com/products/ensight.html
http://www.paraview.org/HTML/Index.html
http://www.aspect-sdm.org/
http://www.digitalmedics.de/html/fastvox.html
http://www.phy.ornl.gov/tsi
http://nws.cs.ucsb.edu/
http://www.csm.ornl.gov/ultranet

	On optimal mapping of visualization pipeline onto linear arr

