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ABSTRACT 
This paper discusses algorithmic and implementation issues of optimally mapping a visualization pipeline onto a linear 
arrangement of wide-area network nodes to minimize the total delay. The first network node typically is a data source, 
the last node could be a display device ranging from a personal computer to a powerwall, and each intermediate node 
could be a workstation or computational cluster. This  mapping scheme  appropriately  distributes  the filtering,  geometry 
generation, rendering, and display  modules of the visualization pipeline to the linear arrangement of network nodes to 
make efficient use of the computing resources at end nodes and also the network bandwidth between them. A regression 
based  network daemon is  developed to measure the available bandwidth on a transport link.  We present an analytical 
formulation of this problem by taking into account the computational power of nodes, the bandwidths between them, and 
the sizes of messages exchanged between visualization modules. We propose a polynomial-time optimal algorithm that 
uses the  dynamic programming method to compute the  mapping with  the  minimum  total delay. An OpenGL-based 
remote visualization system  is implemented and  deployed at three  geographically distributed nodes for  preliminary 
experiments. 
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1. INTRODUCTION 
A remote visualization system can potentially enable an end user equipped  with a simple display device and network 
access to visualize large volumes of scientific data that resides at powerful remote visualization servers. Such large data 
sets are difficult  to be generated  or stored at end  user  nodes, which  typically have limited computing and storage 
resources. A simple version of a remote visualization system consists of a remote data source acting as a server, a local 
rendering/display  terminal  acting  as  a  client,  zero  or  more  intermediate  hosts,  and  a  network  connecting  them  all 
together.  The  overall  performance  of  such  a  remote  visualization  system  critically  depends  on  how  efficiently  its 
visualization pipeline is  mapped onto the network nodes. In particular, this  mapping determines the execution times of 
various modules and the transmission times of  data exchanged between them, thereby deciding the  total time of the 
visualization  pipeline. In this paper,  we address  both analytical and implementation aspects of realizing an  optimal 
mapping of a visualization pipeline when the network nodes form a linear arrangement. 

Many existing remote visualization systems [11,12,13] employ a predetermined partition of the visualization pipeline 
and typically send fixed-type data streams such as raw volume data, filtered data, geometric objects, or frame buffer (FB) to 
remote end nodes for visualization. In general, the task of a client node can be quite varied depending on the data sent by 
its predecessor module in  the pipeline: it can range from geometry generation  from raw  data, to  rendering  OpenGL 
commands, to displaying frame buffers. In some commercial  client-server  visualization systems, the server typically 
generates the geometry (usually in a vendor-specific format) and sends it to the client, where it is rendered and displayed. 
While in others, OpenGL commands are sent from  the server to the client that  in turn “interprets”  them. While such 
schemes are common, they are not always optimal for high performance visualizations that typically deal with large data 
sizes and complex  data structures.  Particularly over  wide-area connections, this  problem is further compounded  by 
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limited network bandwidths and time-varying dynamics of network conditions. In certain data sets, the geometry is much 
simpler than the data itself, in which case it is appropriate to ship the geometry across the network. On the other hand, 
for fractal data sets, the geometry is much more complicated than the data, and hence it is more efficient to ship the data 
rather than the geometry. Such variations may occur in data sets generated even in a single domain such as supernova 
computations [17]. In general, the network bandwidths and exchange data sizes together with processing times must be 
taken into account to optimally map a visualization pipeline onto network nodes. 

Considerable research efforts have been underway in designing flexible remote visualization systems that distribute 
visualization subtasks across network nodes. Bowman et al [8] proposed a performance prediction framework to predict 
processing times of visualization modules using linear models and network bandwidth using Network Weather Service 
[18]; these predictions are used to obtain a suitable mapping of the visualization pipeline. Luke et al [9] constructed 
Semotus Visum, a flexible remote visualization framework capable of multiple partition scenarios. They run their tests 
using different partition schemes on a local network and the corresponding performances are measured [9]. ARTE [14] 
implements an adaptive delivery of 3D model by keeping track of the available client, server and network resources. The 
original 3D data is converted to selected modalities that are best suited for rendering and transmission [14]. In these 
works, the mapping of visualization modules to network nodes is accomplished by empirical testing and manual 
configuration. 

We analytically formulate a problem of optimizing the total delay of a visualization pipeline by considering the times 
for transmission, computation and rendering. This formulation enables us to analyze the algorithmic aspects and 
optimality of mapping the visualization pipeline onto a given linear arrangement of wide-area network nodes. We 
consider a simple case where each node is capable of executing any visualization module with a special role played by 
the end nodes. The first network node is a data source, and can also perform other tasks such as filtering, geometry 
generation, or rendering. The last node is capable of displaying the frame buffer but can also perform other visualization 
subtasks; it could be equipped with a simple terminal or a more sophisticated device such as a powerwall or a tiled 
display. The intermediate nodes are capable of performing all visualization subtasks, and they could be workstations, 
computational clusters, or custom rendering engines. 

This characterization is a simplified abstraction of real remote visualization systems wherein the nodes often have 
specialized functionalities such as high-performance storage, cluster-based rendering and tiled displays. Despite this 
simplification, this model highlights the inherent computational aspects of realizing an optimal mapping. An optimal 
mapping must make efficient use of the computing resources at the nodes and also the network bandwidths between 
them to allocate the modules such as filtering, geometry generation, rendering, and display, to various nodes. We present 
a polynomial-time optimal solution using dynamic programming to compute a mapping with the minimum total delay 
considering processing times and connection bandwidths. The computational complexity of the solution is ( )O n k× , 
where  is the number of visualization modules and 1n + 1k +  is the number of network nodes in a linear arrangement. 
We implemented an OpenGL-based remote visualization system and deployed it at three geographically distributed 
nodes. Some preliminary experiments are run on this client/server-based remote visualization system.

The rest of the paper is organized as follows. In Section 2, we describe a simple visualization pipeline and a remote 
visualization framework, which form the basis for our analytical model. In Section 3, we first describe a bandwidth 
measurement method based on [5], and then present our partition schemes using dynamic programming-based 
algorithms for total delay minimization. Implementation details and test results are provided in Section 4. We finally 
conclude our work in Section 5. 

2. REMOTE VISUALIZATION SYSTEM 

2.1. Visualization pipeline 
The large volumes of data generated in scientific or medical applications have to be appropriately retrieved and mapped 
onto a 2D display device to be “visualized” by human operators. This visualization process involves several steps that 
form the so-called visualization pipeline or visualization network [1]. Fig. 1 shows a simple visualization pipeline along 
with the flow of data produced at each pipeline module. In many scientific applications, the raw data usually takes a 
multivariate format and is organized in structures such as CDF, NetCDF, and HDF [2,3,4]. The filtering module extracts 
the information of interest from the data source in order to improve processing efficiency and save communication 
resources as well. The decision on rendering techniques to be employed is first made in the transformation module, 



which typically uses a surface fitting technique (such as isosurface extraction) to derive 3D geometries (such as 
polygons), or uses transfer functions to perform color and opacity classifications for each voxel based on its attribute. 
Rendering module converts the transformed geometric or volumetric data in 3D view coordinates to a pixel-based image 
in 2D screen coordinates. In most of the existing graphics systems, the visual properties of a raster image such as color, 
opacity, and depth is stored and carried in a frame buffer for final display on a display device. 
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Figure 1. A general visualization pipeline and its data flow of remote visualization system. 

In the stand-alone mode, all these visualization modules reside on the same computing node. It is worthwhile 
pointing out that Fig. 1 is a diagrammatic description of highly abstracted visualization components; for instance, the 
rendering module itself might involve several stages of vertex transformations in the OpenGL environment. The 
visualization pipelines of real applications may significantly vary due to the disparate implementation procedures and the 
use of different visualization techniques. 

2.2. Framework for remote visualization system design 
The block diagram in Fig. 2 illustrates a baseline framework for visualization systems that employ optimal pipeline 
partitioning and automatic network mapping. Since many scientific applications generate terabyte or even petabyte data, 
which makes it very difficult to run computation-intensive visualization modules on a single desktop computer. Hence 
we first perform a parallel computing to explore the parallelism in the modules and the computational capability 
provided by the nodes with high-performance computing (HPC) resources, such as clusters. The connection bandwidths 
over the underlying transport network are estimated using active traffic measurements. Based on the bandwidth 
measurements, sizes of data to be processed, and computational complexities of visualization modules, a decomposition 
and mapping of the pipeline is then performed. The visualization pipeline is decomposed into groups, which are then 
mapped one-to-one to the computing nodes distributed in the transport network. 
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Figure 2. Architecture for remote visualization system. 

The design procedure forms a closed loop as shown in Fig. 2 because the execution of each design block depends on 
the input from another. In a practical implementation, we generally start with computing node deployment and network 
topology construction. For example, the site of data source is a priori known, and the location of a remote client is 
determined whenever it initiates a ‘visualization” connection with the server. The information collected on networking 
and computing resources can be used to select optional intermediate nodes with specific visualization and/or computing 
facilities. In this paper, we consider a simple case where all intermediate nodes and their order along the visualization 



pipeline are known in advance so that a surjective mapping is required. Such knowledge can be obtained from the 
information about the available network nodes and their capabilities. Despite the simplification, this case highlights some 
of the salient features of mapping the visualization pipeline, while avoiding the combinatorial complexity of choosing a 
suitable “ordered path” embedded in the network. 

2.3. Analytical model 
We now describe an analytical model for the visualization pipeline decomposition and its network mapping. The 
visualization pipeline consists of n+1 sequential modules, which are denoted by 

 as shown in Fig. 3. Module 1 2 1 1 1, , , , , , , , , , , , ,u u v w x x nM M M M M M M M M− − −K K K K K 1+ 1, 2, ,jM j n= K +  performs a 
computational task of complexity jc  on data of size 1jm −  received from its upstream module 1jM −  and generates data of 
size jm , which is then sent over a network link to its downstream module 1jM +  for further processing. A linear 
arrangement consists of computing nodes 1 2, , , ,k kN N N N 1+K , which are geographically distributed over the network. 
Node  with a normalized computing power, 1,2, ,iN i k= K †  is connected to its downstream neighbor node ip 1iN +  with 
a forward link  of bandwidth  and minimum link delay . The minimum link delay is mostly contributed by the 
link propagation and queuing delay, and is much smaller than the bandwidth-constrained delay in most cases. 
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Figure 3. Pipeline partitioning and network mapping. 

We decompose the visualization pipeline into visualization groups denoted by . The data flow 
between two adjacent groups is the one produced by the last module in the upstream group; for example in Fig. 3, we 
have . The client residing in the destination group  sends control data 

, such as simulation parameters, filter types, visualization modes, and view parameters, to preceding 

visualization groups  through backward links  for interactive operations. For 
forward links which support large amounts of visualization data, we usually ignore the minimum link delay 

 occurred on the link . Furthermore, the control data generally ranges from several bytes to several 
thousand bytes, and is often much smaller than the visualization data and therefore its transport time is also assumed to 
be negligible. Under these conditions, the objective of the decomposition and mapping problem of the visualization 
pipeline is to minimize the total time given by: 
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†For simplicity, we use a normalized quantity to indicate a node’s computing power without detailing its memory size, processing 
speed, and computing capabilities in different ways such as numeric and graphics. 



where we also assume that the transport time between modules within one group on the same computing node is 
negligible. 

Note that in Fig. 3, we assume that the set of computing nodes in the underlying transport network are preselected 
along with their order in the visualization pipeline. However, in a general model, except for the data source and the 
remote client, the number and order of the intermediate nodes are not always predetermined for an optimal mapping of 
the visualization pipeline. Indeed as shown in Fig. 2, the computer node deployment (both location and order) and 
visualization pipeline decomposition often strongly interact with each other during the entire system design process. The 
general model shown in Fig. 2 has a more complicated structure and therefore requires a more sophisticated solution. It 
is interesting to note that there may not be any intermediate nodes in some scenarios, which results in the simplest 
topology for remote visualization, i.e. one server and one client. 

3. MAPPING FOR REMOTE VISUALIZATION SYSTEM 
In this section, we present a linear regression model to estimate link bandwidth using active traffic measurement based 
on [5], and then propose an approach based on dynamic programming to solve the visualization pipeline decomposition 
and mapping problem. 

3.1. Bandwidth measurement 
The link bandwidth is the fastest rate at which data can be generated and sent along the link, while the available link 
bandwidth is the spare bandwidth of the link “left over” after the cross traffic. Due to complex traffic distributions over 
wide-area networks, and the non-linear nature of transport protocol dynamics (in particular TCP), the throughput 
achieved in actual message transfers is often different from both the link and available bandwidths, and typically 
contains a random component. The effective path bandwidth is defined as the throughput achieved by a flow using the 
given transport method under certain cross traffic conditions. The notion of effective bandwidth is specific to the 
employed transport protocol and is related to both link and available bandwidth perhaps in a complicated way. The 
active measurement technique we apply here is to estimate the effective path bandwidth based on [5]. Note that a link 
here may correspond to a multi-hop physical path over a wide-area network. 

There are three main types of delays involved in the message transmission over computer networks, namely, link 
propagation delay pd  imposed at the physical layer level, equipment-associated delay  mostly incurred by processing 
and buffering at the hosts and routers, and bandwidth-constrained delay 

qd

BWd  determined by the available bandwidth and 
data size. Due to the time-varying network cross traffic, the delay  often experiences a high level of randomness. 
Also, since the transport protocol reacts to the competing traffic on the links, the delay 

qd

BWd  may also exhibit 
randomness particularly over congested wide-area connections. We have the following expression [5] for the end-to-end 
delay or message delay in transmitting a message of size r on a path P with l hops: 

, ,
1

( , ) ( , ) ( ( ) ( , ))
l
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i

d P r d P r d P d P r
=

= + +∑ ,    (2) 

In this paper we consider large message sizes so that only the first term of the above equation is significant. Let 
EBW(P) denote the effective bandwidth of path P such that the message delay  can be approximated by the linear 
model: 

( , )d P r

1( , )
( )

d P r r
EBW P

≈ ,      (3) 

The active measurement technique is employed to estimate the effective bandwidth of a link. A measurement node 
generates a set of test messages of various sizes, sends them over an outgoing link through a transport channel such as a 
TCP flow, and measures the corresponding end-to-end delays. This process is repeated several times for each message 
size and the average delay is calculated. Once the average end-to-end delays for messages of different sizes are 
determined on an outgoing link, we apply a linear regression to fit the measured points [5]. The message delay 
measurements between two transport daemons deployed at Louisiana State University (LSU) and Oak Ridge National 
Laboratory (ORNL) as well as its corresponding linear regression estimate are illustrated in Fig. 4. The measurement of 
the end-to-end delay for each message size is carried out three times. From this figure, we estimate that the effective path 



bandwidth of this virtual link to be about 1.0 Mbps. We emphasize that the measurements are collected using the same 
transport method that will be used by the visualization module. If measurements are collected by tools such as Iperf, or 
NWS [18], they must be appropriately translated into the effective bandwidth seen by the pipeline modules. 
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Figure 4.  End-to-end message transmission delay measurements between LSU and ORNL. 

3.2. Decomposition and mapping 
The visualization pipeline needs to be decomposed into several groups and assigned to the preselected computer nodes 
so that the total delay is minimized. Intuitively, a more general version of this problem is quite similar to the classical 
graph clustering problem, which is NP-complete in most cases. Approximate solutions may be found by the branch-and-
bound technique but in exponential time [10]. However, since our visualization system is linearly deployed on a set of 
computer nodes arranged in a predetermined order, we are able to solve this problem in polynomial time. 

We present an algorithm to minimize both the transport and computation time as stated in Eq(1). As discussed earlier, 
there are n messages of sizes jm  flowing between the visualization modules of complexity jc , , k network 
links with bandwidths , and k+1 processing nodes each with processing speed . 

 denotes the minimal total delay with the first j messages (namely the first j+1 visualization modules) mapped 
onto the first i network links. 
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Figure 5.  Dynamic programming for minimal transport delay time. 

Then  can be computed recursively based on the following dynamic programming equations: ( , )T i j
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where the base conditions are computed as 1
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= ∑  in the first row, . The complexity of this algorithm is in the order of 1,2, ,c = K k ( )O n k× . 

In Equation (4),  takes the minimal of two scenarios as illustrated in Fig. 5. In scenario 1, we map the last 
message 

( , )T i j

jm  to the last link . The transport time on this mapped link together with the computing time of the last 
module on the last node is then added to , which is the sub-problem of size i-1 and j-1. In scenario 2, we do 
not map the last message 

ib
( 1, 1)T i j− −

jm  on any link, which means that the last two modules are both executed on the last node, and 
then the problem directly reduces to the sub-problem of size i and j-1 with the addition of the computing time of the last 
module on the last node. Fig. 6 shows the dynamics of 2D matrix construction for computing . The entries of the 
diagonal line and first row are entered beforehand. In order to fill up the whole upper triangle, the calculation sweeps 
across the matrix from left to right and from top to bottom. For example, consider the back tracing path of . We 
first visit  and , of which  is already known from the base case and  is calculated from 

 and , which is in turn calculated from  and . Once the base cases are reached, the tracing 
process will stop and bounce back to its starting point. The complexity of this algorithm is . Note that an 
additional matrix is needed to record the mapping scheme for the winner of each comparison along with the 
computation. On the diagonal line with an equal number of links and messages, we simply map all messages one-to-one 
onto links in a linear order. For each comparison step, the mapping scheme matrix either inherits the mapping scheme 
from that of  by adding module 
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Figure 6.  Construction of a 2D matrix of T(i,j) for dynamic programming. 

4. IMPLEMENTATION AND CASE STUDY 
Our remote visualization system is deployed at three nodes located at North Carolina State University (NCSU), ORNL, 
and LSU as shown in Fig. 7. Our parallel isosurface extraction computation is implemented on Orbitty cluster at NCSU, 
which consists of 23 computer nodes (total of 92 CPUs each at 2.4GHz). Linux workstations with 3GHz CPU are used 
as hosts at ORNL and LSU. The current data channel and control channel are built upon TCP. New transport protocol 
can easily be plugged in replace of the default TCP in our system. 

Our cluster-based remote visualization system provides the following functionalities: 

• Scalar glyphs: A dot representation is used to represent a scalar value at each position. The scales and the 
colors of the dots reflect the scalar values. 

• Isosurfaces: Surfaces of a scalar field with the same value are produced. The surfaces are also colored 
according to the different isovalues. 

• Vector glyphs: Arrows are used to represent the vector at each data point. The direction, magnitude, and 
color of an arrow are set by the corresponding vector value. 



• Volume rendering: Fastvox 1.0 [15], an OpenGL-based API, is embedded into our system to perform the 
volume rendering using the ray casting algorithm. 

• Dynamic monitor and steering: The functions provided above are post-processing procedures. This function 
enables client to monitor the data dynamically generated at the server end on the fly. Client end can steer the 
data generation by sending back control feedback parameters in the course. 
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Figure 7.  Remote visualization system deployments. 

The user interface of our remote visualization system and a 2D pressure map generated by a hydrodynamics 
simulation of a supernova evolution [17] are displayed in Fig. 8. 

 

Figure 8.  User interface at client end. 

In this initial implementation, our system runs in a simple client/server mode without considering intermediate nodes; 
note, however, that partition still needs to be optimized albeit among only two network nodes since the exact data sizes 
exchanged between them decides the total delay. It can be viewed as a special case of linear arrangement of nodes, 
namely only two nodes are preselected. However, the system is capable of accepting intermediate nodes with complex 
network topologies using the algorithms described in Sect. 3.2. In the current deployment, the server designates proper 
visualization modules to the clients and calculates the estimated delay time based on the information on the visualization 
entity size and bandwidth estimates. The server can either send raw data, geometry data, or FB to the client. The decision 
is made automatically by the server to minimize the total delay. Several experiments are conducted between two hosts, 
one located at LSU as a server and ORNL as a client. 

Since the server and client at these two locations have approximately the same computational capacity, the mapping 
scheme that incurs the least transport time leads to the minimal total delay. Correspondingly, the link with the minimal 
message size is mapped onto the network link. Table 1 illustrates the estimated transport time with different sizes of 
messages transmitted between the server and client. The measured bandwidth EBW and the minimum link delay denoted 
by d are dynamically measured by our network daemons deployed at LSU and ORNL. Only the one-way bandwidth and 
minimum delay from server to client are measured. The message size for raw data, 3D geometry and FB are estimated at 



the server. The estimated transport delay represented as  is computed as: delayT _ 8
delay

Msg sizeT d
EBW

×
= + . Note that the 

computing times are not explicitly included in the table because they are negligible compared to the transport times in 
these cases. 

Table 1.  Partition test. 

 Dimension Estimated 
Bandwidth 

Minimum 
Delay 

Raw size / delay Geometry size / 
delay 

FB size / delay 

Cube1 10x6x8 0.284Mbps 0.032sec 8 K / 0.257sec 1K / 0.032sec 1.8M/50.73sec 

Cube2 50x20x39 0.300Mbps 0.034sec 610K / 16.3sec 16K / 0.46sec 1.8M/48.03sec 

Cube3 150x210x139 0.277Mbps 0.033sec 71.6M / 34.4min 2.4M / 69.34sec 1.8M/52.01sec 
Hand 256x256x80 0.239Mbps 0.033sec 81.9M / 45.69min NA 1.8M/60.28sec 

 

Case 1: The cube 1 data has a very small size of geometry and raw data. The transfer of the FB, which is much larger 
than either raw data or geometry data size, incurs transport delay of about 51 seconds. In this case, the server can choose 
to send either raw data or geometry data to client ends in less than one second. 

Case 2: The cube 2 data has a larger raw data size than cube 1. The delay for sending raw data is about 16 seconds, 
which is not desirable for interactive operations. Since its small size of geometry data only needs less than one second of 
transport time, the server obviously chooses to send the geometry data instead of the raw data. 

Case 3: The cube 3 data has a raw data size of 71.6 Mbytes. It would take more than half an hour for raw data 
transmission, which is simply not unbearable for practical use. The calculation shows that the geometry data size is 
similar to the FB size and either of them takes about one minute to transmit. In general, with comparable data size, 
sending geometry data is always preferable to sending the FB because the regeneration of FB introduces additional 
traffic upon the changes on the view parameters at client ends. Alternatively, server can reduce the rendering resolution 
level to achieve interactivity at the expense of accuracy. 

Case 4: A CT scanned hand data provided by Fastvox has a raw data size of 81.9 Mbytes, which would incur unbearable 
transport time. Since the volume rendering is employed, we only need to decide whether to send raw data or FB to the 
client in this case. 

In all cases above, the minimum link delay is at least an order smaller than the total delay of the visualization 
pipeline. In dealing with large data sets, the rendering module may be located on the server where the raw data is 
generated. Such a server can exploit the data locality, disk I/O bandwidth, memory, and parallel processing for 
accelerating the visualization pipeline. The size of frame buffer generated by the rendering process is mainly decided by 
the display screen width, screen height no matter how big the dataset is. A typical display window with 1000x600 pixels 
has a size of 1.8Mbytes, which is not a very big burden for most transport links.  In case of lower bandwidth links, the 
display window can be scaled down to reduce the frame buffer size, and in addition, a lower resolution level can be 
chosen. 

5. CONCLUSION AND FUTURE PLAN 
In this paper, we proposed a framework and a mathematical model for an automatic mapping of a visualization pipeline 
onto a linear arrangement of computer nodes. Our objective is to minimize the total delay of the visualization pipeline by 
considering both message transport and module computations. Dynamic programming methods are proposed to compute 
an optimal mapping of the visualization modules assuming that we know which intermediate nodes to use and in what 
order to use them. Selection of suitable subset of intermediate hosts and their order of deployment from a larger set of 
diverse nodes on a wide-area network is an obvious and more realistic extension of our model. Nodes with high 
bandwidth links and high computational capacity serve as good candidates to be selected as intermediate nodes. This 
problem is, however, much more complex, and is akin to the NP-complete graph partitioning problems. It would be of 
future interest to study various formulations of this class of problems form the viewpoints of computational complexity 
and practical implementation.  

Since the control data has a much smaller volume than the visualization data, we ignored its transport time in our 



analytical formulation. However, for prompt response and accurate steering in most real-time remote collaboration 
applications, the control channel always imposes higher stability requirements on transport performance than the data 
channel. It would of future interest to explicitly include the terms corresponding to the control channels into the total 
delay of the pipeline. Such formulation appears to be more complex than the case studied here, and it would be 
interesting to see if the dynamic programming method can be extended to this case. 

Our implementation takes a simple client and server form. In the future, we plan to strengthen our system to include 
intermediate hosts and deploy our system over dedicated networks, such as DOE UltraSceince Net [19], for experimental 
testing. As the datasets sizes reach terabytes, the transport delays within the pipeline could be prohibitively high even 
over dedicated high throughput networks. One obvious solution is to speed up the transport process. But most existing 
remote visualization systems (including ours) use the default TCP for both data and control message transmission. 
Newer transport protocols based on stochastic approximation methods for throughput stabilization and maximization 
[7,16] have been developed to overcome the limitations of default TCP or UDP in terms of throughput, stability and 
dynamics. We plan to incorporate these new transport methods in our remote visualization system at a later stage. 
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