


amount to huge data losses. The findings of Kim and Curry have shown that 2% of 
missing values in each of the 10 variables has amounted to 18.3% of total data loss on 
average when using listwise deletion. 10% of missing values in 5 variables amounted 
to 41% of data loss (when using listwise deletion) [7]. Such kinds of huge data losses 
could seriously affect prediction accuracies. Accurate effort estimates help in cost 
reduction, risk management, resource allocation and timely completion of the soft-
ware projects.  

Our intent is to improve the use of commercial software project data sets using 
hybrid methodologies by filling in probable values for the missing data. By analyzing 
data sets having “fuller information” and building “truer models”, we believe there is 
a high likelihood of enhancing the accuracies of the effort estimates. There are many 
applications that need such collections of data sets but we concentrate on enhancing 
software project data sets. Our study benefits both project managers in the industry 
and researchers in the academia. In this paper we describe the design of the hybrid 
methodology briefly and then proceed to elaborate on the metrics used to evaluate the 
clustering quality achieved in the proposed agglomerative clustering algorithm. We 
report and discuss our findings with respect to three different quality measures. We 
perform useful experimental analyses and evaluate the impact of the methodology. 
Henceforth, we validate the performance of our clustering algorithm. Finally, we 
discuss the appropriateness of the methodology. The reliability of the constructed data 
sets using these techniques was further tested by building prediction models using 
stepwise regression which is not the scope of this paper though [8]. So far, little re-
search has been done in exploring the implications of applying data imputation meth-
ods to software project data sets. There are a few references in the literature related to 
such exploration [9, 10, 11, 12]. All of them have quoted a significant increase in the 
prediction accuracy of estimates when different kinds of imputation methods were 
used. But all of them stress there still remains a great deal of research to be done on 
this topic for more concrete answers [9, 10, 11, 12, 13, 14, 15]. 

2   Methodology Design 

We implement a hybrid methodology to overcome the limitations common to most 
traditional imputation methods. The methodology was designed by taking into aspect 
the missing mechanism, data set size, missing percentage and the pattern in which the 
data are missing. It imputes data by creating multiple homogenous clusters. It works 
in two phases. It creates homogenous clusters and then imputes the missing values by 
selecting the appropriate donors from the created clusters.  

First the given data set is divided into 2 sets, complete (with no missing informa-
tion) and incomplete. The clustering algorithm is implemented on the complete data 
set to form multiple homogenous clusters or “similar type” clusters. A hierarchical 
agglomerative clustering algorithmic approach is used to form clusters which contain 
one or more “similar” cases. They are bottom-up approaches in which each case is 
considered an individual cluster and at each step, the most similar pair of clusters is 
merged together. Cluster similarity is calculated using a distance measure. The algo-
rithm starts with n clusters each representing the n cases in the complete data set for 



which a symmetric similarity matrix is generated. The entries of the matrix represent 
the similarity (is a distance metric) between the cluster pairs. The matrix is searched 
for the most similar pair or in other words the matrix entry having the least value is 
found and the corresponding pair is merged to form another new cluster. The similar-
ity distances between the newly formed cluster and the remaining clusters are updated 
in the matrix. Again the matrix is searched for the most similar pair and this goes on 
again and again until one huge cluster that contains all the cases is formed. The com-
plexity of the algorithm is O(n2logn). Average Linkage Agglomerative Clustering 
Algorithm was used in our approach. In this method, the distance between two clus-
ters is defined as the average of distances between all pairs of cases, where each pair 
is made up of one case from each group.  The average distance d(i,j) computed at 
each level is given by the following equation: 

 
d(i, j) is computed as d(i, j) = Dij / ( nr * ns) 

Where Dij is the sum of all pairwise distances between cluster i and cluster j. nr and 
ns are the sizes of the clusters i and j respectively. At each stage of hierarchical clus-
tering, the clusters i and j, for which dij is the minimum, are merged. The distance D 
measured is the Euclidean Distance. Next, it selects the donors from the clusters in 
order to impute missing data. The number of clusters to be formed though is decided 
by considering the first quality metric Miss-Assignment Count explained in the later 
sections. 

Once the clusters are formed, missing values for each case are imputed by select-
ing donors from that particular cluster that they most probably would belong to. The 
cluster that would contribute the donor(s) is determined by calculating a proximity 
metric for each missing case, which determines the donating cluster. By creating 
homogenous clusters and selecting the most appropriate cluster for a particular in-
complete case using a proximity metric makes sure that the incomplete case gets the 
most suitable donor(s) which is extremely important. This is done by first calculating 
the centroid vector for each cluster. The Euclidean distance between each missing 
case and the centroid of each cluster gives the proximity metric. The cluster repre-
senting the centroid vector with which the incomplete case gives the smallest prox-
imity metric value is selected. Moreover, the selection process of the donors imple-
mented in the methodology is very significant as it liberates the methodology from 
the hurdles caused by the inherent characteristics of a data set. After selecting the 
appropriate donating cluster, we implement our Combination Method in order to 
select the most similar donor(s). We designed the Combination Method so that it 
works for both qualitative and quantitative variables. From within the cluster, the 
donors are selected using the k-Nearest Neighborhood (Combination Method). The 
method works by finding “k” most similar/nearest complete cases to the incomplete 
case where the similarity is measured by a distance parameter (Cosine Distance 
(Quantitative Variables) and Hamming Distance (Qualitative Variables)). The value 
of “k” was set to 2. That is, 2 most similar/nearest cases were selected to impute the 
values in the incomplete case.  

It takes into account the input from both kinds of variables by using two metrics 
for determining the donor(s), which is different from many existing methods. In fact, 
many existing methods work with only quantitative variables. We implemented our 



methodology over six real-time software project data sets and evaluated its perform-
ance with a number of existing methods. We acquired six real-time software project 
data sets in the past one year period from six different companies nationally and in-
ternationally. We obtained three small sized software project data sets, two medium 
sized and one large sized data set. They all differ in characteristics such as missing 
mechanism, size, physical missing pattern, percentage of missing data etc which is 
visible in table 1.  

 
Table 1. The real-time data sets used in the experimental analysis 

 
 

Data 
Set 

 
 

Size 

 
 

Project Type 

 
 

Time 
(years) 

 
 

Missing 
Mecha-
nism 

 
% of 
missing 
data 
(rounded) 

 
 

Missing 
Pattern 

D1 S Medical 5  MAR 12 A 
D2 S Customer 

Service 
4 MAR 32 M 

D3 S Web Focus 2 MCAR 4 U 
D4 M Bank 6 MAR 26 A 
D5 M Customer 

Service 
9 MAR 46 A 

D6 L Network 
Management 

10 NI 18 A 

 
Size (S-small, M-Medium, L-Large) 
Missing Pattern (U- Univariate, M – Monotonous, A – Arbitrary) 
MAR (Missing At Random), MCAR (Missing Completely at Random), NI (Non-Ignorable) [3] 

 
To study the impacts of these methods, the imputed data sets were evaluated using 
prediction models. A significant step in the construction of a prediction model is the 
selection of independent variables. We used the Forward Entry Stepwise Regression 
Model-Building Procedure [16]. To begin with, an initial model is identified. It al-
ways includes the regression intercept. Next “iterative stepping” is performed. That is 
changing the model repetitively by adding or removing a predictor/independent vari-
able, which is based on the “stepping constraints (tests)”. Finally the termination 
procedure is initiated when stepping cannot be done any more or if the maximum 
number of steps has been reached. Thus the prediction models are built for each of 
the six real-time data sets. 

2.1   Concept of “United Clusters”  

As hierarchical agglomerative algorithms start with all cases, they are particularly 
effective in identifying many small clusters. The quality of clusters deteriorates as 
more number of mergers is made and hence with such a concept of united clusters, 
we essentially decrease the number of mergers, thereby increasing cluster quality. We 
use the concept of “united clusters” specified as “mutual clusters” in [17] which con-



tain a group of cases that are sufficiently close to each other and far from all other 
cases and hence should never be separated. The united clusters are mutual clusters 
and in no way are different. We termed them united clusters, as it seemed more ap-
propriate. A united cluster is atomic. We used the same in our methodology. 

3   Measuring the quality of clusters formed 

The measures of quality let us evaluate how well the clustering has been performed. 
We use three measures to quantify the quality of the clusters. The measures are ori-
ented towards measuring the effectiveness of the approach [18]. The first measure 
Miss-assignment count examines whether any of the cases were assigned wrongly to 
a cluster. To verify this, centroid vectors are calculated for each of the cluster initially. 
Next, cases having smaller distance to centroid vectors of other clusters when com-
pared to the centroid vector of the cluster they belong to are gathered. Such cases are 
considered to be wrongly assigned to a cluster. 

The next measure is within-cluster distances, which provides a measure of “good-
ness” for the clusters. It identifies clusters that have minimum within-cluster distances. 
After the clustering algorithm is run, the dendrogram representing the sequence of 
partitions of the data set is cut at different levels to form varying numbers of clusters. 
For each number of clusters, the sum of all pairwise within-cluster (Euclidean Dis-
tance) distances is calculated. Good clusterings minimize the sum. The sum of dis-
tances is plotted versus the number of clusters formed. Our approach does well when 
there is more number of clusters. One final measure is to look at the inter-cluster 
dissimilarity in order to find how different are each of the clusters. For each of the 
clusters, a centroid vector is initially calculated and the pairwise cosine similarity is 
measured between all of them. The cosine formula is cos (di, dj) = di

t *dj where di and 
dj are centroids vectors of two clusters of unit length. The measure is 1 if the cen-
troids are identical and 0 if they are orthogonal. Inter-cluster dissimilarity should be 
high for good clustering quality. 

3.1   Miss-Assignment Count 

Table 2 shows wrongly assigned cases for each of the six data sets. The rows indi-
cate each of the six data sets and the columns indicate the number of clusters taken 
into account. The number of miss-assigned points is only one for DS 1 and DS 2. The 
method performed well with no miss-assigned points for DS 3. DS 4 had one miss-
assigned point when five clusters were formed and had two miss-assigned points 
when ten clusters were formed. DS 5 had four miss-assigned points when five clus-
ters were formed, two miss-assigned points when ten clusters were formed, and one 
miss-assigned point when twelve clusters were formed. The number of miss-
assignments is low for the first 5 data sets when compared to DS 6. The number of 
miss-assigned cases is highest for DS 6 where missing mechanism is under NI condi-
tions. DS 6 had seven miss-assigned points when five clusters were formed, five 
miss-assigned points when ten clusters were formed, four miss-assigned points when 



twelve clusters were formed, two miss-assigned points when twenty-five clusters 
were formed, two miss-assigned points when forty clusters were formed and one 
miss-assigned point when fifty-five clusters were formed. The clustering algorithm 
used is a bottom-up approach, which starts the process of clustering by considering 
each case a new “cluster”, and thus forth proceeds. The very nature of this approach 
makes it a good method in identifying a large number of small clusters, which is 
highly significant. The overall number of miss-assigned points can be considered low. 
Even under NI conditions (for DS 6) the number of miss-assigned points was low 
when twenty-five or more clusters were formed. This metric was used to decide upon 
the number of clusters to be formed. 

 
Table 2.  Number of missassigned cases in each data set for varying number of clusters 

 
 5 10 12 25 40 55 80 93 

DS 1 0 1 0 - - - - - 
DS 2 0 1 0 0 - - - - 
DS 3 0 0 0 - - - - - 
DS 4 1 2 0 0 0 - - - 
DS 5 4 2 1 0 0 0 - - 
DS 6 7 5 4 2 2 1 0 0 

3.2   Within-Cluster Distances 

It provides a measure of “goodness” for the clusters by identifying the minimum 
within-cluster (square root of the sum of squared) distances. For varying number of 
clusters, the sum of all pairwise within-cluster distances is calculated. Minimized 
sums represent good clusterings, which means that the cases within a cluster are 
closer to each other. This metric measures the similarity between the cases in a cluster, 
said otherwise within-cluster similarity. The proposed approach does well when there 
is reasonably higher number of clusters. The graphs plotted in fig 1 show us the same. 

 
Within-Cluster Sum of Distances - DS 1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Number of Clusters

T
o

ta
l W

it
h

in
-C

lu
st

er
 D

is
ta

n
ce

Series1

 

Within-Cluster Sum of Distances - DS 2

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Number of Clusters

T
o

ta
l W

it
h

in
-C

lu
st

er
 D

is
ta

n
ce

Series1

 



Within-Cluster Sum of Distances - DS 3
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Fig 1. Within-Cluster Sum of Distances for each data set for varying number of 

clusters 
  

3.3   Inter-Cluster Dissimilarity 

It measures the dissimilarity between the clusters formed. The more dissimilar the 
clusters are, the better the quality of clustering accomplished. The dissimilarity be-
tween two clusters is calculated by finding the cosine similarity between their cen-
troids. As the similarity between the clusters increases, the value of the metric ap-
proaches 1 and as the dissimilarity increases, the value approaches 0. The degree of 
orthogonality between the centroids is what the metric calculates. The decision on 
how many clusters would be ideal was made using the first metric, miss-assignment 
count. For data sets 1, 2, 3, and 4, 12 clusters were formed and for datasets 5 and 6, 
25 clusters were formed. The values ranged from .01-.7, and only 28 readings re-
corded had values more than .5. This suggests that the clusters were different from 
one another and hence satisfactory clustering was achieved (Results have been shown 
only for data sets 1-4 because of space requirements (Table 3)). 
 

Table 3. Inter-Cluster Dissimilarities measured using Cosine Metric for Data Sets 1 to 4 
Cluster 
Pair 

DS 1 DS 2 DS 3 DS 4 

1-2 .11 .09 .02 .1 
1-3 .2 .12 .09 .09 
1-4 .32 .13 .13 .15 
1-5 .06 .26 .06 .38 
1-6 .12 .05 .08 .25 



1-7 .24 .03 .11 .06 
1-8 .31 .09 .22 .21 
1-9 .27 .28 .25 .16 
1-10 .14 .39 .05 .09 
1-11 .16 .42 .06 .28 
1-12 .13 .12 .18 .17 
2-3 .26 .18 .06 .05 
2-4 .4 .11 .19 .41 
2-5 .32 .2 .17 .52 
2-6 .16 .09 .16 .19 
2-7 .29 .05 .06 .26 
2-8 .17 .07 .01 .09 
2-9 .09 .02 .09 .13 
2-10 .1 .25 .04 .05 
2-11 .23 .36 .25 .12 
2-12 .33 .01 .24 .27 
3-4 .6 .17 .19 .35 
3-5 .19 .28 .13 .36 
3-6 .15 .02 .18 .05 
3-7 .35 .09 .04 .4 
3-8 .25 .12 .06 .25 
3-9 .04 .06 .09 .19 
3-10 .09 .28 .18 .07 
3-11 .11 .41 .11 .02 
3-12 .21 .08 .2 .19 
4-5 .03 .06 .01 .16 
4-6 .16 .08 .06 .23 
4-7 .42 .15 .16 .35 
4-8 .12 .17 .12 .47 
4-9 .06 .29 .2 .21 
4-10 .14 .02 .1 .25 
4-11 .08 .01 .08 .38 
4-12 .36 .13 .12 .08 
5-6 .3 .2 .15 .07 
5-7 .02 .11 .07 .17 
5-8 .22 .08 .06 .19 
5-9 .01 .06 .13 .08 
5-10 .26 .05 .24 .05 
5-11 .09 .04 .01 .17 
5-12 .05 .25 .14 .34 
6-7 .23 .26 .21 .18 
6-8 .06 .34 .17 .09 
6-9 .14 .5 .03 .2 
6-10 .01 .21 .08 .36 



6-11 .34 .11 .15 .08 
6-12 .21 .19 .04 .19 
7-8 .04 .06 .06 .32 
7-9 .11 .03 .11 .15 
7-10 .1 .35 .25 .09 
7-11 .29 .37 .18 .31 
7-12 .05 .21 .14 .11 
8-9 .01 .07 .09 .4 
8-10 .22 .19 .21 .07 
8-11 .35 .23 .32 .02 
8-12 .06 .25 .19 .11 
9-10 .28 .16 .15 .29 
9-11 .08 .05 .13 .33 
9-12 .07 .09 .22 .2 
10-11 .02 .1 .1 .15 
10-12 .14 .46 .09 .21 
11-12 .07 .22 .06 .32 

 
Overall, the performance of the methodology was satisfactory. It built models with 

an average Adjusted R-Squared value of .798 which is almost .8, had an average 
Mean Magnitude of Relative Error of 33%. An average value of .8 indicates that all 
the models built from the data sets imputed using the methodology are considerably 
good and having an average MMRE of 33% shows the estimates had less bias. More-
over, in every model built there were on an average 64% of cases having relative 
error less than or equal to 25%. As it identifies “like” cases and clusters them, before 
choosing a donor, there is a high reliability that missing cases are often imputed with 
the “most probable” values. Due to the very nature of the method to form homoge-
nous clusters, the missing pattern or the missing mechanism cause no degradation in 
its performance. In our study though, we ended up with credible data sets and reason-
able models were built when 46% of data were missing (DS 5). However, more num-
ber of data sets needs to be tested before conforming the performance of the method-
ology when missingness is present in high quantities (> 40%). The above arguments 
and statistics suggest that the methodology could be used for different kinds of data 
sets (such as small, medium, and large) and under different conditions (such as pat-
tern of missing data, % of missing data and under different missing mechanisms). 

4   Conclusions 

We discussed our hybrid methodology to overcome the limitations in most imputation 
methods and evaluated its validity based on three different cluster metrics. We de-
tailed on the three metrics and thus showed how they measured the performance of 
the methodology. Further more, our experimental results showed that we succeeded 
in decreasing bias [16]. Based on the results we are sure we have made a point about 
the validity of our methodology’s performance. We do not recall such an application 



of clustering algorithms for the enhancements of software project data sets to the best 
of our knowledge. 
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