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Robustness Analysis and New Hybrid Algorithm of
Wideband Source Localization for
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Abstract—Wideband source localization using acoustic sensor
networks has been drawing a lot of research interest recently
in wireless communication applications, such as cellular hand-
set localization, global positioning systems (GPS), and land
navigation technologies, etc. The maximum-likelihood is the
predominant objective which leads to a variety of source localiza-
tion approaches. However, the appropriate optimization (search)
algorithms are still being pursuit by researchers since different
aspects about the effectiveness of such algorithms have to be
addressed on different circumstances. In this paper, we focus
on the two popular source localization methods for wideband
acoustic signals, namely the alternating projection (AP) algorithm
and the expectation maximization (EM) algorithm. We explore
the respective limitations of these two methods and design a new
hybrid approach thereupon. Through Monte Carlo simulations,
we demonstrate that the trade-off can be achieved between the
computational complexity and the localization accuracy using our
newly proposed scheme. Moreover, we present the new robustness
analysis for the source localization algorithms. We derive the
Cramer-Rao lower bound (CRLB) involving the source spectral
estimation error and thus prove that the new hybrid algorithm is
more efficient than the EM algorithm. By employing the Gaus-
sianity test, we also quantify the statistical mismatch between the
actual statistics of the sensor signals and the underlying Gaussian
model. We show that the Gaussianity measure can be a reliable
robustness figure for source localization.

Index Terms—Source localization, alternating projection, ex-
pectation maximization, acoustic sensors, Gaussianity test,
CRLB.

I. INTRODUCTION

SOURCE localization using low-cost and low-complexity
sensor arrays has been the active research area in the

fields of radar, sonar, geophysics, wireless communications
and acoustic tracking for years [1]. Various techniques have
been proposed for the narrow-band direction-of-arrival (DOA)
estimation in the far field case [1]–[8]. Recently, the wide-
band source localization in the near field case has drawn a lot
of research interest in the signal processing and communica-
tions applications [6]–[9]. Extensive studies for the wide-band
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source localization can be found in [10]–[17]. Among them,
the maximum-likelihood (ML) approach in [10] has been
regarded as the optimal and robust scheme for coherent source
signals. However, when the multiple sources are present, the
ML approach poses a nonlinear optimization problem, which
is impractical to solve especially for the energy-constrained
sensor networks. Since the energy consumption is strictly
limited in those sensor networks, the reduction in the com-
putational complexity of the source localization algorithm
appears to be crucial. Thus, the computational complexity
issue remains challenging for the researchers in this area. Re-
cently, we designed an Expectation-Maximization (EM) based
localization algorithm for multiple wide-band sources [18]
and it can be shown that our proposed algorithm is much
more computationally efficient than the existing alternating
projection (AP) method [10]–[17] for achieving the similar
localization accuracy.

However, there are three major issues which have never
been tackled in the existing literature regarding the source
localization. First, the trade-off between the EM algorithm
in [18] and the AP algorithm in [10]–[17] has not been
studied in detail so far. Second, the comparative analysis
based on the location estimation measures, such as Cramer-
Rao lower bound (CRLB), has not been presented for the
EM scheme versus the AP method. Third, the qualitative and
quantitative justifications of the maximum-likelihood source
location estimation using the Gaussian-mixture probabilistic
model have never been addressed. Motivated by the afore-
mentioned concerns, we make an attempt to answer these
important questions in this paper.

Through our exhaustive heuristic studies, the EM source
localization algorithm in [18] is rather sensitive to the initial
condition since the EM based algorithms cannot guarantee
that the global optimality would be achieved for any arbitrary
initial condition. On the other hand, the AP source localization
algorithm is based on the exhaustive search procedure, which
certainly can reach the global optimality but the computational
complexity would increase tremendously as the fine search-
grid resolution is in demand. If the initial condition is ill-
posed for the EM localization algorithm in [18], the AP
algorithm in [10]–[17] can definitely perform better with a
much larger computational complexity. In this paper, we will
provide the computational complexity analyses of these two
methods and propose a hybrid scheme to seek the trade-off
between the accuracy and the complexity which are related to
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the individual advantages of the two aforementioned source
localization methods. In addition to the complexity analyses,
we evaluate the robustness of these two localization schemes
by deriving the corresponding CRLB. The effect of noise
statistics will also be discussed [19]. Different noise charac-
teristics will induce different probabilistic mismatchs between
the actual statistics of the sensor signals and the underlying
Gaussian-mixture model. We propose a new means to quantify
this mismatch and show why the ML source localization
performance varies with respect to different noise statistics.

The rest of this paper is organized as follows. The source
localization problem formulation and the corresponding signal
model are introduced in Section II. The maximum-likelihood
objective function for the near-field wideband source localiza-
tion is also derived in Section II. The associated alternating
projection and expectation maximization algorithms to maxi-
mize this objective function are presented in Section III. The
computational complexity analyses will be presented and a
novel hybrid source localization algorithm will be proposed
thereby in Section IV. The robustness analysis, which in-
volves the CRLB derivation and the probabilistic mismatch
evaluation, will be manifested in Section V. Monte Carlo
simulation results for demonstrating our proposed new hybrid
method and illustrating our newly derived robustness analysis
will be provided in Section VI. Conclusion will be drawn in
Section VII.

Nomenclature: 𝐴 denotes a vector and 𝐴 denotes a matrix.
𝒞 and ℛ denote the sets of complex and real numbers,
respectively. 𝐴𝑇 , 𝐴𝐻 are the transpose and the Hermitian
adjoint of a matrix 𝐴. The statistical expectation is denoted
as 𝐸{ } and ∥𝐴∥ denotes the Euclidean norm of the vector
𝐴.

II. SIGNAL MODEL FOR SOURCE LOCALIZATION

According to [10], [20], we consider a randomly distributed
array of 𝑃 sensors to collect the data from 𝑀 sources. Since
the sources are assumed to be in the near field, the signal gains
are different across the sensors. Thus, the signal collected by
the 𝑝th sensor at time instant 𝑛 is given by

𝑥𝑝(𝑛) =

𝑀∑
𝑚=1

𝑎(𝑚)
𝑝 𝑠

(𝑚)
0

(
𝑛− 𝑡(𝑚)

𝑝

)
+ 𝑤𝑝(𝑛), (1)

for 𝑛 = 0, 1, . . . , 𝐿− 1, 𝑝 = 1, . . . , 𝑃 , 𝑚 = 1, . . . ,𝑀 , where
𝑎
(𝑚)
𝑝 is the gain of the 𝑚th source signal arriving at the 𝑝th

sensor; 𝑠(𝑚)
0 (𝑛) denotes the 𝑚th source signal waveform; 𝑡(𝑚)

𝑝

is the propagation delay (in data samples) incurred from the
𝑚th source to the 𝑝th sensor; 𝑤𝑝(𝑛) represents the zero-mean
independently identically distributed (i.i.d.) noise process with
variance 𝜎2. Several parameters can be specified as follows:

𝑡
(𝑚)
𝑝 =

∥𝑟𝑠(𝑚)−𝑟𝑝∥
𝑣 : the propagation delay from

the 𝑚th source to the 𝑝th sensor,
𝑟𝑠

(𝑚) ∈ ℛ2×1: the 𝑚th source location,
𝑟𝑝 ∈ ℛ2×1: the 𝑝𝑡ℎ sensor location,
𝜈: the source signal propagation speed in me-

ters/sec.
Taking the discrete Fourier transform (DFT) of both sides

in Eq. (1), we have

𝑋(𝑘) = �̃�(𝑘)𝑆0(𝑘) + 𝑈(𝑘), for 𝑘 = 0, 1, . . . , 𝑁 − 1, (2)

where
𝑋(𝑘)

def
= [𝑋1(𝑘) ⋅ ⋅ ⋅ 𝑋𝑝(𝑘)]

𝑇 ∈ 𝒞𝑃×1 (3)

and 𝑋𝑝(𝑘) is the 𝑘th DFT point of 𝑥𝑝(𝑛), 𝑝 = 1, . . . , 𝑃 . The
notations for the right-hand side of Eq. (2) are described as
follows.

�̃�(𝑘)
def
= [𝑑(1)(𝑘) ⋅ ⋅ ⋅ 𝑑(𝑀)(𝑘)] ∈ 𝒞𝑃×𝑀 (4)

consists of 𝑀 steering vectors, each given by

𝑑(𝑚)(𝑘)
def
= [𝑑

(𝑚)
1 (𝑘) ⋅ ⋅ ⋅ 𝑑

(𝑚)
𝑃 (𝑘)]𝑇 ∈ 𝒞𝑃×1, 𝑚 = 1, . . . ,𝑀,

(5)
where

𝑑(𝑚)
𝑝

def
= 𝑎(𝑚)

𝑝 𝑒−
𝑗2𝜋𝑘𝑡

(𝑚)
𝑝

𝑁 , (6)

and 𝑗
def
=

√−1. Note that

𝑆0(𝑘)
def
= [𝑆

(1)
0 (𝑘) ⋅ ⋅ ⋅ 𝑆

(𝑀)
0 (𝑘)]𝑇 ∈ 𝒞𝑀×1 (7)

consists of 𝑀 individual source signal spectra, each given by
𝑆
(𝑚)
0 (𝑘) where 𝑆

(𝑚)
0 (𝑘) is the 𝑘th DFT point of 𝑠

(𝑚)
0 (𝑛),

𝑚 = 1, . . . ,𝑀 .
In reality, the source signal spectral vector 𝑆0(𝑘) is un-

known and deterministic. The noise spectral vector 𝑈(𝑘) ∈
𝒞𝑃×1 is a complex-valued zero-mean white Gaussian process
and each element of 𝑈(𝑘) has a variance 𝐿𝜎2.

For source localization, we define the unknown parameter
vector Θ ∈ 𝒞1×(𝑀𝑁+2𝑀) as

Θ =
[
𝑟𝑠

𝑇 𝑆0
(1)𝑇 ⋅ ⋅ ⋅ 𝑆0

(𝑚)𝑇 ⋅ ⋅ ⋅ 𝑆0
(𝑀)𝑇

]𝑇
, (8)

where

𝑟𝑠
def
=
[
𝑟𝑠

(1)𝑇 ⋅ ⋅ ⋅ 𝑟𝑠
(𝑚)𝑇 ⋅ ⋅ ⋅ 𝑟𝑠

(𝑀)𝑇
]𝑇

∈ ℛ2𝑀×1, (9)

and

𝑆0
(𝑚) def

=
[
𝑆
(𝑚)
0 (0) ⋅ ⋅ ⋅ 𝑆

(𝑚)
0 (𝑁 − 1)

]𝑇
∈ 𝒞𝑁×1. (10)

According to Eqs. (2)-(10), we may construct the equivalent
log-likelihood of the sensor signal spectra after neglecting the
constant terms, which is given by

𝐽(𝑟𝑠) = log 𝑓𝑋 [Θ;𝑋(𝑘)]

def
= −

𝑁−1∑
𝑘=0

[
𝑋(𝑘)− �̃�(𝑘)𝑆0(𝑘)

]𝐻 [
𝑋(𝑘)− �̃�(𝑘)𝑆0(𝑘)

]
.

(11)

Thus, the maximum-likelihood estimation of Θ can be
achieved as

Θ̂ = argmax
Θ

(
𝐽(𝑟𝑠)

)
= argmin

Θ

(
𝑁−1∑
𝑘=0

[
𝑋(𝑘)− �̃�(𝑘)𝑆0(𝑘)

]𝐻
×
[
𝑋(𝑘)− �̃�(𝑘)𝑆0(𝑘)

])
. (12)

Eq. (12) yields the source signal spectral estimates 𝑆0(𝑘) as

𝑆0(𝑘) =
(
�̃�(𝑘)𝐻�̃�(𝑘)

)−1

�̃�(𝑘)𝐻𝑋(𝑘), 𝑘 = 0, 1, . . . , 𝑁 − 1.

(13)
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According to [10] and Eqs. (11), (12), and (13), the ML source
location estimates can be obtained as

argmax
𝑟𝑠

(
𝐽(𝑟𝑠)

)
= argmax

𝑟𝑠

(
𝑁−1∑
𝑘=0

∥∥∥𝑃 (𝑘, 𝑟𝑠)𝑋(𝑘)
∥∥∥2) ,

(14)
where the projection matrix 𝑃 (𝑘, 𝑟𝑠) ∈ 𝒞𝑃×𝑃 is defined as

𝑃 (𝑘, 𝑟𝑠)
def
= �̃�(𝑘)

(
�̃�(𝑘)𝐻�̃�(𝑘)

)−1

�̃�(𝑘)𝐻 . (15)

For the single source case, the ML estimator in Eq. (14) can
be further simplified as

argmax
𝑟𝑠

(
𝐽(𝑟𝑠)

)
= argmax

𝑟𝑠

(
𝑁−1∑
𝑘=0

∣∣𝐵(𝑘, 𝑟𝑠)
∣∣2) , (16)

where

𝐵(𝑘, 𝑟𝑠)
def
= 𝑑(𝑘, 𝑟𝑠)

𝐻𝑋(𝑘) = 𝑑(1)(𝑘)𝐻𝑋(𝑘) (17)

is a scalar. Note that 𝑑(1)(𝑘) is a function of 𝑟𝑠 implicitly
according to Eqs. (1) and (2). It is obvious that the cost
function 𝐽(𝑟𝑠) in Eq. (14) is nonlinear for multiple sources.
Hence, the iterative methods are in demand for the associated
optimization.

III. AP AND EM SOURCE LOCALIZATION ALGORITHMS

To solve Eq. (12) or Eq. (14), the AP schemes in [10]–
[17] were proposed to decouple Eq. (14) into the single-source
localization problems as described by Eq. (16) and then the
exhaustive search procedure was applied to determine Θ̂.

On the other hand, we can employ the EM-algorithm to
solve Eq. (12) instead [18]. We define the complete-data as

𝑋(𝑚)(𝑘)
def
=
[
𝑋

(𝑚)
1 (𝑘) 𝑋

(𝑚)
2 (𝑘) ⋅ ⋅ ⋅ 𝑋

(𝑚)
𝑃 (𝑘)

]𝑇
∈ 𝒞𝑃×1

(18)
such that

𝑋(𝑘) =

𝑀∑
𝑚=1

𝑋(𝑚)(𝑘), (19)

where 𝑋(𝑚)(𝑘) denotes the mixture Gaussian process (with
the cluster mean vector 𝑑(𝑚)(𝑘)𝑆

(𝑚)
0 (𝑘) and the identical

cluster covariance matrix 𝜎2

𝑀 𝐼 , ∀𝑚, and 𝐼 is the 𝑃×𝑃 identity
matrix) of the received signal spectrum contributed by the 𝑚th

source. Thus, 𝑋(𝑘) is defined as the incomplete-data.
Then Eq. (11) can be rewritten in terms of the complete

data as

log 𝑓𝑋

[
Θ;𝑋(𝑚)(𝑘)

]
def
=

−
𝑀∑

𝑚=1

𝑁−1∑
𝑘=0

∥∥∥∥𝑋(𝑚)(𝑘)− 𝑑(𝑚)(𝑘)𝑆
(𝑚)
0 (𝑘)

∥∥∥∥2, (20)

and we define

𝑓𝑥(𝑚)(𝑟𝑠
(𝑚), 𝑆0

(𝑚))
def
=

𝑁−1∑
𝑘=0

∥∥∥∥𝑋(𝑚)(𝑘)− 𝑑(𝑚)(𝑘)𝑆
(𝑚)
0 (𝑘)

∥∥∥∥2. (21)

The log-likelihood of the complete data given by Eq. (20)
is a summation of the individual log-likelihood functions for

the incident sources given by 𝑓𝑥(𝑚)(𝑟𝑠
(𝑚), 𝑆0

(𝑚)) in Eq. (21).
Thus, the source locations can easily be searched indepen-
dently and separately using our proposed EM algorithm.

Since 𝑋(𝑚)(𝑘), 𝑚 = 1, 2, . . . ,𝑀 , are unknown, we have

to estimate them based on [𝑋(𝑘), Θ̂]. Given the estimate Θ̂
[𝑖]

for the 𝑖th iteration (𝑖 ≥ 0), the (𝑖 + 1)th iteration of EM
algorithm can be carried out thereby. Thus, the procedure is
stated as follows. Calculate

𝑄(Θ̂, Θ̂
[𝑖]
)

def
= 𝐸

{
log 𝑓𝑋

[
Θ;𝑋(𝑚)(𝑘)

] ∣∣∣∣𝑋(𝑘), Θ̂
[𝑖]
}

= log 𝑓𝑋

[
Θ̂; �̂�

(𝑚)
(𝑘, Θ̂

[𝑖]
)
]
,

for 𝑚 = 1, . . . ,𝑀, (22)

where

�̂�
(𝑚)

(𝑘, Θ̂
[𝑖]
)

def
= 𝐸

[
𝑋(𝑚)(𝑘)

∣∣∣∣𝑋(𝑘), Θ̂
[𝑖]
]

= �̂�
(𝑚)

(𝑘)𝑆
(𝑚)
0 (𝑘) +

1

𝑀

(
𝑋(𝑘)− ˆ̃

𝐷(𝑘)𝑆0(𝑘)
)
.

(23)

It is noted that �̂�
(𝑚)

(𝑘), 𝑆
(𝑚)
0 (𝑘), ˆ̃

𝐷(𝑘), 𝑆0(𝑘), 𝑘 =

0, 1, . . . , 𝑁 − 1, are all estimated using 𝑟𝑠
(𝑚) (the estimate

of 𝑟𝑠
(𝑚)) obtained from the previous iteration 𝑖 according to

the definitions given by Eqs. (4), (5), (6), (7) and (10).
Then, re-estimate Θ by maximizing

log 𝑓𝑋

[
Θ̂; �̂�

(𝑚)
(𝑘, Θ̂

[𝑖]
)
]

in Eq. (22) as

Θ̂
[𝑖+1]

= argmax
Θ

{
log 𝑓𝑋

[
Θ̂; �̂�

(𝑚)
(𝑘, Θ̂

[𝑖]
)
]}

. (24)

The solution to Eq. (24) is

𝑟𝑠
(𝑚) = arg max

𝑟𝑠(𝑚)

𝑁−1∑
𝑘=0

∣∣∣∣[�̂�(𝑚)
(𝑘)
]𝐻

�̂�
(𝑚)

(𝑘, Θ̂
[𝑖]
)

∣∣∣∣2

= arg max
𝑟𝑠(𝑚)

𝑁−1∑
𝑘=0

∣Υ𝑖∣2, (25)

where

Υ𝑖
def
=
[
�̂�
(𝑚)

(𝑘)
]𝐻

�̂�
(𝑚)

(𝑘, Θ̂
[𝑖]
), (26)

and

𝑆0
(𝑚)

(𝑘) =

[
�̂�
(𝑚)

(𝑘)
]𝐻

�̂�
(𝑚)
(
𝑘, Θ̂

[𝑖]
)

∥∥∥�̂�(𝑚)
(𝑘)
∥∥∥2 , (27)

for 𝑚 = 0, 1, . . . ,𝑀, 𝑘 = 0, 1, . . . , 𝑁 − 1. Then update

Θ̂
[𝑖+1]

=

[
𝑟𝑠

𝑇 𝑆0
(1)𝑇 ⋅ ⋅ ⋅ 𝑆0

(𝑚)𝑇 ⋅ ⋅ ⋅ 𝑆0
(𝑀)𝑇

]𝑇
, (28)

where

𝑟𝑠
def
=
[
𝑟𝑠

(1)𝑇 ⋅ ⋅ ⋅ 𝑟𝑠
(𝑚)𝑇 ⋅ ⋅ ⋅ 𝑟𝑠

(𝑀)𝑇
]𝑇

, (29)

and

𝑆0
(𝑚) def

=
[
𝑆0

(𝑚)
(0) ⋅ ⋅ ⋅ 𝑆0

(𝑚)
(𝑁 − 1)

]𝑇
,

for 𝑚 = 1, . . . ,𝑀. (30)

The E- and M-steps are repeated until the pre-defined conver-
gence of the estimated parameters is achieved.



2036 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

IV. COMPUTATIONAL COMPLEXITY STUDIES AND NOVEL

HYBRID SOURCE LOCALIZATION SCHEME

There is a trade-off between the localization accuracy and
the computational complexity when the aforementioned AP
and EM algorithms are adopted. The studies of computational
complexity for these two source localization algorithms are
presented in the following subsections.

A. Computational Complexities for Complex Multiplications

For simplicity, in our computational complexity studies of
the AP and EM source localization schemes, we only consider
the computational burden for complex multiplications. In
addition, the computations of the discrete Fourier transform
and the matrices �̃�(𝑘), 𝑘 = 0, 1, . . . , 𝑁 − 1, are neglected.
𝑁𝑥, 𝑁𝑦 denote the numbers of search points along the 𝑥−
and 𝑦−axes, respectively. For our proposed EM method, we
need 𝑁𝑀2𝑃 3 complex multiplications to carry out Eq. (23),
𝑁𝑁𝑥𝑁𝑦𝑀𝑃 2 multiplications to carry out

∑𝑁−1
𝑘=0 ∣Υ𝑖∣2 in

Eq. (25), and 𝑁𝑀𝑃 complex multiplications to carry out[
�̂�
(𝑚)

(𝑘)
]𝐻

�̂�
(𝑚)

(
𝑘,Θ̂

[𝑖]
)

∥�̂�(𝑚)
(𝑘)∥2

in Eq. (27). Consequently, in our pro-

posed EM algorithm, the number of complex multiplications
per iteration is

ℂ
×
EM(𝑁,𝑀,𝑃,𝑁𝑥, 𝑁𝑦) = 𝑁

(
𝑀2𝑃 3 +𝑀𝑃 +𝑁𝑥𝑁𝑦𝑀𝑃 2

)
.

(31)
According to [10], it is easy to derive the number of complex
multiplications for the existing AP method as

ℂ
×
AP(𝑁,𝑀,𝑃,𝑁𝑥, 𝑁𝑦) = 𝑁𝑀2𝑃 3𝑁𝑥𝑁𝑦. (32)

B. Computational Complexities for Comparison Operations

Furthermore, the search for the maximum objective function
values is needed by both AP and EM schemes. There involve
𝑁𝑥𝑁𝑦 − 1 comparison operations in Eq. (25) for each source
per iteration in our proposed EM algorithm. Thus we need
𝑀𝜁 (𝑁𝑥𝑁𝑦 − 1) comparison operations where 𝜁 is the total
iteration number and 𝑀 is the source number. For the AP
method, we need 𝑀𝜁 (𝑁𝑥𝑁𝑦 − 1) comparison operations (𝜁
iterations for the AP method are also assumed for a fair
comparison). Since the EM algorithm for each source location
estimate can be carried out in parallel, we actually need to
undertake 𝜁 (𝑁𝑥𝑁𝑦 − 1) comparison operations per computer.
The AP algorithm has to do the maximum search for each
source location estimate sequentially instead (impossible for
parallel computation) [10]. Hence, the numbers of comparison
operations needed by these two methods are

ℂ
𝑐𝑜𝑚
EM = 𝜁 (𝑁𝑥𝑁𝑦 − 1) (33)

and
ℂ
𝑐𝑜𝑚
AP = 𝑀𝜁 (𝑁𝑥𝑁𝑦 − 1) . (34)

According to Eqs. (33) and (34), the EM method requires
only 1

𝑀 times of the comparison operations as many as the
AP method if the parallel computation is feasible. However,
the EM method is very sensitive to the initial condition and
can only assure the sub-optimality.

C. Novel Hybrid Source Localization Algorithm

From the previous discussion in Sections III, IV-A and IV-B,
the obvious trade-off is inevitably encountered between the
AP and the EM methods in practice. To seek the best trade-
off between the localization performance and the incurred
computational complexity, we propose a new hybrid source
localization scheme as follows:

Step 1) Employ the AP algorithm using the "rough" reso-
lution, which is specified by 𝑁𝑥

′, 𝑁𝑦
′ grid points in the 𝑥-

and 𝑦-directions, respectively. The outcome of this step can
be considered as the coarse location estimate 𝑟𝑆

′.
Step 2) Utilize the estimation outcome 𝑟𝑆

′ from Step 1 to
carry out the EM procedure with a finer resolution, which
is specified by the new grid parameters 𝑁𝑥

′′, 𝑁𝑦
′′ for 𝜁

iterations. The ultimate location estimate can be achieved as
𝑟𝑆

′′.
It is obvious that the computational complexity ℂ

×
𝐻𝑦𝑏𝑟𝑖𝑑 for

the above-described new hybrid source localization scheme in
terms of complex multiplications can be expressed as

ℂ
×
𝐻𝑦𝑏𝑟𝑖𝑑 = ℂ

×
AP(𝑁,𝑀,𝑃,𝑁𝑥

′, 𝑁𝑦
′)

+𝜁 ℂ×
EM(𝑁,𝑀,𝑃,𝑁𝑥

′′, 𝑁𝑦
′′). (35)

According to Eqs (31)-(34), the trade-off between the compu-
tational complexity and the location estimation accuracy can
be maneuvered. Our new hybrid method would be much less
sensitive to the initial condition than our previously proposed
EM algorithm [18] but it also leads to a much less computa-
tional complexity than the conventional AP method [10]–[17].

V. ROBUSTNESS ANALYSIS FOR SOURCE LOCALIZATION

ALGORITHMS

To evaluate our novel hybrid source localization scheme,
we provide the Cramer-Rao Lower Bound (CRLB) of the
source location estimator. By analyzing the CRLB, we prove
that our proposed hybrid algorithm is more robust than the
EM algorithm in [18]. The major factor is the probabilistic
mismatch. In this section, we will employ the Non-Gaussianity
test for source localization to demonstrate that the source
localization estimator is sensitive to the mismatch between
the adopted underlying statistical model (Gaussian mixture)
and the actual sensor signal statistics.

A. Cramer-Rao Lower Bound for Source Location Estimation

To study the robustness, we first derive the CRLB involv-
ing the source spectral estimation here. The source spectral
estimation error 𝜀(𝑘), 𝑘 = 0, 1, . . . , 𝑁 − 1, is defined as

𝜀(𝑘)
def
= �̂�0(𝑘)− 𝑆0(𝑘), for 𝑘 = 0, 1, . . . , 𝑁 − 1, (36)

where 𝑆
(𝑚)
0 (𝑘) = 𝑆

(𝑚)
0 (𝑘) + 𝜀(𝑚)(𝑘), 𝑚 = 1, . . . ,𝑀 denotes

the source signal spectral estimate. We define

𝜆𝑝
(𝑚) def

=
𝑟𝑠

(𝑚)𝑇 − 𝑟𝑝
𝑇

∥𝑟𝑠(𝑚) − 𝑟𝑝∥
∈ ℛ1×2, (37)

where 𝑟𝑠
(𝑚) is given by Eq. (25) and 𝑟𝑝 is defined below

Eq. (1). Given the signal model as described in Section II, we
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derive the entries in Fisher information matrix ℱ̃ ∈ ℛ2𝑀×2𝑀

for the source location vector 𝑟𝑠 as (according to [21])

ℱ̃(𝑚1,𝑚2) =
4𝜋2

𝐿𝑁2𝜎2𝜐2

×
𝑃∑

𝑝=1

(
𝑎(𝑚1)
𝑝 𝑎(𝑚2)

𝑝 exp

⎡⎣− 𝑗2𝜋
(
𝑡
(𝑚2)
𝑝 − 𝑡

(𝑚1)
𝑝

)
𝑁

⎤⎦
× 𝐸

{
𝜆𝑝

(𝑚1)
𝑇

𝜆𝑝
(𝑚2)

})
𝐸
{
𝑆
(𝑚1)

𝐻

0 (𝑘)𝑆
(𝑚2)
0 (𝑘)

}
.

(38)

Considering the source spectral estimation error defined by
Eq. (36), we get

ℱ̃(𝑚1,𝑚2) =
4𝜋2

𝐿𝑁2𝜎2𝜐2

×
𝑃∑

𝑝=1

(
𝑎(𝑚1)
𝑝 𝑎(𝑚2)

𝑝 exp

⎡⎣− 𝑗2𝜋
(
𝑡
(𝑚2)
𝑝 − 𝑡

(𝑚1)
𝑝

)
𝑁

⎤⎦
× 𝐸

{
𝜆𝑝

(𝑚1)
𝑇

𝜆𝑝
(𝑚2)

})

×
[
𝑆

(𝑚1)
𝐻

0 (𝑘)𝑆
(𝑚2)
0 (𝑘) + 𝐸

{
𝜀(𝑚1)

𝐻

(𝑘)𝜀(𝑚2)(𝑘)
}

+𝑆
(𝑚1)

𝐻

0 (𝑘)𝐸
{
𝜀(𝑚2)(𝑘)

}
+ 𝑆

(𝑚2)
0 (𝑘)𝐸

{
𝜀(𝑚1)

𝐻

(𝑘)
}]

,

(39)

where 𝑚1, 𝑚2 indicate the associated row and column indices,
respectively. According to Eq. (58) in the appendix, we get

𝐸
[
(𝑟𝑠 − 𝑟𝑠)

2
] ≥ 𝑡𝑟

[
ℱ̃−1

]
, (40)

where 𝑡𝑟
[
ℱ̃−1

]
is the CRLB and 𝑡𝑟 [ ] is the trace of a

square matrix. According to Eqs. (39) and (40), it is obvious
that the estimation error 𝜀(𝑘) will affect the CRLB. Since the
EM algorithm initializes randomly, such initial location errors
are bounded as

𝐸
[
(𝑟𝑠 − 𝑟𝑠)

2
] ≤ 𝑀

2

(
(ℓ𝑥)

2
+ (ℓ𝑦)

2
)
, (41)

where ℓ𝑥 and ℓ𝑦 correspond to the lateral sizes of the 𝑥- and
𝑦-directions, respectively, for the entire search scope. On the
other hand, since our novel hybrid algorithm as presented in
Section IV-C is initialized using the AP algorithm [10]–[17]
with a rougher resolution, the corresponding estimation error
of the source location vector is bounded as

𝐸
[
(𝑟𝑠 − 𝑟𝑠)

2
] ≤ 𝑀

2

((
ℓ𝑥

𝑁𝑥
′

)2

+

(
ℓ𝑦

𝑁𝑦
′

)2
)
. (42)

It is well known that the EM algorithm is sensitive to the
initial location [18]. Obviously our proposed hybrid algorithm
in Section IV-C would lead to a smaller estimation error
𝐸
[
(𝑟𝑠 − 𝑟𝑠)

2
]

than the EM algorithm with random initial-
ization [18].

B. Non-Gaussianity Test

The ML source localization as introduced in Section II relies
on the multivariate mixture Gaussian density (or Gaussian
mixture) model. However this assumption is not valid in
general especially when the signal sample size is limited and
the signal-to-noise (SNR) is large [22]. According to [10],
the received signals at the sensor array are always modeled
as a Gaussian mixture. Since the source spectra 𝑆0(𝑘) are
not necessarily Gaussian, the statistical mismatch would occur
frequently thereby.

After numerous simulations, we have discovered a very
interesting fact as follows. Consider that the source localiza-
tion is performed in two cases for the same source signals
at the same comparative SNR, namely when the ambient
noise is uniformly distributed and when the ambient noise
is Gaussianly distributed. The former performance is better
than the latter according to our heuristic studies. To explain
this phenomenon, we employ the Gaussianity test for the
received signals added with these two different kinds of
ambient noise. Since the ML location estimation relies on the
DFT, the Gaussianity measure has to be undertaken on the
DFT sequences.

The received signal spectral waveform at the 𝑝th sensor is
given by

𝑋𝑝(𝑘) = Re {𝑋𝑝(𝑘)}+
√−1 Im {𝑋𝑝(𝑘)}

=

𝑁−1∑
𝑛=0

[
cos

(
2𝜋𝑘𝑛

𝑁

)
𝑥(𝑛)

+
√−1

𝑁−1∑
𝑛=0

sin

(
2𝜋𝑘𝑛

𝑁

)
𝑥(𝑛)

]
,

𝑘 = 0, 1, . . . , 𝑁 − 1. (43)

According to Eq. (43), we can measure the Gaussianities
separately for the real and imaginary parts of 𝑋𝑝(𝑘). The
relevant statistical characterization approaches are discussed
in the following subsections.

1) Edgeworth Expansion for PDF Characterization: As
previously stated, the finite sample size and high SNR would
often lead to the non-Gaussian characteristics of the received
signals [22]. We use the Edgeworth expansion to model the
actual statistics of the aforementioned signal Re {𝑋𝑝(𝑘)} and
evaluate the mismatch between the actual statistics and the
underlying Gaussian mixture model [23], [24]. Similar to the
Gram-Charlier series, the Edgeworth expansion can be used to
characterize the unknown probability density function (PDF)
based on the moments and the cumulants.

For a random variable 𝑍 (𝑍 = Re {𝑋𝑝(𝑘)} in our appli-
cation here) with 𝐸{𝑍}= 0 (this can always be achieved
by setting a new random variable 𝑍 as 𝑍 − 𝐸{𝑍}) and
unit variance for simplicity, the arbitrary probability density
function for 𝑍 can be written by the Edgeworth expansion
as [23], [24]:

𝑓𝑍(𝑧) = 𝜗(𝑧)

{
1 +

+∞∑
𝑘=1

𝑃𝑘(𝑧)

}
, (44)

where 𝜗(𝑧) is the zero-mean univariate Gaussian PDF, which
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is given by

𝜗(𝑧)
def
=

1√
2𝜋

exp

(
−𝑧2

2

)
, (45)

and 𝑃𝑘(𝑧) is a polynomial such that

𝑃𝑘(𝑧)
def
=
∑
{𝑙𝑚}

𝐻𝑘+2𝜛(𝑧)

𝑘∏
𝑚=1

1

𝑙𝑚!

(
𝜒𝑚+2

(𝑚+ 2)!

)𝑙𝑚

. (46)

Here the set {𝑙𝑚} consists of all non-negative integer solutions
to the equation 𝑙1+2𝑙2+. . .+𝑘𝑙𝑘 = 𝑘, and 𝜛 = 𝑙1+𝑙2+. . .+
𝑙𝑘. Note that 𝜒𝑙 is the 𝑙th-order cumulant of 𝑍 = Re {𝑋𝑝(𝑘)},
which is given by

𝜒𝑙 = (−1)𝑙
𝑑𝑙

𝑑𝜂𝑙
log 𝑓𝑍(𝜂) ∣𝜂=0, (47)

where 𝑓𝑍(𝜂)
def
= 𝐸

{
𝑒𝑗𝑧𝜂

}
is the characteristic function of 𝑍 =

Re {𝑋𝑝(𝑘)} and 𝐻𝑙(𝑧) is the 𝑙th-order Hermite polynomial
such that

𝜗(𝑧)𝐻𝑙(𝑧) = (−1)𝑙
𝑑𝑙

𝑑𝑧𝑙
𝜗(𝑧). (48)

2) Gaussianity Measure Using Bispectrum: The Edgeworth
expansion in Eq. (44) cannot provide the specific measurement
of the aforementioned mismatch. Instead, the Gaussianity
measure based on the bispectrum can be employed to examine
the statistics for time series [25]. If 𝑧(0), 𝑧(1), . . . , 𝑧(𝑁 − 1)
is the sensor signal sequence (𝑧(𝑛) = 𝑥𝑝(𝑛), for any 𝑝), its
bispectrum is defined as

𝐶𝑧𝑧𝑧(𝑖
′, 𝑖′′) def

=
1

𝑁
𝑍(𝑖′)𝑍(𝑖′′)𝑍𝐻(𝑖′ + 𝑖′′), (49)

where 𝑍(𝑖′) =
∑𝑁−1

𝑛=0 𝑧(𝑛) exp
(

−𝑗2𝜋𝑛𝑖′

𝑁

)
is the 𝑁 -point dis-

crete Fourier transform of the signal 𝑧(0), 𝑧(1), . . . , 𝑧(𝑁−1).
The estimated bispectrum can be further smoothed by a two-
dimensional window 𝑊 (𝑖′, 𝑖′′), 0 ≤ 𝑖′, 𝑖′′ ≤ M𝑤−1, (window
size is M𝑤 ×M𝑤) [25]. Then a sampled bispectrum is used
to construct a statistical test whether the bispectrum given
by Eq. (49) is nonzero; whereas a rejection action of the
null hypothesis implies that the signal is Gaussian [25]. The
statistics is constructed below. According to Eq. (49), we can
compute

𝜁𝑖′,𝑖′′ =
𝐶𝑧𝑧𝑧(𝑖

′, 𝑖′′)√
𝑁
M2

𝑤

(
𝑆𝑧𝑧(𝑖′)𝑆𝑧𝑧(𝑖′′)𝑆𝑧𝑧(𝑖′ + 𝑖′′)

) . (50)

It is noted that 𝜁𝑖′,𝑖′′ is random according to Eq. (50). It can be
proved that the PDF of 𝜁𝑖′,𝑖′′ is complex Gaussian with unit-
variance [25], [26]. Here 𝑆𝑧𝑧(𝑖

′) is the sample estimate for the
power spectrum of 𝑧(0), 𝑧(1), . . . , 𝑧(𝑁 − 1). Consequently,
∣𝜁𝑖′,𝑖′′ ∣2 is approximately a chi-square random variable with
two degrees of freedom. Thus, we can construct the statistics
Φ for the Gaussianity test [25], [26]:

Φ
def
= 2

𝑁−1∑
𝑖′=0

𝑁−1∑
𝑖′′=0

∣𝜁𝑖′,𝑖′′ ∣2. (51)

Asymptotically speaking, Φ is chi-square distributed under the
null hypothesis of Gaussianity. Hence it is easy to derive a sta-
tistical test to determine whether the observation is consistent

with a central chi-squared distribution; this "consistency" is
characterized as the probability-of-false-alarm value, i.e. the
probability that the sensor data possess a nonzero bispectrum.
If this probability-of-false-alarm value is small, we can get a
higher probability of accepting the Gaussian assumption.

Since the sample size is limited in source localization, we
cannot directly apply the technique in [25] (it requires a
large sample size) to estimate the bispectrum of the sensor
signal. Instead, we use the bootstrap algorithm which is
more appropriate for finite sample sizes [26]. The estimation
result within a primary region is considered only due to the
symmetry of the bispectrum such that

𝐷
def
=

{
0 < 𝑖′ ≤ 𝑁

2
, 0 < 𝑖′′ < 𝑖′, 2𝑖′ + 𝑖′′ < 𝑁

}
. (52)

We propose to use the Gaussianity test, as given by Eq. (51),
for the robustness analysis of the ML source localization. The
application of this new analysis can be manifested in the next
section.

VI. SIMULATION

In this section, we provide the simulation results for our
proposed hybrid source localization scheme in Section IV-C
and our new robustness analysis in Section V. We present
the comparison of the three underlying schemes, namely (1)
the conventional alternating projection method (AP), (2) our
previously proposed EM method (EM) and (3) the novel
hybrid method (AP-EM hybrid). Acoustic source signal is
acquired from [10]. The sampling frequency is 100 kHz. The
propagation speed is 345 meter/sec. The data is simulated for
a circularly-shaped array of five sensors using the recorded
acoustic data from [10]. The sample size is 𝐿 = 200 and
the DFT size is 𝑁 = 256. Two-dimensional grid-point search
is employed in the scope of 10 meters by 10 meters, where
both 𝑥- and 𝑦- axes are uniformly sampled. Fifty Monte Carlo
experiments are carried out. In the EM algorithm, randomly
initiated source locations are used for a particular signal-to-
noise ratio (SNR=20 dB).

The resolution parameters are chosen as 𝑁𝑥 = 𝑁𝑦 = 100
for both AP and EM methods. On the other hand, for the
new hybrid scheme, the resolution parameters are chosen as
𝑁 ′

𝑥 = 𝑁 ′
𝑦 = 5 for Step 1 and 𝑁 ′′

𝑥 = 𝑁 ′′
𝑦 = 100 for Step

2, respectively. The iteration number 𝜁 is 5 for both EM
and AP-EM hybrid schemes. Figure 1 depicts the average
root-mean-square errors versus different signal-to-noise ratios
(SNRs). It can be observed in Figure 1 that our proposed
hybrid method almost always achieves the highest accuracy
(lowest RMS errors) among the three schemes in comparison.
The detailed accuracy performances are illustrated in Table I
for the individual source location estimates. We also delineate
the computational complexity curves versus the numbers of
sources, 𝑀 , in Figure 2. Our newly proposed hybrid scheme
leads to a much less complexity than the conventional AP
method as illustrated in Figure 2. The computational com-
plexity of the hybrid scheme is very close to that of the EM
algorithm. To visualize the trade-off between the computa-
tional complexity and the estimation accuracy (RMS error),
we propose to enumerate the product between them. Figure 3
depicts the trade-off curve (the product of the computational
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Fig. 1. Average root-mean-square (RMS) errors versus SNR.
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Fig. 2. The computational complexity in terms of complex multiplications
versus the number of sources for the three compared schemes.

complexity and the RMS error) versus the SNRs for these
three methods.

For the robustness analysis of source localization, we use
the derived CRLB to illustrate the optimistic estimation vari-
ance. The CRLBs are demonstrated in Figure 4. The signal-to-
approximation-error ratio (SAER), which is a critical factor
controlling the CRLB, is given by

𝑆𝐴𝐸𝑅
def
=

1

𝑁

𝑁−1∑
𝑘=0

⎛⎜⎜⎝10 log10

⎡⎢⎢⎣𝐸
{∑𝑀

𝑚=1

∣∣∣𝑆(𝑚)
0 (𝑘)

∣∣∣2}
𝐸
{∑𝑀

𝑚=1

∣∣𝜀(𝑚)(𝑘)
∣∣2}

⎤⎥⎥⎦
⎞⎟⎟⎠ .(53)

Obviously, a reliable source spectral estimate (∣𝜀(𝑚)(𝑘)∣ is
small) leads to a large SAER, definitely improves the source
localization performance and results in a smaller CRLB.

To provide some insight of the reason why our proposed
hybrid algorithm is more robust than the EM algorithm, we
calculate the spectral estimation error for the first iteration of
the EM algorithm and the spectral estimation error for the
first iteration of the new hybrid algorithm after the rough-
resolution initialization with the help of the AP method as
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Fig. 3. The trade-off curves (product of computational complexity and
summed root-mean-square error for both sources) versus signal-to-noise ratio
(SNR).
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Fig. 4. Cramer-Rao lower bounds for different SAER values (10, 20, 30
dB, error-free or ∞ dB) and the actual source location estimation variance
resulting from our proposed AP-EM hybrid algorithm versus the signal-to-
noise ratio.

described in Section III. Figure 5 depicts the average spectral
estimation error (1/𝑁)

∑𝑁−1
𝑘=0 𝐸

{∑𝑀
𝑚=1 ∣𝜀(𝑚)(𝑘)∣2

}
, 𝑚 =

1, 2, over 100 Monte Carlo trials versus the SNR. Clearly,
the EM algorithm leads to larger average spectral estimation
errors and therefore it also induces larger CRLBs since the
EM algorithm is sensitive to the random initialization.

Using the Gaussianity test, we can quantify the statistical
mismatch for source localization and develop the correspond-
ing robustness analysis. Three kinds of noise are artificially
added to the acoustic data from [10]. The localization perfor-
mances in terms of average RMS errors are depicted in Fig-
ures 6 for uniform, Laplace and Gaussian noises, respectively.
The detailed accuracy performances are illustrated in Table
II for the individual source location estimates. Surprisingly,
the localization results based on uniform noise outperform the
others. This phenomenon is caused by the statistical mismatch.
When the sample size is limited and the SNR is large, the
Gaussian model cannot fit the sensor data perfectly. To visu-
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TABLE I
AVERAGE ROOT-MEAN-SQUARE (RMS) ERRORS IN METERS FOR THE LOCATION ESTIMATES OF SOURCES 1 AND 2

SNR (dB) 5 10 15 20 25 30 Average

EM (source 1) 3.47 2.69 2.37 1.97 1.86 1.77 2.36
EM (source 2) 2.09 2.06 1.50 0.88 0.78 0.68 1.33
AP (source 1) 1.29 1.25 1.29 2.53 2.54 2.50 1.90
AP (source 2) 0.54 0.47 0.54 0.45 0.45 0.45 0.48

AP-EM hybrid (source 1) 1.17 1.82 1.19 1.83 1.96 1.81 1.63
AP-EM hybrid (source 2) 0.48 0.42 0.16 0.15 0.16 0.22 0.27
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Fig. 5. Average spectral estimation errors 𝐸
{∑𝑀

𝑚=1 ∣𝜀(𝑘)∣2
}

resulting
from the EM algorithm and the hybrid algorithm over 100 Monte Carlo
experiments.
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Fig. 6. Average root-mean-square (RMS) error versus comparative SNR for
the source localization with different noise models. The comparative SNR is
the average SNR over all the sensor signals.

alize this mismatch, an Edgeworth expansion is employed to
generate the "actual" PDF while an underlying Gaussian PDF
is also generated using the estimates of mean and variance
from the sensor data for comparison. These two PDFs are
plotted in Figure 7 and the obvious discrepancy can be found
therein.

Moreover, to demonstrate our newly derived robustness
analysis, we apply the Gaussian rejection hypothesis in [25]
for the two sensor signal sets used to generate Figure 6.
Figure 8 depicts the probabilities of rejection (as stated in
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Fig. 7. The actual PDF resulting from the Edgeworth expansion and the PDF
using the underlying Gaussian model for the sensor signal of finite sample
size.

Section V) for the aforementioned data added with either
Gaussian (denoted as "with Gaussian Noise" in the figure),
Laplace (denoted as "with Laplace Noise" in the figure) or
uniform noise (denoted as "with Uniform Noise" in the figure).
According to Figure 8, the interesting result can be found that
the sensor data involving the uniform noise is "more Gaussian"
than that involving the Gaussian noise. Hence the former leads
to a less statistical mismatch and thus outperforms the latter in
source localization. The CRLB we deduced in Section V-A is
also used to compare different noise statistics. We artificially
add the signal with generalized Gaussian noises (possessing
different kurtosis values) [27] and the CRLBs corresponding
to these different noise statistics are compared in Figure 9 for
three different SNRs. It is obvious that the CRLB decreases
with the increase in the kurtosis value.

VII. CONCLUSION

In this paper, we investigate the AP and EM algorithms for
multiple wide-band source localization and make an attempt
to seek the trade-off between the computational complexity
and the localization accuracy. Through the analysis and the
empirical studies for the AP and EM source localization
methods, we design a new multi-resolution hybrid source lo-
calization scheme to overcome their individual disadvantages.
The Monte Carlo simulation results show that our proposed
hybrid scheme can outperform both AP and EM methods in
terms of the accuracy and the corresponding trade-off measure
(the product of complexity and accuracy). This new hybrid
scheme turns out to be optimal among these three methods
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TABLE II
AVERAGE ROOT-MEAN-SQUARE (RMS) ERRORS IN METERS FOR THE LOCATION ESTIMATES OF DIFFERENT NOISE STATISTICS

SNR (dB) 5 10 15 20 25 30 Average

AP-EM with Gaussian Noise (source 1) 1.17 1.82 1.19 1.83 1.96 1.81 1.63
AP-EM with Uniform Noise (source 1) 1.34 1.20 1.0 1.40 1.79 0.98 1.29
AP-EM with Laplacian Noise (source 1) 1.60 2.02 1.80 1.95 1.75 1.94 1.84
AP-EM with Gaussian Noise (source 2) 0.48 0.42 0.16 0.15 0.16 0.22 0.27
AP-EM with Uniform Noise (source 2) 0.34 0.25 0.20 0.09 0.12 0.23 0.21
AP-EM with Laplacian Noise (source 2) 0.97 0.73 0.34 0.28 0.30 0.32 0.42
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Fig. 8. Probabilities of rejection versus SNR for three different sets of sensor
signals (Source 1) enduring Gaussian, uniform and Laplace noises.
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Fig. 9. CRLB with respect to different noise statistics in terms of kurtosis.
Kurtosis of a mean-removed random variable 𝑌 , i.e., 𝐸{𝑌 } = 0, is defined

as
𝐸{∣𝑌 ∣4}
𝐸2{∣𝑌 ∣2} − 3.

in such a sense. To provide the robustness analysis for source
localization algorithms, we derive the CRLB of the source
localization problem. Finally, we discuss the influence of the
statistical mismatch on the source localization algorithms.
Using the Edgeworth expansion and the bispectrum, we can
measure the departure of Gaussianity for different sensor
signals or the received signals enduring different kinds of
ambient noise. By employment of the Gaussianity test for the
sensor signals, we can quantify the statistical mismatch and
provide the corresponding robustness figures.

APPENDIX

In this appendix, we derive the CRLB based on the signal
model in Eq. (2) with the estimated received signal spectrum[
𝑆0

(1)𝑇

, . . . , 𝑆0
(𝑚)𝑇

, . . . , 𝑆0
(𝑀)𝑇

]
∈ 𝒞1×𝑀𝑁 , where 𝑆0

(𝑚)

is defined in Eq. (30). The parameters for the CRLB deriva-
tion are 𝑟𝑠

𝑇 =
[
𝑟𝑠

(1)𝑇 ⋅ ⋅ ⋅ 𝑟𝑠
(𝑚)𝑇 ⋅ ⋅ ⋅ 𝑟𝑠

(𝑀)𝑇
]
∈ ℛ1×2𝑀 ,

where 𝑟𝑠
(𝑚)𝑇 def

= [𝑥𝑠
(𝑚), 𝑦𝑠

(𝑚)]. Note that 𝑥𝑠(𝑚), 𝑦𝑠
(𝑚) are the

𝑥− and 𝑦− coordinates of source 𝑚, respectively. Since the
PDF of the received signal is multivariate Gaussian, the Fisher
information matrix ℱ̃ ∈ ℛ2𝑀×2𝑀 of 𝑟𝑠𝑇 is given by

ℱ̃ = 𝐸

⎧⎨⎩
(
∂(�̃�(𝑘)𝑆0(𝑘))

∂𝑟𝑠𝑇

)𝐻

�̃�−1
𝑈

∂(�̃�(𝑘)𝑆0(𝑘))

∂𝑟𝑠𝑇

⎫⎬⎭ ,

𝑘 = 0, 1, . . . , 𝑁 − 1, (54)

where 𝑆0(𝑘) =
[
𝑆
(1)
0 (𝑘), 𝑆

(2)
0 (𝑘), . . . , 𝑆

(𝑀)
0 (𝑘)

]𝑇
. Note that

the noise covariance matrix �̃�𝑈
def
= 𝐸

{
𝑈(𝑘)𝑈(𝑘)𝐻

}
is a

diagonal matrix whose diagonal elements are 𝐿𝜎2.
First, we compute

∂(�̃�(𝑘)𝑆0(𝑘))

∂𝑟𝑠𝑇
= − 𝑗 2𝜋

𝑁𝑣
× Ϝ̃, (55)

where Ϝ̃ is a 𝑃 × 2𝑀 matrix given by Eq. (56) above and

𝜆𝑝
(𝑚) def

=

[
∂𝑑

(𝑚)
𝑝

∂𝑥
(𝑚)
𝑠

,
∂𝑑

(𝑚)
𝑝

∂𝑦
(𝑚)
𝑠

]
=

𝑟𝑠
(𝑚)𝑇 − 𝑟𝑝

𝑇

∥𝑟𝑠(𝑚) − 𝑟𝑝∥
∈ ℛ1×2

∂𝑑
(𝑚)
𝑝

∂𝑥
(𝑚)
𝑠

=
𝑥
(𝑚)
𝑠 − 𝑥𝑝√

(𝑥
(𝑚)
𝑠 − 𝑥𝑝)2 + (𝑦

(𝑚)
𝑠 − 𝑦𝑝)2

∂𝑑
(𝑚)
𝑝

∂𝑦
(𝑚)
𝑠

=
𝑦
(𝑚)
𝑠 − 𝑦𝑝√

(𝑥
(𝑚)
𝑠 − 𝑥𝑝)2 + (𝑦

(𝑚)
𝑠 − 𝑦𝑝)2

. (57)

Thus, the entries of the Fisher information matrix with respect
to 𝑟𝑠

𝑇 are

ℱ̃(𝑚1,𝑚2) =
4𝜋2

𝐿𝑁2𝜎2𝜐2

×
𝑃∑

𝑝=1

(
𝑎(𝑚1)
𝑝 𝑎(𝑚2)

𝑝 𝐸
{
𝑆
(𝑚1)

𝐻

0 (𝑘)𝑆
(𝑚2)
0 (𝑘)

}
× exp

[
− 𝑗2𝜋(𝑡

(𝑚2)
𝑝 − 𝑡

(𝑚1)
𝑝 )

𝑁

]

× 𝐸
{
𝜆𝑝

(𝑚1)
𝑇

𝜆𝑝
(𝑚2)

})
, (58)
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Ϝ̃
def
=

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎
(1)
1 𝑒−

𝑗2𝜋𝑡
(1)
1

𝑁 𝜆1
(1)𝑆

(1)
0 (𝑘) 𝑎
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(2)
1
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0 (𝑘) . . . 𝑎

(𝑀)
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(𝑀)
1

𝑁 𝜆1
(𝑀)𝑆

(𝑀)
0 (𝑘)

𝑎
(1)
2 𝑒−

𝑗2𝜋𝑡
(1)
2

𝑁 𝜆2
(1)𝑆

(1)
0 (𝑘) 𝑎

(2)
2 𝑒−

𝑗2𝜋𝑡
(2)
2

𝑁 𝜆2
(2)𝑆

(2)
0 (𝑘) . . . 𝑎

(𝑀)
2 𝑒−

𝑗2𝜋𝑡
(𝑀)
2

𝑁 𝜆2
(𝑀)𝑆

(𝑀)
0 (𝑘)

...
... ⋅ ⋅ ⋅ ...

𝑎
(1)
𝑃 𝑒−

𝑗2𝜋𝑡
(1)
𝑃

𝑁 𝜆𝑃
(1)𝑆

(1)
0 (𝑘) 𝑎

(2)
𝑃 𝑒−

𝑗2𝜋𝑡
(2)
𝑃

𝑁 𝜆𝑃
(2)𝑆

(2)
0 (𝑘) . . . 𝑎

(𝑀)
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𝑃
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(𝑀)𝑆

(𝑀)
0 (𝑘)

⎤⎥⎥⎥⎥⎥⎥⎦ , (56)

ℱ̃ =
4𝜋2

𝐿𝑁2𝜎2𝜐2
×

𝑃∑
𝑝=1

⎡⎣ 𝒜(1,1)
𝑝 Γ̃(1,1) 𝒜(1,2)

𝑝 Γ̃(1,2)𝑒−
𝑗2𝜋(𝑡

(2)
𝑝 −𝑡

(1)
𝑝 )

𝑁

𝒜(2,1)
𝑝 Γ̃(2,1)𝑒−

𝑗2𝜋(𝑡
(1)
𝑝 −𝑡

(2)
𝑝 )

𝑁 𝒜(2,2)
𝑝 Γ̃(2,2)

⎤⎦ ∈ ℛ4×4. (59)

where 𝑆
(𝑚1)
0 (𝑘) and 𝜆𝑝

(𝑚2), ∀𝑚1,𝑚2, are assumed to
be element-wise statistically independent of each other.
Here 𝑚1,𝑚2 indicate the row and column indices re-
spectively. For notational convenience, we define a scalar
𝒜(𝑚1,𝑚2)

𝑝
def
= 𝑎

(𝑚1)
𝑝 𝑎

(𝑚2)
𝑝 𝐸

{
𝑆
(𝑚1)
0 (𝑘)𝑆

(𝑚2)
𝐻

0 (𝑘)
}

and a ma-

trix Γ̃(𝑚1,𝑚2) def
= 𝐸

{
𝜆𝑝

(𝑚1)
𝑇

𝜆𝑝
(𝑚2)

}
∈ ℛ2×2. As an exam-

ple, the Fisher information matrix with two sources according
to Eq. (58) is given by Eq. (59) shown on top of the next page.
In employment with the matrix partitioning principles, it is
easy to find that the inverse of ℱ̃ has real diagonal elements.
Thus, the CRLB can be defined as Eq. (40) thereby.
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