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ABSTRACT 
 

Contextual processing is a new emerging field based on the notion 
that information surrounding an event lends new meaning to the 
interpretation of the event. Data mining is the process of looking 
for patterns of knowledge embedded in a data set. The process of 
mining data starts with the selection of a data set. This process is 
often imprecise in its methods as it is difficult to know if a data set 
for training purposes is truly a high quality representation of the 
thematic event it represents. Contextual dimensions by their 
nature have a particularly germane relation to quality attributes 
about sets of data used for data mining. This paper reviews the 
basics of the contextual knowledge domain and then proposes a 
method by which context and data mining quality factors could be 
merged and thus mapped. It then develops a method by which the 
relationships among mapped contextual quality dimensions can be 
empirically evaluated for similarity. Finally, the developed 
similarity model is utilized to propose the creation of contextually 
based taxonomic trees. Such trees can be utilized to classify data 
sets utilized for data mining based on contextual quality thus 
enhancing data mining analysis methods and accuracy.   
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1. INTRODUCTION 
 
Data Mining is the process of sifting through large stores of data 
to extract previously unknown, valid patterns and relationships 
that provide useful information [14]. It uses sophisticated data 
analysis tools and visualization techniques to segment the data 
and evaluate the probability of future events. By scouring large 
data sets for hidden patterns, these tools not only provide answers 
to many questions that were traditionally time consuming to 
resolve, but also present information in easily understandable 
form. Data mining can be applied to tasks such as decision 
support, forecasting, estimation, predictive analysis and so forth. 
Consequently, it is increasingly becoming an important tool 
allowing businesses to provide more meaningful services to 
customers and to make proactive, knowledge-driven decisions to 
increase revenue and reduce expenses. Today, it is commonly 
used in a wide range of profiling practices, such as marketing, 
surveillance, fraud detection, trend analysis, scientific discovery 
and other innovative applications.  
There are several data mining methods. The most common 
amongst them are methods that generate descriptive or predictive 
models to solve problems. Descriptive models provide techniques 

to discover the hidden patterns in the data and understand the 
relationships between attributes represented by the data. 
Predictive models on the other hand, predict future outcomes 
based on past data. Two approaches are commonly used to 
generate models: supervised and unsupervised [8]. Supervised 
models also known as directed learning are goal oriented.  
Supervised models attempt to explain the value of the target as a 
function of a set of independent attributes or predictors. In 
supervised learning, there is a pre-specified target variable and the 
algorithm is given many examples where the value of the target 
variable is provided, so that algorithm may learn which values of 
the target variable are associated with which values of the 
predictor variables.  The goal of unsupervised models also known 
as undirected learning is pattern detection. In unsupervised 
modeling, there is no particular target variable as such. Instead, 
the data mining algorithm searches for patterns and structure 
among all the variables. Often, unsupervised modeling is applied 
to recognize relationships in the data and supervised modeling is 
used to explain those relationships.  
Supervised Modeling Techniques 

The most common supervised modeling techniques are decision 
trees, neural networks, naïve Bayes, K-nearest neighbor, case 
based reasoning, genetic algorithms, rough sets and fuzzy sets.  

Decision Trees 

Decision trees are tree-shaped structures that represent a series of 
rules that lead to the classification of a data set. The graphical 
output has all the basic components of a tree: the decision node, 
branches and leaves. The decision node specifies the test to be 
carried out, the branch node leads either to another decision node 
or a stopping point called leaf node which represent classes or 
class distributions.  A decision tree can be employed to classify an 
unknown instance by beginning at the root of the tree and 
navigating through it until a leaf node, which provides the class 
for that instance.  The methods used for building decision trees 
include classification and regression trees (CART), and chi-square 
automatic interaction detection (CHAID).  

Neural Networks 

Often referred to as black box technology, neural networks are 
densely interconnected networks of related input/output units 
where each relation has a weight associated with it. The elements 
of networks are called neurons. Neural networks learn during the 
learning phase by adjusting weights so as to able to predict the 
correct class label for the input data set. Neural networks involve 



long training times and involve very careful data cleansing, 
selection, preparation and preprocessing. Advantages of neural 
networks include their high tolerance to noisy data as well as their 
ability to classify patterns on which they have not been trained. 
However, they are more complicated than other techniques.  

Naïve Bayes  
The Naïve Bayes classifier makes predictions based on Bayes’ 
theorem with strong (naïve) independence assumptions. The 
classifier derives the conditional probability of each relationship, 
by analyzing the relationships between the independent and 
dependent variables. Naïve Bayes can generate a classification 
model by requiring only one pass through the data. As such, it is 
very efficient and is especially suited when the dimensionality of 
inputs is very high. However, it does not handle continuous data. 
Any independent or dependent variables that contain continuous 
values must be broken into categories, before naive Bayes 
classifier can be applied.  

K-nearest neighbor 

K-nearest neighbor classifiers are based on learning by analogy. 
The classifier classifies new objects based on the closest training 
samples in the feature space. The training samples are expressed 
by n-dimensional attributes with each sample representing a point 
in n-dimensional pattern space. When analyzing an unknown 
sample, the classifier searches the pattern space for the k training 
samples closest to the unknown sample. These closest k training 
samples then become the nearest neighbors of the unknown 
sample. Unlike other classifiers such as decision tree, neural 
networks etc, which build a generalization model before receiving 
new samples to classify, nearest neighbor classifiers merely store 
all the training samples and do not build a classifier until an 
unknown sample needs to be classified. This makes them lazy 
learners.  

Case-Based Reasoning  

Unlike nearest neighbors, where in training samples are stored as 
points in Euclidean space, case based reasoning classifiers store 
cases or samples as complex symbolic descriptions.  It classifies a 
new case based on the solutions of the similar past cases. Upon 
receiving a new test case, a case-based reasoner first checks to see 
if an identical training case exists. In one exits, then the associated 
solution to that case is returned. If no identical case exists, the 
case-based reasoner searches for other training cases that may 
have components similar to those of the new test case. It then 
combines the solutions of these cases and proposes a solution for 
the new case.  

Genetic Algorithms 

Genetic algorithms include ideas of natural evolution. They 
employ optimization techniques that use processes such as genetic 
combination, mutation, crossover and natural selection. 
Populations of rules evolve by means of cross over and mutation 
operations until each rule within a population satisfies a 
prespecified fitness threshold.  

Rough Sets 

Rough set theory classifier can be used to discover structural 
relationships within imprecise or noisy data. A rough set is an 
approximation of a conventional set in terms of a pair of sets 
which give the lower and upper approximation of the original set. 
The classifier handles discrete-valued attributes. Continuous-
valued attributes need to be discretized before applying the rough 
sets.  Rough set theory is useful for rule induction from 
incomplete data sets, feature reduction and relevance analysis.  

Fuzzy Sets  

A disadvantage of the rule based systems for classification is that 
they involve sharp cutoffs for continuous attributes. Fuzzy sets, on 
the other hand, provide a very useful tool to deal with human 
vagueness by replacing the brittle threshold cutoffs for 
continuous-valued attributes with degree of membership 
functions.  

Unsupervised Modeling Techniques 
Cluster analysis is the most commonly used unsupervised 
technique.  
 
Cluster Analysis  
The most common method for unsupervised modeling is cluster 
analysis or clustering. Clustering involves segmenting a set of 
observations into a number of subgroups or clusters so that 
observations in the same cluster are similar to each other and are 
dissimilar to the observations in other clusters. Cluster analysis is 
often used as a standalone data mining tool to gain insights into 
the distributions of the data or as a preprocessing step for other 
data mining algorithms.  
 
Outliers 
Data set outliers 
Outliers are data objects that are significantly different from other 
objects in the data set. It is a data object that does not comply with 
the general behavior of the data. Outliers often occur as a result of 
mechanical faults, changes in system behavior, fraudulent 
behavior, or through natural deviations in population.  
There are two schools of thought on how to deal with outliers. 
The first school regards outliers as noise or errors and 
recommends removing them during preprocessing before the data 
analysis begins to ensure accurate data mining process. The 
second school of thought regards outliers as rare and interesting 
patterns hidden in the data that are potentially valuable for 
decision making. In recent decades, several methods have been 
proposed for outlier detection. These methods can be broadly 
grouped into several categories: distribution-based[9], depth-
based[10], distance –based[11], density-based[12], clustering-
based[13] and model-based.  
Taxonomy 
Taxonomy is the practice and science of classification of things or 
concepts according to natural relationships. The classification is 
often arranged in a hierarchical structure organized by 
generalization – specialization relationships or supertype-subtype 
relationships. In an inheritance relationship such as the one in a 



taxonomy, the subtype relationship inherits the properties, 
behaviors and constraints of the supertype. In addition, the 
subtype has its own properties, behaviors or constraints.  
 

2. CONTEXTUAL PROCESSING  
 

2.1 Background 
 
Contextual processing starts with the notion that data that is not 
shared often has uncorrelated inferences of meaning and 
criticalities of information processing in a fashion that truly serves 
various perspectives needs. Context driven processing is driven by 
the environment and semantics of meaning describing an event. 
Often this type of processing requires a context which may 
contain meta data about the events data. Meta descriptive 
information of leads to previously unknown insights and 
contextually derived knowledge. Such meta data usually has a 
spatial and temporal component to it but is actually much more 
complicated. The key is that contextual meta data describes the 
environment that the event occurred in such as the collection and 
creation of data sets for knowledge mining.  
 

The concept of context has existed in computer science for many 
years especially in the area of artificial intelligence. The goal of 
research in this area has been to link the environment a machine 
exists in to how the machine may process information. An 
example typically given is that a cell phone will sense that its 
owner is in a meeting and send incoming calls to voicemail as a 
result.  Application of this idea has been applied to robotics and to 
business process management [1]. 

Some preliminary work has been done in the mid 90’s. Schilit was 
one of the first researchers to coin the term context-awareness [2, 
3].  Dey extended the notion of a context with that of the idea that 
information could be used to characterize a situation and thus 
could be responded to [4]. In the recent past more powerful 
models of contextual processing have been developed in which 
users are more involved [5]. Most current and previous research 
has still largely been focused on development of models for 
sensing devices [6] and not contexts for information processing. 

While research is evolving in the application of contextual 
information in security, logic, and repository management, little 
work has been done on the topic of how contextual processing 
methods might be applied to how data mining training sets might 
be selected and classified for quality. The model that was 
originally developed for context processing was  that of creating a 
model for describing information events, storage of meta data and 
processing rules, thus giving them a context. This context then 
could then be used to control the processing and dissemination of 
such information in a hyper distributed global fashion. The next 
section will provide a general overview of the newly a part of the 
model defining the dimensions of contextual processing methods.  
The following section will propose a taxonomic model utilizing 
contextual dimensions to classify data sets for quality and 
similarity to a data mining theme. 

 

To understand the issues connected with contexts we present 
some details about contextual processing.  

The initial motivation for the development of a context was to 
examine the natural disasters of the Indian Ocean tsunami, Three 
Mile Island nuclear plant and 9/11 to determine what elements 
could be used to categorize these events. After analysis it was 
realized that all of them had the following categories, which refer 
to as the dimensions of a context. They are: 

 

time – the span of time and characterization of time for an event 

space – the spatial dimension 

impact – the relative degree of the effect of the event on 
surrounding events 

similarity – the amount by which events could be classified as 
being related or not related.  

 

Each one of the dimensions can be attributed with meta 
characterizers which originally could be use to drive the 
processing rules. However the meta characterizers also have the 
potential to control the classification of data, such at that found in 
the selection of high quality data sets for data mining. 
  
The time and space dimension can be described as having factors 
of geospatial and temporal elements applied to them to them. The 
geospatial domain can mean that information is collected and 
stored at a distance from where it may be processed and used in 
decision support as well as a description of the region that a 
context may pertain to. This means that context based data mining 
data set selection (CBDMDSS) processing must have a 
comprehensive model underlying it to useful results 
Some factors that should be considered in CBDMDSS processing 
are referred to as information criticality factors (ICF). These 
factors are further developed in ongoing research but are primarily 
used to drive processing decision making and classification 
methods. They may include such attribution among other 
attributes as: 
 

• time period of information collection 
• criticality of importance,  
• impact e.g. financial data and cost to humans 
• ancillary damage of miss classification 
• spatial extent data set coverage 
• proximity to population centers spatially or conceptually 

to other related data sets. 
 
Other factors affecting CBDMDSS classification might be based 
on the quality of the data such as:  

 

• currency, how recently was the data collected, is the 
data stale and smells bad 

• ambiguity, when things are not clear cut – e.g. does a 
degree rise in water temperature really mean global 
warming  



• contradiction, what does it really mean when conflicting 
information comes in different sources  

• truth, how do we know this is really the truth and not an 
aberration  

• confidence that we have the truth 
 
In order to analyze the above factor and their effect on 
CBDMDSS, it was useful to examine three different data sets 
describing natural and manmade disasters most people are 
familiar with in which selection of the best data set for analysis of 
the event might have lead to better response. We initially 
considered the 9/11 incident where information about the 
attackers and their operations and activities were stored 
everywhere from Germany, to Afghanistan to Florida. If the 
information could have been orchestrated into a contextual 
collection of data, the context and relationships of the data would 
have given a very different interpretation or knowledge about 
what was really going on. Of course the goal of our model does 
not examine how that information would be located and 
integrated, that can be the subject of future work. The model only 
proposes a paradigm for data set selection based on contextual 
factors that might affect quality impact of erroneous analysis. For 
the initial analysis of 9/11 we came up with the following 
descriptive factors which eventually lead to the derivation of the 
context of contextual dimension presented earlier. These were: 
 
temporality – defined to be the time period that the event unfolded 
over from initiation to conclusion 
 
damage – the relative damage of the event both in terms of 
casualties, and monetary loss  
 
spatial impact – defined to be the spatial extent, regionally that 
the event occurs over.  
 
policy impact – directly driving the development of IA (security) 
policy both within a country and among countries. This directly 
led to the evolution of security policy driving implementation 
because of the event.  
 

2.2 Defining a Context 
 
Contextual processing is based on the idea that information can be 
collected about events and objects such as data sets and that meta 
information about the object can then be used to control how the 
information is processed by a data mining methods. In its simplest 
form, a context is composed of a feature vector  

 

Fn<a1,..an> 

 

where the attributes of the vector can be of any data type 
describing the object. Feature vectors can be aggregated via 
similarity analysis methods, still under investigation, into super 
contexts Sc. Some potential methods that might be applied for 
similarity reasoning can be statistical, probabilistic (e.g. 

Bayesian), possibilistic (e.g. fuzzy sets), support vector machines 
or machine learning and data mining based methods (e.g. decision 
trees). The goal of similarity analysis is to be able to state the 
following: 

 

R(A|B) 

 

where: 
 
A, B  - are sets of contextual vectors Fn about a data set 
R() - is a relation between A and B, s.t. they can be said to  
 be similar in concept and content  
 

Similarity analysis should facilitate the aggregation into super sets 
of feature vectors describing attributes of a data set based on 
contextual dimensions describing the data set. This is done to 
mitigate collection of missing or imperfect information and to 
minimize computational overhead when processing contexts. 

definition: A context is a collection of attributes aggregated into a 
feature vector describing a abstract event, object or concept. 

A super context was previously described as a triple denoted by: 

 
Sn = (Cn, Rn, Sn) 

 

where: 

Cn -  is the context data of multiple feature vectors 
Rn - is the meta-data processing rules derived from  
                the event and contexts data  
Sn - is controls security processing.  
 

However, in definition of super context there is really not a need 
for the Sn vector unless the data set and its processing will be 
hyper distributed.  

definition: A super context for contextual data mining is defined 
by the feature vectors describing the contextual dimensions of the 
set and the data mining methods applied to the set.  

The redefinition for data mining set quality and selection might 
then becomes: 

Sn = (Cn, Mn ) 
 

where: 

Cn -  is the context data of multiple feature vectors 
Mn - is the meta-data processing rules and  

application methods for analysis quality for the data  
set, e.g. taxonomic methods. 

 



The cardinality of Fn with C is still a defined in previous work: 

m:1 

which when substituted into S creates a (Cn, Mn ) cardinality of: 

m:1:1 

 

All of the above are a type of feature vectors where the elements 
of the vector can considered as inputs to a contextual processing 
black box along with the sets data to produce a better selection of 
data mining sets for processing. 

3. SUPER CONTEXTS AND TIME 
 
3.1 Overview 
 
Super contexts are composed of context data from many sensing 
event objects, Eoi, As such contextual information collection 
works in a similar fashion to sensor networks and can borrow 
from theory in the field in application of quality metrics for data 
mining sets.  
 

definition: A thematic event object (Teo) is the topic of interest for 
which event objects are collecting data. An example of a Teo 
would be the center of a tsunami.  

3.2 General Operation and Concept 
 
As previously defined contexts are composed are defined by four 
dimensions those of temporality, spatiality, impact and similarity. 
Contextual objects thus can have meta characterizations based on 
any of these areas. Some examples presented in previous work 
are:  

• Singular – an event that happens a point in time, at a 
singular location 

• Regional 
• Multipoint Regional 
• Multipoint Singular – events that occur at a single point 

in time but with multiple geographic locations 
• Episodic – events the occurs in bursts for given fixed or 

unfixed lengths of time 
• Regular – as suggested these events occur at regular 

intervals 
• Irregular – the time period on these type of events is 

never the same as previous t 
• Slow Duration - a series of event(s) that occupy a long 

duration, for example the eruption of a volcanoes   
• Short Duration – example an earthquake 
• Undetermined 
• Fixed Length 
• Unfixed Length 
• Bounded  
• Unbounded 
• Repetitive - these types time events generate streams of 

data – graph of attributes change in value over time 
 
These meta-characterization can be applied to data for the 
previously discussed original 9/11 analysis (temporality, damage, 

spatial impact, policy impact) and thus to the final set of 
dimension that were derived for characterization of contextual 
processing.  
 
The above meta-characterization of context can be classified into 
categories that can then be utilized in mapping context to data 
mining quality. The classifications can be utilized with quality 
metrics in data mining to point the way to methods that might 
classify quality of data sets based on context. The previously 
developed categories are:  

 
Event Class < abstract, natural> 
Event Type < spatial, temporal> 
Periodicity < regular, irregular> 
Period < slow, short, medium, long, undeterminable, 
infinite, zero     > 
Affection<regional, point, global, poly nucleated, n 
point> 
Activity < irregular, repetitive, episodic, continuous, 
cyclic, acyclic> 
Immediacy < catastrophic, minimal, urgent, 
undetermined > 
Spatiality < point, bounded, unbounded > 
Dimensionality <1, 2, 3, n> 
Bounding < Fixed Interval, Bounded, Unbounded, 
Backward Limited, Forward Limited, continuous> 
Directionality < linear, point, polygonal >  

 
Figure 2: Modeling the semantic categories of context based 
meta-characterizations of data in a context 
 
Previously the above were developed into a semantic grammar 
that could control processing of information. However such a 
grammar could also be developed to classify the quality of data 
mining sets in a high level qualitative fashion. The syntax took the 
form of the following: 
 

R1: <event class>, <event type>, <R2> 
R2: (<periodicity> <period>) <R3> 
R3:(<affection><activity>) <spatiality> <directionality> 
<bounding> <R4> 
R4: <dimensionality> <immediacy> 

 
Figure 3: Syntax for application data meta-characterizations to 
derive super context processing rules R in S(C, R, S). 
 
The above grammar and syntax can be developed into sentences 
describe qualitatively the integrity of a data set for data mining 
purposes based on the theme about which the data was collected. 
For example, the following might be a semantic descriptor of a 
data set about an event in statistics, perhaps a cancer data set: 



 
“R1 = abstract, spatial & temporal, regular-slow, episodic urgent”  
 
In this case “abstract” defines the fact that data may be derived 
from naturally observable data, that the area of the cancer cluster 
occurs in “spatial and temporal” areas of the country, that the 
development of the cancers occur regularly (such as skin cancers 
in the southwest, and that the urgency of the data needs to be 
considered. If we are talking about another cancer data set, 
described by the following rule: 
 
“R2 = abstract, singular event, point, undetermined”  
 
One can see that from an HCI standpoint one might be more likely 
to select the data set defined by R1 as being potentially better data 
integrity. Any one of these contextual meta characterizations can 
be selected from the meta-classification categories present 
previously.  
 
However, while these are mappings of contextual processing 
concepts onto data mining data set quality suggesting that this can 
be done, it does not really incorporate the issues of quality as data 
mining defines them with the concepts of contextual processing. 
 
Some measures of quality in data mining sets are defined as the 
following: 
 

• Relevance (Re) - degree of relationship of data to a 
theme 

• Timeliness (Ti)-  temporal proximity of the data to it Teo 
• Noise (No) – the degree to which data is observed 

versus injected by observational equipment.  
• Outliers (Ou) – observed actual data that exceeds the 

norm 
• Sparsity (Sp)– a binary representation of known data 

versus unknown data in a matrix of observed data 
• Dimensionality (Di) – the number of observed attributed 

about a Teo, of which some may be more relevant for 
analysis 

• Freshness (Fr)–  
• Accuracy (Ac)– the degree to which the data in the set 

reflects reality 
• Sequentiality (Se) –  
• Bias (Bi) –  
• Duplication (Du) – a characterization of some data 

appearing to be the same and representing different 
objects, other times being the same and representing the 
same object 

• Aggregation (Ag) – the degree to which data is 
combined where increased aggregation produces better 
stability in the data but loses granularity. 

 
In considering the development of a method that could be used to 
taxononify data mining sets, the next step was to map the above 
defined measures of data mining quality onto contextual 
dimensions. This produced the following mapping: 

 
f (Re) → (T, Sp, Im, Si) 

f (Ti) → (T,Im) 
f (No) → ( Im,Sp, Am) 
f (Ou) → ( Im, Sp, Am) 
f (Sp) → ( Im, Si, Am) 
f (Di) → ( Sp, Im, Am) 

f (Se) → (T, Si) 
f Bi) → (Am) 

F (Du) → (Am, Si, Im, Sp) 
F (Ag) → (Am) 

 
where:  
Sp - spatiality dimension 
T - temporality dimension 
Si - similarity dimension 
Im  - impact dimension 
Am - the ambiguity dimension 
 
Of note in this mapping, a new dimension became necessary in 
order to map context onto measures of data set quality in data 
mining. This dimension is new in context and has a bidirectional 
mapping back onto the area of contextual processing in general.  
 

4. Application to Adaptive Quality Measures and 
Taxonification Construction 
 

4.1 Overview 
 
The above mapping suggests the next step in potentially 
developing a taxonomy for classification of data set quality. This 
method requires the use of a similarity matrix and an algorithm 
which is the subject of future research.  The proposed approach is 
to create a similarity matrix based on the reversing the mapping 
previously done where for instance: 
 

f (T) → (Re, Ti, Sei) 
f (Am) → (No, Ou, Sp, Di, Du) 
f (Sp) → (Re, No, Ou, Di, Du) 

f (Si) → (Re,Sp, Du) 
f (Im) → (Re, Ti,Ou,Sp, Di,Du) 

 
In this mapping the previous measures of data set quality are 
mapped onto the four original dimensions of context plus the new 
one of Ambiguity. Note, the evaluation of how one for instance 
measures the quality metrics is the subject of future research in 
this method. For instance determination of what would be 
appropriate measure of freshness or timeliness. 
 



The notion of mapping data set quality measures onto the 
dimensions of context allow an adaptive similarity matrix to be 
developed where the measures of quality can be weighted based 
on observed errors and deviations for once a data mining method 
is applied to a data set. While the exact process is not currently 
defined and is the subject of future research, it may take the 
following form in an algorithm. 
 
Algorithm in pseudo code: 
 
// 1 Develop a similarity matrix weight at .5 where the value 
means the similarity of on dimensions quality measures are not 
known 
 
// 2 During a training phase apply a selected data mining method 
iteratively to several data sets and measure the accuracy of the 
method 
 
// 3 Based on step two re-weight the similarity matrix 
 
//4 At the end of training organize low similarity dimensions into 
the top most levels of a classification taxonomy into the upper 
most levels of a taxonomic tree because they are the most general. 
Place the  
 
Logic: 
The tree then becomes a classification scheme against which 
multiple data sets could be evaluated based on quality metrics. 
Low quality data sets in theory would classify into root nodes 
higher up in the tree. Thus selection of the data sets lower in the 
tree could in theory indicate higher quality for the set overall. 
 
 
A practical example might be the following: 
Step 1: Initialization of the similarity matrix for contextual 
dimension sets containing data mining quality measures 
 

 f(T) f(Am) f(Sp) f(Si) f(Im) 

f(T) 1 .5 .5 .5 .5 

f(Am) .5 1 .5 .5 .5 

f(Sp) .5 .5 1 .5 .5 

f(Si) .5 .5 .5 1 .5 

f(Im) .5 .5 .5 .5 1 

 
 
Note, each of the above sets f() represents a collection of quality 
metrics for data mining that has been mapped into the set 
previously. The determination of such values as data set freshness 
within a set is the subject of the next step in this research. Also of 
note is that the degree of similarity is 1 (true) when considering 
the same dimensions and .5 representing not known when 

considering similarity with other contextual dimensions and 
quality mappings. 
 
Step 2: Apply a selected data mining methods and for each of the 
contextual dimension sets measure the correlation of each with 
each other sets against the observed error.  
 
A sample might be the following for 10 data sets on a particular 
Teo: 
 
f(T) = .2 
f(Am) = .3 
f(Sp)  = .9 
f(Im)  = .85 
f(Si) = .5 
 
Step 3:The interpretation (a to be developed method) of the above 
might be: 
 
f(T)≈ f(Am)= {.2, .3} → high similarity as low quality mapping of 
contextual dimension quality factor measures (.1) 
 
f(Sp)≈ f(Im)= {.9, .85} → high similarity as high quality mapping 
of contextual dimension quality factor measures (.9) 
 
f(Si)!≈ {f(Sm), f(T), f(Im), f(Sp)= {.5,} → unknown (.5) similarity 
to high or low quality mappings of contextual dimension quality 
factor measures 
 
The similarity matrix might be reweighted in the following 
fashion to reflect these discovered relationships: 
 
 

 f(T) f(Am) f(Sp) f(Si) f(Im) 

f(T) 1 .1 .5 .5 .5 

f(Am) .5 1 .5 .5 .5 

f(Sp) .5 .5 1 .5 .9 

f(Si) .5 .5 .5 1 .5 

f(Im) .5 .5 .5 .5 1 

 
 
Step 4: Construct a classification taxonomy for other data sets on 
the Teo that organized contextual mapped classes of data mining 
quality from the generally poor predictors of good quality to the 
better predictors.  
 
Based on Step 3’s data such taxonomy might have the structural 
organization shown in figure 1. In this taxonomy it is important to 
reiterate that the data mining measures of quality defined 



previously have been mapped as evaluative attributes inside each 
contextual dimension class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure n: A possible construction of a taxonomic tree for 
classification of data mining sets based on the similarity matrix.  
 
In this taxonomy some data sets will not be able to be classified 
into lower levels of the tree and some may based on the data 
mining quality factor mentioned previously. Utilization of the sets 
that reach the bottom of the taxonomy implies that they have the 
highest quality and there are the best for analysis. In figure n, data 
set 3 classifies to the bottom of the tree based on this method and 
is probably the highest quality. Whereas data set 1, 2 only will 
classify to the top most level of the tree and is therefore not the 
best to conduct analysis on based on the data quality factors in the 
f(T) mapping.  
 
 
This matrix maps the similarity of one dimensions of context to 
another based on the mapping of quality metrics onto a given 
dimension of context.  
 
In this example, the value of .5 is the initial value set into the 
matrix meaning that the similarity among dimensions may exist or 
may not exist.  
 
The matrix is adaptive in its classification method in that the 
following algorithm could be developed for changing the 
similarity weighting during a training period. Such an algorithm 
might have the following structure: 
 

5. CONCLUSIONS 
  

5.1 Future Work 
 
The modeling of contextual processing and is a broad new area of 
computer science and can be the beginning of many new research 
threads. This paper proposes a method by which the vague 
attributes of data mining set quality might be mapped into the 
contextual model. It then provides a method to evaluate the 
relationships among contextual dimensions via a similarity matrix 
to determine which mapped contextual quality dimension might 
have the highest degree of relationship. Strong relationship can 
then be the basis for creation of a data mining set taxonomic tree 
can be constructed. Such a tree could be able to classify data 
mining sets based on contextual quality. 
Much work remains to be developed on this topic. The first area 
to pursue would be that of determining quantitative models for the 
data mining set quality attributes. For instance how would 
freshness be modeled and what is its relationship with other 
quality measures. The development of the algorithm for 
interactive population of the similarity matrix would be another 
large area of research. The issue in this research would be how to 
build an algorithm that can duplicate its results consistently and 
reliably. Finally, the construction method for taxonomic 
contextual quality classification should be investigated thorough 
for its application and principles. It may turn out that this concept 
borrowed from biology might actually merge with methods in 
data mining to become a new approach to data mining. The 
concept of contextual processing is broad and new. As such, it 
offers potential application to data mining and a variety of other 
fields.  
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