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Abstract 
In past years, a l q g e  number of published dis- 

tributed algorithms have been shown to  be incorrect. 
Unfortunately, designers of distributed algorithms typ- 
ically use informal correctness proofs, which tend to 
be unreliable. Formal correctness proofs offer a much 
higher degree of reliability, but they are not popular 
among algorithm designers because they are too math- 
ematical and they typically assume synchronous mes- 
sage communication or some other abstract notation, 
and are therefore not easily applicable to  the asyn- 
chronous message passing environment - the envi- 
ronment commonly assumed by many algorithm de- 
signers. To address this problem, we have developed 
a semiformal correctness proof method for  the asyn- 
chronous message passing environment, using ideas 
from well known formal correctness proof methods. In 
this paper, we illustrate part of the proof method by 
proving the safety property of a simple network broad- 
cast algorithm. 

1 Introduction 
Our main purpose in this paper is to  provide a semi- 

formal correctness proof of the safety property of a 
network broadcast algorithm. Below we discuss our 
motivation for this work in more detail. 

In recent years, a large number of published dis- 
tributed algorithms have been shown to be incorrect. 
To quote Tanenbaum in [15, page 5021, “Worst of 
all, a large fraction of all the published algorithms 
in this area [distributed deadlock detection] are just 
plain wrong, including those proven to  be correct ... 
It often occurs that shortly after an algorithm is in- 
vented, proven correct, and then published, somebody 
finds a counterexample”. For example, [5] showed that 
a distributed algorithm [12] for deadlock detection in 
distributed databases was incorrect, Further exam- 
ples of erroneous distributed deadlock detection algo- 
rithms are given in [7,14]. [B] showed that an algo- 
rithm for distributed termination detection [l] would 
detect false termination. In [9], we showed that a mul- 
tiprocess synchronization algorithm [2] had a livelock 
problem. In [ll], we showed that the algorithm in’[3] 
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to implement the generalized input-output construct 
of CSP [6] was incorrect. In [lo], we showed that the 
distributed depth first search algorithm of [13] had 
some minor correctness problems. 

Note that the problem cannot be significantly re- 
duced by simply asking the authors and referees to  
be more careful. Also, known testing methods for se- 
quential algorithms are not well suited for distributed 
algorithms. Formal proof methods are not commonly 
used by algorithm designers in the published literature 
for a variety of reasons, including being too mathemat- 
ical and requiring the designer to  rewrite the code in 
a more abstract notation. Informal correctness proofs 
are too unreliable. 

To address the above problems, we devised a semi- 
formal proof method. This proof method is more rig- 
orous than the usual informal proofs, but simpler and 
less mathematical than the usual formal proofs and 
does not require the designers to  rewrite their algo- 
rithm in some abstract programming notation. This 
proof method assumes the asynchronous message pass- 
ing environment. Therefore hopefully it will be more 
attractive to  common algorithm designers and readers. 

Due to  space limitations, we cannot discuss the 
proof method in this paper. Instead, we illustrate 
the use of the proof method by focusing on a sim- 
ple network broadcast problem, presenting a simple 
algorithm for i t ,  and then providing a brief correct- 
ness proof of its safety. For the sake of brevity, we 
skip discussion of the liveness properties of the algo- 
rithm. Similarly we skip several details in the safety 
proof and in the rest of our discussion. Our objective 
in this paper is to  provide a flavor of the proof, not all 
its details. 

2 Programming Environment 
We assume that the message communication in the 

distributed system is asynchronous. In other words, 
a sender process i does not need to  synchronize with 
the receiver process j before i can send a message 
to j ,  We do not require the communication channels 
to  be First-In-First-Out (FIFO). A message sent to  a 
process arrives at the input port of the process after 
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an arbitrary but finite communication delay (possibly 
zero). A message that has been sent but has not ar- 
rived at  the input port of the receiver is said to be in 
transit. 

The code is written in the style of guarded com- 
mand$ (or rules) a t  any process i. The basic idea of 
guarded commands has been discussed in [4 ,6] .  We use 
a somewhat different syntax and semantics because of 
the asynchronous message passing environment. 

3 Definition of the Network Broadcast 
Problem 

3.1 Informal Description 
Let G=( V , E )  be a connected, undirected graph 

where V denotes the set of vertices, numbered 
1,2,. . . ,N(N>l) ,  and E denotes the set of undirected 
edges in the graph. Consider the topologically iso- 
morphic computer network where each node i is rep- 
resented by the process i ,  and each edge is represented 
by a bidirectional communication line. Let T be a par- 
ticular spanning tree of this graph. Each process i in 
the network has the following information: 

1. The value of its own id i ,  say in a variable myid. 
2. The id of the father node in the spanning tree 

T, say in a variable father. If i is the root node 
of the tree, then the value of father will be the 
same as myid. 

3. A set sons containing the ids of the son nodes 
of node i in the spanning tree T. 

4. The value of N .  
5 .  The value of mydata+. This is a local data a t  

process i that needs to be communicated to all 
other processes. 

The objective of the network broadcast problem 
considered here is to devise a distributed algorithm 
so that each process acquires a copy of the various 
mydata values stored a t  the processes in the network. 
The first message in the system should be sent by the 
root; other processes should not send their first mes- 
sage before receiving a message. Informally, we require 
the following correctness properties of the algorithm: 

1. The system computation should terminate 
within a finite time. 

2. When the system computation is terminated, 
the following properties hold: (a) Each process 
i knows the values of various mydataj in the 
system, say in an array A, i.e., Ai[j]=mydataj.  
(b) Each process is terminated, i.e., it has ex- 
ecuted the statement “terminate this process”, 
and (c) there are no (unreceived) messages at 
the input port of any process. 
Specification of Desired Safety Prop- 
er t ies : 

Property SF below states the safety property that 
a correct algorithm must satisfy. 
SF. If the system computation is currently terminated, 
then a t  this point the following assertions are true: (in 
SF1-SF3 below, the variables U, w range over integers 
1,2,. . .,N. The range of other variables is arbitrary, 
unless stated otherwise. All free variables u , w  are 
universally quantified.) 

3.2 

SF1. AIL[w] = mydata,. 
SF2. terminated, =TRUE. 
SF3. 

4 The Algorithm 
4.1 Global Constant Declarations 
N = The total number of processes in the system; 

3 no message at the input port of process U .  

(* N L  1. *) 

4.2 Declaration of Variables Local To 

mydata : integer; (* The data owned by process i ,  to 

myid : integer; (* Id of this process *) 

father : integer; (* id of the father node in the tree 7’ 
if i is not the root node; otherwise its value is the 
same as myid. *) 

sons : set of integers; (* Contains ids of son nodes. 
As a special case, the set may be empty. *) 

neigh : set of integers; (* Contains ids of neighbors of 
this node along the tree T, i.e., if father# myid 
then neigh = sonsCJ{father} else neigh = sons. 
This variable is defined in order to avoid comput- 
ing the above expression several times during the 
execution. *) 

A : array[l ... N ]  of integer; (* A b ] ,  once defined, 
would contain the naydata value of process j .  *) 

Aentries : integer; (* The number of elements of 
the array A where actual data values have been 
stored. *) 

in-hand : array[l . . . N ]  of boolean; (* inihandlj] =: 
TRUE if the value mydataj has already been 
stored in A b ] ,  FALSE otherwise. This is an aux- 
iliary variable - needed for the proof only. *) 

Process i 

be passed on to every other process. *) 

4.3 
myid := i ;  
initialize father and sons appropriately; 
initialize mydata to the abppropriate value; 
neigh := sons U ({father} - { m y i d } ) ;  
(* if father# myid then neigh = sonsU{father} 

Aentries := 0;  
for j := 1 to N do 

if father=myid then send message 

Initialization Code Of Process i 

else neigh = sons. *) 

inhandlj] := FALSE; 

M (myid,  myid, mydata) to process myid; 

4.4 Guarded Commands (Rules) of Pro- 
cess i 

(* Receiving data. *) 
S1. received message M (  owner_id,sender-id,data) + 

A[owner id]  := data; 
Aentries := AentriesSl; 
in-hand[owner-id] :=I TRUE; 
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X := neigh- (sender-id}; 
send message M(owner-id,myid,dutu) to 
each process in X ;  
if Aentries = 1 A father # myid then send 
message M (  m y i d ,  m y i d ,  mydutu) to process m y i d ;  

(* The process is going to terminate now. *) 
S2. Aentries= N +  terminate this process; 

5 Proof of Safety Properties 
Corresponding to any node i ,  let us define a tree 

T ( i )  which is identical to the given tree T as an acyclic 
connected graph but whose root is the node i. For any 
node j ,  let F ( j , i )  denote the father of node j corre- 
sponding to the tree T ( i ) .  (As in the definition of the 
variable father, which corresponds to the tree T ,  we 
have F(j,i)= j for j = i ) .  Similarly, let S( j , i )  denote 
the set of sons of node j corresponding to  the tree 

Define the assertion I to be the conjunction of as- 
sertions A1-A10 below. Later in Lemma 1, we will 
show that I is an invariant. For the various asser- 
tions stated in this paper, we assume that the vari- 
ables U, w ,  a range over integers 1,2,. . . , N .  Range of 
other variables is arbitrary, unless stated otherwise. 
All free variables U, w ,  a in these assertions are uni- 
versally quantified. 
Al .  Aentries, = the number of processes w such 

that i nhan& [ w].  
A2. in-hand,[w] j A,[w] = mydata,. 
A3. ( x  = F ( u ,  w )  A in-hand,[w]) inhand , [w] .  
A4. given any message at the input port of, or in 

transit to, process U, this message is 
of the form M(w,x ,da ta )  where 
x = F U, w , and data = mydata,. 

T ( i ) .  

A5. x =  F I 1  u , w  j 
( [3 a message of the form M ( w , .  . . ,. . .) at  the 

input port of, or in transit to, process U] e 
[ (1 i n h a n d ,  [ w ] ) A  

[w # U A in-hand,[w]] v [w = U A  
[father = myid, V Aentries, > O)]) 

I 
1. 

A6. V w :: 3 at most one message of the form 
M ( w , .  . . ,. . .) at  the input port of, 
or in transit to, process U. 
(* Note: For a given U, there may be several 
such messages, but with different values of w.*) 

A7. terminated, j Aentries, = N .  
A8. neigh, = S(u,  w) U ( { F ( u ,  w ) }  - {U}). 
A9. 3 u :: father, = myid,. 

Lemma 1: The assertion I (i.e., the conjunction of 
A1-A10) is an invariant. 
Proof: Obviously I is true after the initialization. 
Also, if a transient message arrives a t  an input port, 
clearly this event does not change the value of I from 
true to false. Now we need to show that, for any rule 
execution at  any process i, the rule execution indeed 
terminates gracefully and I remains true at the end of 
the rule execution. We do this informally in oar proof 
method; the details are skipped here. 

A ~ O .  myid,  = U. 

Lemma 2: [System computation has terminated] + 
[Vu :: 3 no message at the input port of, 
or in transit to, process a]. 

Proof: By definition of the system computation be- 
ing terminated, there are no transient messages at  this 
point. Now suppose process u has a message at its in- 
put port. By A4, this message must be of the form 
M(w,x ,da ta )  where 1 5 w ,  z 5 N ,  and x = P ( u ,  w ) .  
By A5, in-hun&[w] is FALSE. Therefore by Al ,  we 
have Aentries, < N .  Hence by AT, terminated, is 
FALSE. Therefore rule S1 at  process u is ready. This 
contradicts the hypothesis that the system computa- 
tion has terminated. 

Lemma 3: [System computation has terminated] =+- 
[Vu, w ,  x : x = F ( U ,  w )  :: 
( i n h a n d ,  [ w] 3 in-hand, [ w])]. 

Proof: Assume that the system computation has 
terminated, and consider any u,w,x satisfying x = 
F ( u , w ) .  If u = w then z = u and the result obvi- 
ously holds. 

Now consider the case u # w. Suppose 
i n h a n d ,  [w] A ~ i n - h u n d ,  [w] is TRUE. By A5, we con- 
clude that 3 a message M(ur,. . . ). . .) a t  the input port 
of, or in transit to, process U. This contradicts Lemma 
2. 

Lemma 4: [System computation has terminated] =j 

Proof: By A9, there exists a process w such that 
1 5 w 5 N A father, = myid,. Suppose i n h a n d ,  [w] 
is FALSE. By substituting U = w in A5, we conclude 
that 3 a message M ( w , .  . .,. . .) a t  the input port of, 
or in transit to, process w .  This contradicts Lemma 
2. 

Lemma 5: [System computation has terminated] 3 

Proof: Suppose the system computation has termi- 
nated, and consider any w satisfying i n h a n d ,  [w] .  We 
establish in-han& [w] by proceeding inductively on the 
level of node u in the tree T ( w ) ,  starting with the root 
of the tree. The base case is obvious, since in that case 
we have u = w. 

Inductively, consider any node U other than node 
20 on the tree. Let a= F ( u , w  . By the induction 
hypothesis, we have in-hand,[w.  1 By Lemma 3, we 
obviously get i n J a n &  [w] .  

Lemma 6: [System computation has terminated] 3 

Proof: Consider any process w stipulated in Lemma 
4. By Lemma 5 ,  we have 
in-horn&[w]. We need to show that in-han&[u] is 
TRUE. 

Suppose zn-han& [U] is FALSE. Since i n h a n &  [w] 
is TRUE, from A1 we get Aentries,> 0. Therefore by 
A5 we conclude that there is a message of the form 
M ( u , .  . .,. . .) at  the input port of, or in transit to, 
process u. This contradicts Lemma 2. 

[3w :: in-hand, [w]] .  

pu, w :: in-hend,[w] + in-hend,[ur]]. 

[Vu :: inhand,[u]] .  

Let u be any process. 
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Lemma 7: [System computation has terminated] 

Proof: Follows immediately from Lemmas 6 and 5. 

Theorem 1: Our algorithm satisfies the safety 
property SF stated in section 3.2. 

Proof: Suppose the system computation has termi- 
nated. 
SF1: The result immediately follows from Lemma 7, 

A2, and Lemma 1. 
SF2: Consider any process U. From Lemma 7, A l l  

and Lemma 1, we get Aentries, = N .  Obvi- 
ously terminate& must be TRUE, because oth- 
erwise the rule S2 a t  process u would be ready, 
contradicting the hypothesis that the system 
computation has terminated. 

SF3: Follows immediately from Lemma 2. 

6 Concluding Remarks 
In comparison with formal proof methods, our 

method is simpler to  understand and apply, in many 
respects: 

1. Our language directly employs asynchronous 
message passing, so the algorithm designer does 
not have to  rewrite the algorithm in a very dif- 
ferent programming environment. 

2. We have tried to  keep our programming nota- 
tion close to the more common way in which al- 
gorithms are presented in the literature. Thus 
we use a guarded command based notation and 
avoid mathematical looking notation. 

3. Our programming language is fairly simple, re- 
sulting in a simpler proof method. For example, 
we don’t use nested guarded commands or mes- 
sage reception on the RHS of a guarded com- 
mand. 

4. Delegating part of the proof to informal reason- 
ing further simplifies the proof, without hurting 
the reliability of the proof much. Note that this 
informal reasoning does not rely on the reader’s 
understanding of the overall algorithm; it only 
relies upon his understanding of the underlying 
programming language used. Thus it does not 
significantly hurt the rigor or reliability of the 
proof. 

In comparison with the usual informal proofs, our 
proof is far more reliable. In particular, i t  forces the 
authors to  explicitly specify essential properties of all 
possible reachable global states. This is where a large 
number of errors occur in informal proofs, since typi- 
cally only a part of such properties is explicitly stated 
and the rest is left to  intuition - thus it does not form 
a complete invariant. Moreover, the stated properties 
are not collected together in one place in papers that 
are based on informal proofs. 
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