
A Semiformal Correctness Proof Of A Network Broadcast
Algorithm

Devendra Kumar Sitharam S. Iyengar

Department of Computer Sciences
The City College

and The Graduate Center
of The City University of New York

New York, NY 10031

Abstract
In past years, a l q g e number of published dis-

tributed algorithms have been shown to be incorrect.
Unfortunately, designers of distributed algorithms typ-
ically use informal correctness proofs, which tend to
be unreliable. Formal correctness proofs offer a much
higher degree of reliability, but they are not popular
among algorithm designers because they are too math-
ematical and they typically assume synchronous mes-
sage communication or some other abstract notation,
and are therefore not easily applicable to the asyn-
chronous message passing environment - the envi-
ronment commonly assumed by many algorithm de-
signers. To address this problem, we have developed
a semiformal correctness proof method for the asyn-
chronous message passing environment, using ideas
from well known formal correctness proof methods. In
this paper, we illustrate part of the proof method by
proving the safety property of a simple network broad-
cast algorithm.

1 Introduction
Our main purpose in this paper is to provide a semi-

formal correctness proof of the safety property of a
network broadcast algorithm. Below we discuss our
motivation for this work in more detail.

In recent years, a large number of published dis-
tributed algorithms have been shown to be incorrect.
To quote Tanenbaum in [15, page 5021, “Worst of
all, a large fraction of all the published algorithms
in this area [distributed deadlock detection] are just
plain wrong, including those proven to be correct ...
It often occurs that shortly after an algorithm is in-
vented, proven correct, and then published, somebody
finds a counterexample”. For example, [5] showed that
a distributed algorithm [12] for deadlock detection in
distributed databases was incorrect, Further exam-
ples of erroneous distributed deadlock detection algo-
rithms are given in [7,14]. [B] showed that an algo-
rithm for distributed termination detection [l] would
detect false termination. In [9], we showed that a mul-
tiprocess synchronization algorithm [2] had a livelock
problem. In [ll], we showed that the algorithm in’[3]

Computer Science Department
Louisiana State University

Baton Rouge, Louisiana 70803-4020

to implement the generalized input-output construct
of CSP [6] was incorrect. In [lo], we showed that the
distributed depth first search algorithm of [13] had
some minor correctness problems.

Note that the problem cannot be significantly re-
duced by simply asking the authors and referees to
be more careful. Also, known testing methods for se-
quential algorithms are not well suited for distributed
algorithms. Formal proof methods are not commonly
used by algorithm designers in the published literature
for a variety of reasons, including being too mathemat-
ical and requiring the designer to rewrite the code in
a more abstract notation. Informal correctness proofs
are too unreliable.

To address the above problems, we devised a semi-
formal proof method. This proof method is more rig-
orous than the usual informal proofs, but simpler and
less mathematical than the usual formal proofs and
does not require the designers to rewrite their algo-
rithm in some abstract programming notation. This
proof method assumes the asynchronous message pass-
ing environment. Therefore hopefully it will be more
attractive to common algorithm designers and readers.

Due to space limitations, we cannot discuss the
proof method in this paper. Instead, we illustrate
the use of the proof method by focusing on a sim-
ple network broadcast problem, presenting a simple
algorithm for i t , and then providing a brief correct-
ness proof of its safety. For the sake of brevity, we
skip discussion of the liveness properties of the algo-
rithm. Similarly we skip several details in the safety
proof and in the rest of our discussion. Our objective
in this paper is to provide a flavor of the proof, not all
its details.

2 Programming Environment
We assume that the message communication in the

distributed system is asynchronous. In other words,
a sender process i does not need to synchronize with
the receiver process j before i can send a message
to j , We do not require the communication channels
to be First-In-First-Out (FIFO). A message sent to a
process arrives at the input port of the process after

0730-3157/97 $10.00 0 1997 IEEE
668

an arbitrary but finite communication delay (possibly
zero). A message that has been sent but has not ar-
rived at the input port of the receiver is said to be in
transit.

The code is written in the style of guarded com-
mand$ (or rules) a t any process i. The basic idea of
guarded commands has been discussed in [4 ,6] . We use
a somewhat different syntax and semantics because of
the asynchronous message passing environment.

3 Definition of the Network Broadcast
Problem

3.1 Informal Description
Let G=(V , E) be a connected, undirected graph

where V denotes the set of vertices, numbered
1,2,. . . ,N(N>l) , and E denotes the set of undirected
edges in the graph. Consider the topologically iso-
morphic computer network where each node i is rep-
resented by the process i , and each edge is represented
by a bidirectional communication line. Let T be a par-
ticular spanning tree of this graph. Each process i in
the network has the following information:

1. The value of its own id i , say in a variable myid.
2. The id of the father node in the spanning tree

T, say in a variable father. If i is the root node
of the tree, then the value of father will be the
same as myid.

3. A set sons containing the ids of the son nodes
of node i in the spanning tree T.

4. The value of N .
5 . The value of mydata+. This is a local data a t

process i that needs to be communicated to all
other processes.

The objective of the network broadcast problem
considered here is to devise a distributed algorithm
so that each process acquires a copy of the various
mydata values stored a t the processes in the network.
The first message in the system should be sent by the
root; other processes should not send their first mes-
sage before receiving a message. Informally, we require
the following correctness properties of the algorithm:

1. The system computation should terminate
within a finite time.

2. When the system computation is terminated,
the following properties hold: (a) Each process
i knows the values of various mydataj in the
system, say in an array A, i.e., Ai[j]=mydataj.
(b) Each process is terminated, i.e., it has ex-
ecuted the statement “terminate this process”,
and (c) there are no (unreceived) messages at
the input port of any process.
Specification of Desired Safety Prop-
er t ies :

Property SF below states the safety property that
a correct algorithm must satisfy.
SF. If the system computation is currently terminated,
then a t this point the following assertions are true: (in
SF1-SF3 below, the variables U, w range over integers
1,2,. . .,N. The range of other variables is arbitrary,
unless stated otherwise. All free variables u , w are
universally quantified.)

3.2

SF1. AIL[w] = mydata,.
SF2. terminated, =TRUE.
SF3.

4 The Algorithm
4.1 Global Constant Declarations
N = The total number of processes in the system;

3 no message at the input port of process U .

(* N L 1. *)

4.2 Declaration of Variables Local To

mydata : integer; (* The data owned by process i , to

myid : integer; (* Id of this process *)

father : integer; (* id of the father node in the tree 7’
if i is not the root node; otherwise its value is the
same as myid. *)

sons : set of integers; (* Contains ids of son nodes.
As a special case, the set may be empty. *)

neigh : set of integers; (* Contains ids of neighbors of
this node along the tree T, i.e., if father# myid
then neigh = sonsCJ{father} else neigh = sons.
This variable is defined in order to avoid comput-
ing the above expression several times during the
execution. *)

A : array[l ... N] of integer; (* A b] , once defined,
would contain the naydata value of process j . *)

Aentries : integer; (* The number of elements of
the array A where actual data values have been
stored. *)

in-hand : array[l . . . N] of boolean; (* inihandlj] =:
TRUE if the value mydataj has already been
stored in A b] , FALSE otherwise. This is an aux-
iliary variable - needed for the proof only. *)

Process i

be passed on to every other process. *)

4.3
myid := i ;
initialize father and sons appropriately;
initialize mydata to the abppropriate value;
neigh := sons U ({father} - { m y i d }) ;
(* if father# myid then neigh = sonsU{father}

Aentries := 0;
for j := 1 to N do

if father=myid then send message

Initialization Code Of Process i

else neigh = sons. *)

inhandlj] := FALSE;

M (myid, myid, mydata) to process myid;

4.4 Guarded Commands (Rules) of Pro-
cess i

(* Receiving data. *)
S1. received message M (owner_id,sender-id,data) +

A[owner id] := data;
Aentries := AentriesSl;
in-hand[owner-id] :=I TRUE;

669

X := neigh- (sender-id};
send message M(owner-id,myid,dutu) to
each process in X ;
if Aentries = 1 A father # myid then send
message M (m y i d , m y i d , mydutu) to process m y i d ;

(* The process is going to terminate now. *)
S2. Aentries= N + terminate this process;

5 Proof of Safety Properties
Corresponding to any node i , let us define a tree

T (i) which is identical to the given tree T as an acyclic
connected graph but whose root is the node i. For any
node j , let F (j , i) denote the father of node j corre-
sponding to the tree T (i) . (As in the definition of the
variable father, which corresponds to the tree T , we
have F(j,i)= j for j = i) . Similarly, let S(j , i) denote
the set of sons of node j corresponding to the tree

Define the assertion I to be the conjunction of as-
sertions A1-A10 below. Later in Lemma 1, we will
show that I is an invariant. For the various asser-
tions stated in this paper, we assume that the vari-
ables U, w , a range over integers 1,2,. . . , N . Range of
other variables is arbitrary, unless stated otherwise.
All free variables U, w , a in these assertions are uni-
versally quantified.
Al . Aentries, = the number of processes w such

that i nhan& [w].
A2. in-hand,[w] j A,[w] = mydata,.
A3. (x = F (u , w) A in-hand,[w]) inhand , [w] .
A4. given any message at the input port of, or in

transit to, process U, this message is
of the form M(w,x ,da ta) where
x = F U, w , and data = mydata,.

T (i) .

A5. x = F I 1 u , w j
([3 a message of the form M (w , . . . ,. . .) at the

input port of, or in transit to, process U] e
[(1 i n h a n d , [w]) A

[w # U A in-hand,[w]] v [w = U A
[father = myid, V Aentries, > O)])

I
1.

A6. V w :: 3 at most one message of the form
M (w , . . . ,. . .) at the input port of,
or in transit to, process U.
(* Note: For a given U, there may be several
such messages, but with different values of w.*)

A7. terminated, j Aentries, = N .
A8. neigh, = S(u, w) U ({ F (u , w) } - {U}).
A9. 3 u :: father, = myid,.

Lemma 1: The assertion I (i.e., the conjunction of
A1-A10) is an invariant.
Proof: Obviously I is true after the initialization.
Also, if a transient message arrives a t an input port,
clearly this event does not change the value of I from
true to false. Now we need to show that, for any rule
execution at any process i, the rule execution indeed
terminates gracefully and I remains true at the end of
the rule execution. We do this informally in oar proof
method; the details are skipped here.

A ~ O . myid, = U.

Lemma 2: [System computation has terminated] +
[Vu :: 3 no message at the input port of,
or in transit to, process a].

Proof: By definition of the system computation be-
ing terminated, there are no transient messages at this
point. Now suppose process u has a message at its in-
put port. By A4, this message must be of the form
M(w,x ,da ta) where 1 5 w , z 5 N , and x = P (u , w) .
By A5, in-hun&[w] is FALSE. Therefore by Al , we
have Aentries, < N . Hence by AT, terminated, is
FALSE. Therefore rule S1 at process u is ready. This
contradicts the hypothesis that the system computa-
tion has terminated.

Lemma 3: [System computation has terminated] =+-
[Vu, w , x : x = F (U , w) ::
(i n h a n d , [w] 3 in-hand, [w])].

Proof: Assume that the system computation has
terminated, and consider any u,w,x satisfying x =
F (u , w) . If u = w then z = u and the result obvi-
ously holds.

Now consider the case u # w. Suppose
i n h a n d , [w] A ~ i n - h u n d , [w] is TRUE. By A5, we con-
clude that 3 a message M(ur,. . .). . .) a t the input port
of, or in transit to, process U. This contradicts Lemma
2.

Lemma 4: [System computation has terminated] =j

Proof: By A9, there exists a process w such that
1 5 w 5 N A father, = myid,. Suppose i n h a n d , [w]
is FALSE. By substituting U = w in A5, we conclude
that 3 a message M (w , . . .,. . .) a t the input port of,
or in transit to, process w . This contradicts Lemma
2.

Lemma 5: [System computation has terminated] 3

Proof: Suppose the system computation has termi-
nated, and consider any w satisfying i n h a n d , [w] . We
establish in-han& [w] by proceeding inductively on the
level of node u in the tree T (w) , starting with the root
of the tree. The base case is obvious, since in that case
we have u = w.

Inductively, consider any node U other than node
20 on the tree. Let a= F (u , w . By the induction
hypothesis, we have in-hand,[w. 1 By Lemma 3, we
obviously get i n J a n & [w] .

Lemma 6: [System computation has terminated] 3

Proof: Consider any process w stipulated in Lemma
4. By Lemma 5 , we have
in-horn&[w]. We need to show that in-han&[u] is
TRUE.

Suppose zn-han& [U] is FALSE. Since i n h a n & [w]
is TRUE, from A1 we get Aentries,> 0. Therefore by
A5 we conclude that there is a message of the form
M (u , . . .,. . .) at the input port of, or in transit to,
process u. This contradicts Lemma 2.

[3w :: in-hand, [w]] .

pu, w :: in-hend,[w] + in-hend,[ur]].

[Vu :: inhand,[u]] .

Let u be any process.

670

Lemma 7: [System computation has terminated]

Proof: Follows immediately from Lemmas 6 and 5.

Theorem 1: Our algorithm satisfies the safety
property SF stated in section 3.2.

Proof: Suppose the system computation has termi-
nated.
SF1: The result immediately follows from Lemma 7,

A2, and Lemma 1.
SF2: Consider any process U. From Lemma 7, A l l

and Lemma 1, we get Aentries, = N . Obvi-
ously terminate& must be TRUE, because oth-
erwise the rule S2 a t process u would be ready,
contradicting the hypothesis that the system
computation has terminated.

SF3: Follows immediately from Lemma 2.

6 Concluding Remarks
In comparison with formal proof methods, our

method is simpler to understand and apply, in many
respects:

1. Our language directly employs asynchronous
message passing, so the algorithm designer does
not have to rewrite the algorithm in a very dif-
ferent programming environment.

2. We have tried to keep our programming nota-
tion close to the more common way in which al-
gorithms are presented in the literature. Thus
we use a guarded command based notation and
avoid mathematical looking notation.

3. Our programming language is fairly simple, re-
sulting in a simpler proof method. For example,
we don’t use nested guarded commands or mes-
sage reception on the RHS of a guarded com-
mand.

4. Delegating part of the proof to informal reason-
ing further simplifies the proof, without hurting
the reliability of the proof much. Note that this
informal reasoning does not rely on the reader’s
understanding of the overall algorithm; it only
relies upon his understanding of the underlying
programming language used. Thus it does not
significantly hurt the rigor or reliability of the
proof.

In comparison with the usual informal proofs, our
proof is far more reliable. In particular, i t forces the
authors to explicitly specify essential properties of all
possible reachable global states. This is where a large
number of errors occur in informal proofs, since typi-
cally only a part of such properties is explicitly stated
and the rest is left to intuition - thus it does not form
a complete invariant. Moreover, the stated properties
are not collected together in one place in papers that
are based on informal proofs.

Acknowledgments

[Vu, w :: in-hand, [tu]].

The research work of S. S. Iyengar was supported by
the Office of Naval Research grant N00014-94-1-0343.

REFERENCES

[l] R. K. Arora, S.P. Rana, and M. N. Gupta, “Dis-
tributed Termination Detection Algorithm For
Distributed Computations” , Information Pro-
cessing Letters, vol. 22, no. 6, pp. 311-314,
1986.

[2] R. Bagrodia, “A Distributed Algorithm for N -
Party Interactions”, Technical Report STP-053-
85, Micro-electronics and Computer Corpora,-
tion (MCC), Austin, Texas, August 1985.

[3] G. N. Buckley and A. Silberschatz, “An effec-
tive implementation for the generalized input-
output construct of CSP,” ACM Trans. Pro-
gram. Lang. Syst., vol. 5, no. 2, pp. 223-235,
1983.

[4] Dijkstra, E. W., “Guarded commands, nonde-
terminacy and formal derivation of programs,’’

[5] V. Gligor and S. Shattuck, “On Deadlock De-
tection in Distributed Systems, IEEE-TSE,
Vol. SE-6, No. 5, lp?. 435-440, September 1980.

[6] C. A. R. Hoare, Communicating Sequential
Processes”, Communications of the ACM, Vol.

[7] E. Knapp, “Deadlock Detection in Distributed
Databases”, Com,puting Surveys, vol. 19, pp.
303-328, Dec. 1987.

[8] D. Kumar, “On The Correctness Of A Termi-
nation Detection Algorithm”, Technical Report
TR-87-08, Department of Computer Sciences,
University of Texats, Austin, March 1987.

[9] D. Kumar, “An Algorithm for N-Party Syn-
chronization Using Tokens” , lo th International
Conference on Dicrtributed Computing Systems,
pp. 320-327, Paris, France, May 28 - June 1,
1990.

[lo] D. Kumar, S. S. [yengar, and M. B. Sharma,
“Corrections to a distributed depth-first-search
algorithm”, Information Processing Letters,
vol. 35, pp. 55-56, 15 June, 1990.

[ll] D. Kumar and A. ISilberschatz, “A Counter Ex-
ample To An Algorithm For The Generalized
Input-Output Construct Of CSP”, Information
Processing Letters, April 1997.

[12] D. Menasce and R. Muntz, “Locking and dead-
lock detection in distributed data bases”, IEEE
fiansaction on Software Engineering,vol. 5,
no. 3 , pp. 195-202, May 1979.

[13] M. B. Sharma, S. S. Iyengar, and N. K.
Mandyam, “An Efficient Distributed Depth-
First-Search Algorithm” , Information Process -
ing Letters, vol. 32, pp. 183-186, 1989.

[14] M. Singhal, “Deadlock Detection in Distributed
Systems”, IEEE Computer, vol. 22, pp. 37-48,
Nov. 1989.

[15] A. S. Tanenbaum, Modern Operating Systems,
Prentice Hall, Englewood Cliffs, N.J. 07632,
1992.

CACM 18, 8, pp. 453-457, August 1975.

21, NO. 8, pp. 666-777, August 1978.

671

