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Abstract- This paper presents distributed adaptation tech-
niques for use in wireless sensor networks. As an example 
application, we consider data routing by a sensor network 
in an urban terrain. The adaptation methods are based on 
ideas from physics, biology, and chemistry. All approaches 
are emergent behaviors in that: (i) perform global adapta-
tion using only locally available information, (ii) have 
strong stochastic components, and (iii) use both positive 
and negative feedback to steer themselves. We analyze the 
approaches’ ability to adapt, robustness to internal errors, 
and power consumption. Comparisons to standard wireless 
communications techniques are given. 
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I. INTRODUCTION 
In this paper we present four distributed adaptation methods 
for use by wireless sensor networks (WSNs) in Military Opera-
tions in Urban Terrain (MOUT) scenarios.  Urban scenarios 
are challenging since obstructions to radio communications 
may cause the shortest path between two points to not be a 
straight line. The chaotic nature of MOUT missions means 
paths are not reliable. Only transient paths may exist. In spite 
of this, timely communications are required. Our approaches 
use local decisions to adapt to a constantly changing substrate. 
The insights we gained by testing these adaptation methods are 
being used to design and implement wireless routing protocols. 
The four methods we analyze are: (i) Spin Glass, (ii) Multi-
fractal, (iii) Coulombic, and (iv) Pheromone. 

 
A. Wireless Sensor Network (WSN) Definition 
A WSN is a set of sensor nodes monitoring their environment 
and providing users with timely data describing the region un-
der observation. Nodes have wireless communications. Cen-
tralized control of this type of network is undesirable and un-
realistic due to reliability, survivability, and bandwidth consid-
erations [1]. Distributed control also has other advantages: i) 
increased stability by avoiding single points of failure, ii) sim-
ple node behaviors replace complicated global behaviors, and 
iii) enhanced responsiveness to changing conditions since 
nodes react immediately to topological changes instead of 
waiting on central command.  Our definition of a WSN does 
not preclude  nodes being mobile. 

 
B) WSN Applications 
Consider the WSN application in [2], a surveillance network 
tracks multiple vehicles using a network of acoustic, seismic 
and infrared sensors. For a MOUT application, it is essential 
that the user community have timely track information. Figure 
1 shows an idealized MOUT terrain. Walls are objects which 
block radio signals, such as buildings. Open cells are open re-
gions allowing signal transmission. Open doors (closed doors) 

are choke points for signals that are open (closed). Finally, ob-
structions are intermittent disturbances that occur at random 
throughout the sensor field. Random factors are inserted to 
emulate common disruptions for this genre of network. Each 
square capable of transmission contains a sensor node. This 
amounts to having a sensor field with a uniform density. This 
provides an abstract example scenario approximating situa-
tions likely to exist in a real MOUT situation. This allows us to 
examine multiple adaptation techniques without being dis-
tracted by implementation details. After evaluating adaptation 
at this abstract level, the insights gained can then be used to 
create more robust routing protocols. 

 
Figure 1. Idealized urban terrain.  

  
C) WSN Requirements 
WSN applications will typically require a large number of 
nodes to adequately determine the number, position, and tra-
jectories of the objects under observation. To be affordable, 
individual nodes will be inexpensive and thus unreliable. 
Power consumption is an important issue. Our goal is to design 
a WSN that is fault tolerant, consumes minimal resources, 
supports secure message passing, and adapts well to environ-
mental changes.   

 
II. SPIN GLASS 

The Spin Glass method uses the Ising model. Locally interact-
ing magnets generate a macroscopic magnetic field. Field in-
tensity depends on a kinetic factor. No macroscopic field exists 
when randomly pointing magnets cancel each other out. Mag-
nets can align in metals like iron creating a perceptible mag-
netic field.  We apply a similar concept to route data in an ad 
hoc sensor network.  

Our simulations use a two-dimensional MOUT scenario like 
figure 1.  Each cell is a miniature magnet pointing in one of 
eight cardinal directions as its next hop on its way to the data 
sink. A potential energy field is established by data propagat-
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ing hop by hop from the data sink, defining the minimum 
number of hops from each node to the data sink.  One or more 
sink(s) can exist. Cells attempt to find optimal routes to the 
nearest data sink. Link failures update the potential field lo-
cally. This change diffuses through the system starting where 
the error occurs. Some disturbances are minor (ex. no other 
nodes depend on the link, or equally good alternatives exist). If 
a link serves is a critical routing point, minor errors can cause 
phase changes in the system.  

The node’s spin direction (data route) is a combination of 
the potential field and a kinetic factor. It follows the Boltz-
mann distribution: 

P[s] = e-E(s) / KT / ΣAe-E(A) / KT  (1) 

Instead of enumerating all possible configurations in the de-
nominator,, only eight possible local configurations (the cardi-
nal directions) are used. This reduces the computation needed 
and also removes the need for global information.  
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Fig. 2. Spin Glass Mean Distance 

If a cell points to neighbor s, E(s) represents s’s potential 
value minus the cell’s potential value.  K is the Boltzmann 
Constant and T is temperature. When T is large cells have an 
equal probability of pointing in any direction, regardless of 
their neighbors’ potential energy. When T is small, cells are 
more likely to point towards low energy neighbors. If T is at or 
below the freezing point, the system is in a rigid state and does 
not respond to its environment. T is important, because the 
shortest path is not the only important factor. A large T may 
reduce the power drain on choke points by data taking longer 
routes.  A low T can protect the system by reducing oscilla-
tions in the system.  T can be specified on a per-region basis, 
allowing flexible control of the system. 

To quantify system adaptation we measure the average dis-
tance from each node to the data sink.  Fig. 2 shows the mean 
number of hops versus generation number (time step) for a low 
temperature system (Low T), high temperature system (High 
T), and a system with a topological disturbance (Disturb). 
Topological disturbances correspond to choke points in figure 
1 opening or closing. The system converges well when T is 
small, but not when T is large. Topological disturbances are 
accommodated after a number of fluctuating generations. 

Figure 3 shows system power consumption. This is indica-
tive of system scalability. Our analysis considers only commu-

nications overhead.  To quantify the amount of energy con-
sumed we compute the total number of messages sent and their 
size. Fig. 3 shows communications cost with and without two 
topological disturbances.  
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Fig. 3. Spin Glass Communication Cost 
 

III. MULTI-FRACTAL 
Witten and Sander introduced the multi-fractal crystal-growing 
model in the early 1980s. On contact with foreign seeds, gas or 
fluid particles begin to solidify when crystallization conditions 
are satisfied. Crystal growth is inhibited by nearby particles 
due to interfacial surface tension and latent heat diffusion. 
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Fig. 4. Multi-fractal Mean Distance 

In Multi-fractal routing, the data sink is the foreign seed. A 
routing tree grows from the seed. The tree is essentially a 
space-filling curve. Based on the number of neighboring tree 
nodes, a set of probabilities for joining the routing tree were 
derived.  Cells are less likely to join the tree as the number of 
neighboring tree cells increase, similar to crystallization inhibi-
tion. The probabilities define the growth rate and structure of 
the routing tree. When topological disturbances occur, link 
failures propagate down the tree removing invalid routing table 
entries.  Fig. 4 shows the mean number of hops per generation 
number (time step) with and without topological disturbances 
(as for the Spin Glass model in fig 2.). Fig. 5 shows power 
consumption with and without a disturbance.  
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IV. COULOMBIC MODEL 

The Coulombic model is a preprocessing step for use with the 
pheromone approach discussed in section V. The goal is for 
data sources to be evenly distributed throughout the network. 
Data packets find the data source nearest to their node. Phero-
mone routing is then used to maintain efficient routes between 
data sources and sinks. A similar approach applied to sensor 
node placement for sensing coverage is in [3].  

The Coulombic model is roughly based on charged particle 
interactions defined by Coulomb’s Law: 

F = q1*q2 / (4π ε 0d2),   (2) 

where F is the amount of force on each particle, q1 is the net 
charge on particle 1, q2 is the net charge on particle 2, ε0 is the 
constant permittivity of free space, and d is the distance be-
tween the particles. 

We utilize two properties of Coulomb’s Law: (i)  the rela-
tionship between distance and force and (ii)  the interactions 
between the particles are all independent. This allows the ap-
proach to rely solely on local information and peer-to-peer in-
teractions. 

Node Count Vs Mean Distance for Multiple 
Parameter Sets
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Fig. 6. Performance for various parameters 

Data sources are particles with equal charge and polarity. 
The sensor nodes are called free cells, act as vessels through 
which force can be transmitted. Since we are attempting to 
evenly distribute data sources only one polarity is needed. 

The global behavior of having well distributed data sources 
emerges from the local node behaviors. Data sources transmit 
force to their neighbors. The neighboring nodes in turn trans-
mit a percentage of their force to their neighbors, etc. In es-
sence this approximates the inverse exponential relationship 
between the forces on particles and the distance between them. 
The system has no memory, allowing the peer-to-peer behav-
iors to rely solely on local information. 
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Fig. 7. Parameter effect upon power 

For the Coulombic model, we measure the mean distance of 
“free cells” from their closest data source.  Fig. 6 shows this 
for various parameter sets.  The DR (TR) parameter controls 
how rapidly forces dissipate (diffuse) in the system for each 
generation of the algorithm.  Parameter settings with squares 
(triangles and x’s) are optimal (suboptimal). 

Charge Diminish Rate Vs. Mean Distance of 
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Fig. 8. Parameter effect upon performance 

To tune the time needed for the Coulombic model to con-
verge to a steady state, the charge diminish rate parameter was 
introduced. The charge associated with each data source de-
creases over time. Steady state occurrence can be predicted us-
ing the following equation: 

N = ln(Ts) / -CDR,   (3) 

where N is the number of generations through the model, Ts is 
the Stopping Threshold parameter, and CDR is the Charge 
Diminish Rate parameter. 

The charge diminish rate parameter has direct control over 
how rapidly the quantity of messages being sent approaches a 
steady state behavior.  Fig. 7 shows how the relationship be-
tween power consumption and the charge diminish rate pa-
rameter.  Fig. 8 shows how varying this parameter affects the 
data source distribution. Note that a charge diminish rate of 
around 0.04 has good performance and low power consump-
tion.  

V. PHEROMONE 
The pheromone model used is based on how ants forage for 
food and related to the approach in [4]. Data sources (sinks) 
are ant nests (food). Messages are ants. Ants attempt to find 
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paths between the nests and food sources. They release two 
different pheromones: (i) search pheromone when they look 
for food and (ii) return pheromone when they have food and 
return to the nest. 

The ants also follow a random walk, but they also search 
for the opposite pheromone of the one they currently release. 
Ants searching for food tend to follow the highest concentra-
tion of return pheromone. Ants returning to the nest tend to 
follow the highest concentration of search pheromone. This is 
modeled as a probability distribution where each ant is more 
likely to move following the pheromone gradient. 

The approach in [4] was designed for wired networks. Our 
scenario is more similar to an open field. In our initial imple-
mentation a pathology was noticed where ants moving two and 
from the data sink would form a cycle. To counteract this, we 
caused the ants to be repulsed by the pheromone they currently 
emit.  A parameter was created denoting the relative strength 
of repulsion and attraction. This compels ants not to stay in 
one area and solved the pathology. 

To evaluate this algorithm we measure the number of hops 
an ant needs to make a round trip from its nest to a food 
source.  Fig. 9 plots this versus the repulsion ratio. A ratio of 
approximately 80% works best. 

Optimal Repulsion Ratio

210

215

220

225

230

235

240

245

250

255

0.2 0.4 0.6 0.8 0.9 1 1.2 1.4 1.8 2.5 5

Repulsion Ratio

A
ve

ra
ge

 P
at

h 
Le

ng
th

 
Fig. 9. Effect of repulsion on performance 
 

VI. PROTOCOL COMPARISON AND DISCUSSION 
Many routing protocols have been proposed for WSNs. The 
Link State (LS) routing algorithm requires global knowledge 
about the network. Global routing protocols suffer serious 
scalability problem as network size increases [6]. Destination-
Sequenced Distance-Vector algorithm (DSDV) is an iterative, 
table-driven, and distributed routing scheme that stores the 
next hop and number of hops for each reachable node. The 
routing table storage requirement and periodic broadcasting are 
the two main drawbacks to this protocol.[6] In Dynamic 
Source Routing Protocol (DSR), a complete record of trav-
ersed cells is required to be carried by each data packet. Al-
though no up to date routing information is maintained in the 
intermediate nodes’ routing table, the complete cell record car-
ried by each packet imposes storage and bandwidth problems. 
Ad-Hoc On Demand Distance Vector Routing Algorithm 
(AODV) alleviates the overhead problem in DSR by dynami-
cally establishing route table entries at intermediate nodes, but 
symmetric links are required by AODV. Cluster-head Gateway 
Switch Routing (CGSR) use DSDV as the underlying routing 
scheme to hierarchically address the network. Cluster head and 

gateway cells are subject to higher communication and compu-
tation burden and their failure can greatly deteriorate our sys-
tem [5]. Greedy Perimeter Stateless routing algorithm (GPSR) 
claims to be highly efficient in table storage and communica-
tion overhead. However, it heavily relies on the self-describing 
geographic position, which may not be available under most 
conditions. In addition, the greedy forwarding mechanism may 
prohibit a valid path to be discovered if some detouring is nec-
essary [7].  

The Spin Glass and Multi-fractal models are related to the 
table-driven routing protocols by establishing routes from 
every cell to data sink(s). These protocols ensure timely data 
transmission on demand without searching for the route each 
time. The Ant Pheromone model is related to the packet-driven 
protocols. Ants can be viewed as packets traversing from data 
sources to data sinks. All of the models we presented are de-
centralized, using only local knowledge at each node. They 
dynamically adapt to topological disturbances (path loss). 
Storage requirements for the routing table of Spin Glass and 
Multi-fractal are low compared with most other protocols, 
while the Ant Pheromone’s storage requirements are even 
lower than these two.   

The Temporally Ordered Routing Algorithm (TORA) is a 
source initiated and distributed routing scheme that shares 
some properties with the Spin Glass model. It establishes an 
acyclic graph using height metric relative to the data sink and 
also has local reaction to topological disturbances [5].  

The kinetic factor in our Spin Glass model and the fre-
quency of ant generation in the Ant Pheromone model pro-
vides the system with flexibility in controlling routing behav-
iors under various conditions. Route maintenance overhead is 
moderately high for the Spin Glass model.   

The Multi-fractal approach, as a probabilistic space-filling 
curve, has very light computation and communication load, 
and overhead is saved in route discovery and maintenance. 
This is at the cost of a higher distance to the data sink(s).  
Route maintenance overhead for the pheromones is low due to 
the reduced number of nodes involved in each path. Since the 
Multi-fractal model strives to cover the sensor field by using as 
few cells as possible, the sparse routing tree sparse conserves 
energy. The shortest routes to the data sink are not found using 
the Multi-fractal model.  

On the other hand, Spin Glass model is more sensitive to in-
ternal errors since any possible error may diffuse throughout 
the network. The Multi-fractal and Ant Pheromone models are 
very resistant to internal errors. The time required for the Ant 
Pheromone algorithm to converge to a steady state is much 
longer than required by the other two adaptations.  For applica-
tions requiring short data paths, the Spin Glass model is pre-
ferred.  For overhead sensitive applications that require quick 
deployment, the Multi-fractal model is a better candidate.  If 
error resilience and low overhead are the principle require-
ments, then the Ant Pheromone model is appropriate.  Hybrid 
methods or switching between methods at different phases 
may be useful. 
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VII. CONCLUSION 

The purpose of our work is to develop adaptive networking 
methods for ad hoc WSNs.  We performed analyzed the algo-
rithms based on resource consumption, fault tolerance, number 
of nodes required, sensitivity to algorithm parameters, and 
critical points where phase changes occur.   

This conference paper summarized some of our results. 
We are now using these insights to design wireless routing 
protocols in conjunction with researchers at the University of 
Wisconsin. Two applications are foreseen for these adaptive 
protocols.  

One application is for the system to tolerate intermittent 
hibernation by a non-negligible subset of the WSN nodes. This 
should significantly prolong the lifetime of the system. 

The other application is to maintain multiple routes to a 
single data sink. This should both prolong the system lifetime 
and support information assurance requirements. 

In addition to this, we are continuing our analysis of sys-
tem adaptation. A unifying abstraction is being considered that 
contains these approaches as a subset. It may then be possible 
to analytically derive local behaviors to maintain globally de-
sirable system attributes. 

Our approach is to consider and test the adaptation prob-
lems of the system at an abstract level first. Insights gained at 
this level can then be used in protocol design and implementa-
tion. We are currently designing the protocols for implementa-
tion and testing with standard network tools like NS-2. 
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