
Energy equivalence routing in wireless sensor networks

Wei Dinga,*, S.S. Iyengara, Rajgopal Kannana, William Rummlerb

aDepartment of Computer Science, 298 Coates Hall, Louisiana State University, Baton Rouge LA 70803, USA
bDepartment of Computer Science, Rochester Institute of Technology, USA

Received 19 August 2003; revised 28 April 2004; accepted 12 May 2004

Available online 4 June 2004

Abstract

Energy is a critical resource in wireless sensor networks. In this paper, we propose a new approach to maintain network wide energy

equivalence and maximize network lifetime. Compared to existing protocols, our approach emphasizes on route maintenance instead of route

finding. This means no critical nodes would become the bottleneck of network lifetime. A reroute request packet is sent out from sinks

periodically. When the packet reaches a path node, Common Neighbor Switching (CNS) algorithm checks energy difference between the

node and its neighbors outside the routing tree. If the difference goes beyond a threshold, double neighbor switching is performed. Two path-

rerouting algorithms, namely, Shortest Rerouting (EERS) and Longest Rerouting (EERL), are also presented to show that neighbor switching

is better than path rerouting. Simulation results show that CNS outperforms Directed Diffusion in more than 90% cases, while EERS and

EERL show only blurry and conditional advantage over directed diffusion.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Energy equivalence routing; Neighbor switching; Path rerouting; Directed diffusion

1. Introduction

Based upon new advances in VLSI, MEMS, wireless

communication, and distributed computing, wireless sensor

networks (WSNs) have boomed in past few years [1]. The

untethered and unattended nature of WSNs destines energy

sources of most sensors to be scanty and impossible to

replenish. Energy efficiency and network longevity have

dominated WSN design and have occupied a large portion

of research effort. Particularly while designing of routing

protocols, energy saving is an overwhelming consideration.

When all sensors have equal initial energy and equal

chances to become sources and sink, network could

maximize its lifetime if all sensors dissipate energy at the

same rate, since no loss of connectivity would result from

node failure. In this paper, we propose a new method to

balance energy consumption and keep approximate network

wide energy equivalence by replacing heavily dissipated

nodes with their unused or less used neighbors. Many

existing protocols in network layer offer solutions that set up

optimal routes, but they do not keep routes optimal.

Maintaining established routes is a common practice. On

the contrary, this paper concentrates on how to readjust

established routes to balance energy dissipation. The basic

heuristic is to periodically adjust energy dissipation in as

small a range as possible. In WSN, smallest topological

range is neighborhood, so we concentrated on neighbor

switching. Our approach may be used with any route finding

protocols, as long as result is a reverse multicast tree. We

use Directed Diffusion (DD) in our approach.

2. Related works

Many routing protocols have been designed to enhance

energy efficiency and prolong network lifetime in WSNs. At

the beginning on-demand protocols for mobile ad hoc

networks (MANET) were adopted, but they produce poor

results. They are inherently incompatible with WSN in the

following aspects [1]. First, WSNs are much larger and have

much higher density than MANET. Second, WSNs often

uses many-to-one communication model with the topology

of a reverse multicast tree. Furthermore, table-driven

MANET protocols require too much memory to store

0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.05.001

Microprocessors and Microsystems 28 (2004) 467–475

www.elsevier.com/locate/micpro

* Corresponding author. Address: Department of Computer Science, 298

Coates Hall, Louisiana State University, Baton Rouge LA 70803, USA.

Tel.: þ1-225-5781249; fax: þ1-225-5781465.

E-mail addresses: wding1@lsu.edu (W. Ding), iyengar@bit.csc.lsu.edu

(S.S. Iyengar), rkannan@bit.csc.lsu.edu (R. Kannan), war5549@rit.edu

(W. Rummler).

http://www.elsevier.com/locate/micpro

routing tables, which WSN cannot afford. Hence, research

focus was shifted to tailored protocols for WSNs.

Flooding is natural for multi-hop communication, but it

consumes too much energy. Many variants of flooding have

been designed as routing protocols for WSN. For example,

GRAdient Broadcast (GRAB) [2,3] sets up cost field by

flooding. Gossip [2,4] exercises a partial probabilistic

flooding to diffuse interests or events. Well-known

Directed Diffusion [2,5] uses limited flooding and an

acknowledgement scheme to set up route. Data aggregation

is integrated to minimize communication cost and maximize

energy efficiency. Geographical and Energy Aware Routing

(GEAR) [2,6] bounds flooding to a small region. Rumor

protocol is an integration of Gossip and GRAB. It combines

query flooding and event flooding [2].

Since, EER approach use flooding like DD in route

finding, EER could be regarded as a member of flooding

family, although its major part is in route maintenance

phase.

3. Energy equivalence approach

3.1. Basic concepts

In data-centric routing paradigms, a feasible task is made

up of a set of data paths, which fuse at converging nodes and

form a routing tree, a reversed multicast tree. If energy

consumption is distributed unevenly in a routing tree,

especially if a high energy-consuming subgraph is critical to

overall connectivity, the unevenness is disastrous to

network lifetime. We call this critical subgraph topological

bottleneck of lifetime. Typical topological bottlenecks

include converging nodes [9] in same task and subnets on

which several concurrent tasks overlap. Fig. 1 shows an

example of the former case. In the example, radio radius is

not long, so listening and transmitting can be considered to

dissipate same energy. [7] One after another five sensors

transmit data to converging node N: In each 10 time units,

every sensing node dissipates 1 unit energy. N receives five

data packets, integrates them into one packet and then

passes it to sink. So for each round, N dissipates 6 units

energy. After eight rounds, N has lost 48 units energy. So its

residue is two, while residue of other nodes is 42.

To maximize network survivability by using equal

energy among as many nodes as possible, we suggest an

approach called neighbor switching, which utilizes density

and path redundancy in WSNs. We assume that in the long

run all sensor nodes have equal chance to become sources

and sink.

3.2. Neighbor switching

Neighbor switching substitutes one node with a neighbor

outside the original routing tree according to a given

criterion. Neighbor switching is essential in EER approach.

It changes routing tree at very small scale, so the energy

uniformization is achieved with least energy cost. Fig. 2

shows how neighbor switching prolongs the lifetime. Its

setting is same as Fig. 1. Fig. 2a is identical to Fig. 1b.

Fig. 2b shows how network lifetime is extended from 80

without neighbor switching to 500 with neighbor switching.

The red nodes are exhausted replacing neighbors.

Source and sink nodes could not be switched, so a

switched node N always has a preceding node P and a set

of succeeding nodes SS: If lSSl . 1; N is a converging

node. The prerequisite of neighbor switching is adequate

density or redundancy in vicinity of replaced node. Two

types of neighbor switching exist. In single neighbor

switching shown in Fig. 2, N is replaced by one single

neighbor with most energy residue, which is common

neighbor of N;P and every node in SS. It is used by EERS

and EERL. In double neighbor switching, N is replaced by

lSSlþ 1 double neighbors; one is common neighbor of

P and N; the rest are common neighbors of N and every

S [SS: Double neighbor switching is used by common

neighbor switching (CNS).

Fig. 1. Demonstration of unevenness in energy dissipation. (a) Initial energy 50 units for all sensor and (b) residual energy after 80 time units. N is a converging

node, sensing interval ¼ 10 time units, transmission energy ¼ reception energy ¼ 1.

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475468

3.3. Path rerouting

Path rerouting links an outside substitute neighbor

back to the original routing tree, in which single neighbor

switching is used. Rerouting is still a flooding. It costs

much more energy than neighbor switching. Delay is also

longer than neighbor switching. Shortest rerouting links

the replacing neighbor to the nearest descendent node,

while longest rerouting links to the farthest descendent

node. To avoid energy waste in the chain reaction of a

series of adjacent nodes, we define the nearest descendent

node as the first descent in the path which does not need

to be replaced. In longest rerouting it is better to reject

the new path which intersects with original path at a

non-rerouted node other than source and destination. Our

rerouting procedures follow the DD protocol, but with the

constraint that every node on rerouting path should need

no rerouting, that is, it does not have a neighbor with

energy difference beyond the threshold. However, the path

may contain other nodes of the original routing tree, so

the new path is not necessarily disjoint with the original

path. Nodes immediately following it in the original

routing tree also need to set up new paths to its substitute

neighbor.

4. EER algorithms—CNS and others

CNS, a route maintenance algorithm using double

neighbor switching, is most efficient in EER algorithms.

CNS has minimal additional energy cost and minimal time

complexity, since it never uses flooding in route mainten-

ance. This has been supported by the simulation results.

EERS and EERL are also presented to show that neighbor

switching is better than path rerouting. Rerouting algorithms

are inefficient. Simulation results show that they have

almost same lifetime as DD, which means rerouting

overhead balances out their gain in lifetime.

EERS and EERL both use single neighbor switching,

but differ in destination selection. For EERS and EERL,

the routing tree is divided into line segments, which are

bounded by converging nodes. The major difference

between EERS and EERL is the way they determine their

rerouting paths on the same line segment. EERS divides

each segment into as many sections as possible, with each

section to be shortest to minimize topology variation. On the

other hand, EERL chooses the longest possible substituent

section in a hope to find a better path to equalize energy

dissipation.

4.1. Assumptions

We assume that network has been initialized and routing

tree for tasks has been set up before EER algorithms are

called. During network initialization, the network topology

is discovered and basic parameters are set. All nodes obtain

important data about their neighbors after initialization, like

energy, position and ID. Radio radius is fixed and identical

for all nodes. Wake up mechanism is used to save lavish

energy dissipation in active listening. Waking up uses a

paging channel with negligible energy dissipation [8]. Note

that in following three algorithms every node N except

source and sink has a preceding node P and a set of

succeeding nodes SS.

The rerouting algorithms postpone current data transfer.

When sensing interval of a task is long as in usual

applications and rerouting interval is set long, this delay is

trivial. On the other hand, the delay may be a draw back and

may not be neglected when network is dense or large.

Although algorithms are distributed, with communi-

cations limited to neighbors and via packet exchange, their

control framework is centralized. Sink is the coordinator.

Every execution starts at sink, and then goes through the

routing tree like falling blocks in a domino game. They are

activated by receiving reroute request packets: Extended

Reroute Request (ERR) packet for CNS, Regular Reroute

Request (RRR) packet for EERS and EERL. To make the

call explicit and conventional, we separate receiving

operation and execution. In fact these two operations are

integrated tightly. An EER Common Entry Algorithm is

executed by sink. It sends out corresponding reroute request

packets to all succeeding nodes in routing tree.

Fig. 2. Lifetime of a single task network is prolonged via single neighbor switching. (a) Lifetime is 80 time units without switching and (b) lifetime is 500 if

sufficient replacing neighbors exist. N is a converging node, sensing interval ¼ 10, energy cost for transmission and reception ¼ 1.

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475 469

4.2. Common neighbor switching EER algorithm (CNS)

Let S [SS; {P;N; S} forms a basic unit in Common

Neighbor Switching. CNP is the set of double neighbors of

N and P such that: (1) it excludes nodes on the original path;

(2) a neighbor has more energy residue than N; (3) the

energy difference between CNP and N is more than a

predefined threshold. Similarly, CNS is a double neighbor of

N and S: CNPmax; CNSmax; are elements in CNP, CNS with

maximum energy residue, respectively. The basic idea of

CNS, as shown in Fig. 3, is to replace N with CNPmax and

CNSmax; like a standard double neighbor switching. When

CNPmax and CNSmax overlap, original path segment S !

N ! P is replaced by S ! CNPmax (or CNSmax)!P;

otherwise, it is replaced by S ! CNSmax ! CNPmax ! P:

Below is the simplified CNS algorithm

CNS(N, CNSOption) {

if (N [sources) return; // Source nodes cannot be

switched

for (every S [SS) {

N sends S a Call for Neighbors Information packet;

S sends back a Neighbors Information packet;

N calculates CNPmax; CNSmax;

If (CNPmax and CNSmax exist) {

if (CNPmax; CNSmax overlap) Replace S ! N !

P with S ! CNSmax (or CNPmaxÞ! P;

else {

if (CNPmax and CNSmax can be connected)

Replace S ! N ! P with S!

CNSmax ! CNPmax ! P;

else Recover connection failure according

to CNSOption;

}

N removes itself from the routing tree

}

N sends an Extended Reroute Request packet to S;

CNS(S, CNSOption);

}

}

Most calculation happens on node N: When N is a

converging node, that is, lSSl . 1; old path and new path

may both exist. The original data stream is shared by Si !

N ! P and Sj ! CNSmax ! CNPmax ! P: Above algorithm

may be adapted to concurrently process each S in set SS:

There is no need for communication. This will save energy

and time, but require that N have adequate memory and

processing capacity.

Replacing is implemented by node’s child attribute. For

example, replacing S ! N ! P with S ! CNSmax (or

CNPmaxÞ! P is implemented as CNPmax:child ˆ N:child;

S:child ˆ CNPmax; N:child ˆ null: Replacing S ! N ! P

with S ! CNSmax ! CNPmax ! P is implemented

as CNPmax:child ˆ N:child; CNSmax:child ˆ CNPmax;

S:child ˆ CNSmax; N:child ˆ null:

If CNPmax or CNSmax cannot be connected (they are not

neighbors), a switching failure occurs. Following options

are provided to recover from such a failure (Fig. 4):

† CNS(Plain): use the original path S ! N ! P and change

nothing.

† CNS(Alternative): find another suboptimal CNPmax and

CNSmax pair which are connected.

Fig. 3. Common neighbor switching. When (a) CNPmax ¼ CNSmax and (b) CNPmax – CNSmax:

Fig. 4. Switching failure recovery. (a) CNS plain, no recovery; (b) CNS alternative, find another pair; and (c) CNS intermediate, find CNPSmax:

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475470

† CNS(Intermediate): find an optimal common neighbor

CNPSmax of CNPmax and CNSmax; use path S !

CNSmax ! CNPSmax ! CNPmax ! P to replace path S !

N ! P:

4.3. Shortest rerouting EER algorithm (EERS)

EERS switches an over dissipated sensor node to a

neighbor and replacing original path with a new shortest

rerouting path. Fig. 5a shows EERS on a path without

converging nodes. To avoid expensive and redundant

rerouting, successive nodes that need rerouting are

grouped together into one rerouting. Unlike in EERL,

more than one rerouting in a line segment is possible and

encouraged in EERS. An example of EERS in a path with

converging nodes is shown in Fig. 5b. Only one more

situation needs to be handled, that is, a converging node,

which needs rerouting. The leftmost converging node is

simply the sink of a line segment in demand of rerouting.

The rightmost one in need of rerouting is source of middle

line segment and sink of rightmost line segment. Below is

EERS algorithm

EERS (N, threshold, RCTimeout) {

if (N [sources) return;

N finds Nmax; the neighbor with highest energy outside

the routing tree;

if ðEðNmaxÞ . EðNÞ þ thresholdÞ { // N needs

rerouting

N sends a Rerouting Confirm (RC) packet to P;

if (N is a converging node) {

Reroute from Nmax to RRR.destination;

RRR.destination ˆNmax;

N switch to Nmax;

N multicasts a Regular Reroute Request packet

to all S [SS;

for (all S [SS) EERS (S; threshold, RCTime-

out); // Concurrently trigger EERS on SS

}

else { // N is not a converging node (only one S in

SS)

N sends a Regular Reroute Request packet to S;

// RRR.destination has not been changed

EERS(S; threshold, RCTimeout);

Wait for the Rerouting Conform packet from S

until RCTimeout expires;

if (not received) {

Reroute from Nmax to RRR.destination;

RRR.destination ˆNmax;

N resends a Regular Reroute Request packet

to S;

EERS(S; threshold, RCTimeout);

}

}

else { // N does not need rerouting

RRR.destinationˆN;

N multicast a Regular Reroute Request packet

RRR to all S [SS;

for (all S [SS) EERS (S; threshold, RCTimeout);

// Concurrently trigger EERS on all S [SS

}

}

For any node, RRR.destination is the nearest preceding

node which needs rerouting. If no such node exists, the

destination is the nearest preceding converging node.

Fig. 5. Demonstrations of EERS. Blue nodes need rerouting, replaced by red nodes. Dashed line is the new path. Circles mark the radius of blue nodes. (a)

Rerouting in a path without converging nodes and (b) rerouting in a path with converging nodes (for interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.).

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475 471

If a node N does not need rerouting, it sets itself to

RRR.destination and sends the RRR packet to all its

succeeding nodes.

If N needs rerouting, it first sends back a Rerouting

Confirm packet to P to suppress Ps attempt to reroute.

Then it finds replacing neighbor Nmax outside the routing

tree. If N is a converging node, it sets off rerouting from

Nmax to its RRR.destination. Then N is replaced by Nmax:

At the same time, N generates a new RRR packet with

the destination set to Nmax; then N multicasts the RRR

packet to all its succeeding nodes and EERS algorithm is

set off on them.

If N needs rerouting but is not a converging node, it

sends the only S in SS a RRR packet with same destination

as its own. Afterwards it keeps waiting for the Rerouting

Confirm (RC) packet from S till RCTimeout. If N receives

RC from S within RCTimeout, it gives up its rerouting

attempt. If no RC packet is received till RCTimeout, N

starts rerouting procedure and switches to Nmax: N also

generates a new RRR packet with the destination set to

Nmax; and N resends the packet to S and sets off EERS

algorithm on S:

4.4. Longest rerouting EER algorithm (EERL)

EERL switches an over dissipated sensor node and

replaces original path with longest rerouting path. Fig. 6a

shows EERL on a path without converging nodes. On each

rerouting line segment, EERL uses a big flooding instead of

several small flooding in EERS. We do not have enough

information to compare flooding energy cost in EERS

and EERL. EERL does not only skip redundant rerouting in

a series of successive nodes in need of rerouting, but also

combine all such series of nodes into one task of rerouting.

Therefore, at most one rerouting in a line segment is needed

in EERL. An example of EERL in a path with converging

nodes is shown in Fig. 6b. The leftmost converging node is

simply the sink of a line segment that needs rerouting. The

rightmost one that needs rerouting is both source and sink of

line segments

EERL (N, threshold, waitTimeout) {

if (N [sources) return;

N finds Nmax; the neighbor with highest energy outside

the routing tree;

if (N is a converging node) {

if ðEðNmaxÞ.EðNÞþthresholdÞ RRR.destinationˆ

NmaxN; // N needs rerouting

else RRR.destinationˆN;

N multicasts the RRR (Regular Reroute Request)

packet to all S [SS;

for (all S [SS) EERL(S; threshold, waitTimeout);

// Concurrently

if ðEðNmaxÞ . EðNÞ þ thresholdÞ { // N needs

rerouting

N sends a No Wait packet to P; which is passed

until it reaches RRR.destination;

Reroute from Nmax to RRR.destination;

else N sends an End of Segment packet to P; which

is passed along the segment until it

reaches the first node that needs rerouting, the

first converging node, or sink;

else { // N is not a converging node with only one S

in SS

N sends a Regular Reroute Request packet S;

EERL(S; threshold, waitTimeout);

Fig. 6. Demonstrations of EERL. Blue nodes need rerouting, replaced by red nodes. Dashed line is the new path. Circles mark the radius of blue nodes. (a)

Rerouting for a path without branches and (b) rerouting for a path with branches (for interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.).

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475472

if ðEðNmaxÞ . EðNÞ þ thresholdÞ { // N needs

rerouting

Wait for an End of Segment or No Wait

packet from S until waitTimeout expires;

if (ES packet received) Reroute from

Nmax to RRR.destination;

else if (NW packet received) Give up

rerouting;

else Error exit;

N sends a No Wait packet to P;

}

else {

Wait for an End of Segment packet or a

No Wait packet from S until waitTimeout

expires;

if (received) passes it to P;

}

}

}

In EERL RRR.destination is always the starting node of

current line segment, so it must be a converging node or

sink. Like in EERS N first finds out Nmax: If N is a

converging node, N generates a new RRR packet with the

destination set to Nmax if N needs rerouting, otherwise set it

to N: Then N multicasts the RRR packet to all succeeding

nodes and EERL algorithm is set-off on them. If N needs

rerouting, N sends P a No Wait (NW) packet and P passes it

until it reaches RRR.destination. Next N starts rerouting

from Nmax to RRR.destination. If N does not need rerouting,

N sends an End of Segment (ES) packet to P; and P passes it

along the line segment until it reaches the first node that

needs rerouting, the first converging node, or sink.

If N is not a converging node, N sends a RRR packet to

S: If N needs rerouting it would wait for an ES or NW

packet from S until waitTimeout expires. Before wait-

Timeout, if N receives ES packet, it sets off rerouting from

Nmax to RRR.destination; otherwise it give up rerouting

attempt. At the end, N sends a NW packet to P: If N does

not need rerouting, it waits for an ES or NW packet from S

until waitTimeout expires. If N receives the packet, it

passes it to P:

5. Simulation

5.1. Basic procedure

Our simulator is coded in Java 2 with Borland JBuilder 8

IDE It is set up as following:

(1) Network Topology Generation

In a 100 £ 100 square, n nodes with equal initial

energy and radio radius are independently generated

and randomly distributed. Their connections are

decided by distance. The same topology is used for

all simulated protocols (or algorithms) like DD, CNS,

EERS and EERL.

(2) Task generation

Tasks are generated with parameters like duration

and generation interval. A 30 £ 30 square source area

is selected by randomly choosing its upper left corner.

All nodes falling in the area are source nodes. Sink is

randomly located. For simulations with same sensor

number, no matter what initial energy level and EER

algorithm are, same task series is used. The task series

is used repeatedly, so it works for whatever possible

network lifetime.

(3) Path generation

Flooding and reinforcement are used to generate

initial paths for a task. All protocols use DD [5] for

path setting up. For each source node a shortest path is

generated. Then all shortest paths are aggregated at

converging nodes.

(4) Communication and energy simulation

This is the major part of simulation program.

Discrete time is used and a time unit is defined as

interval needed to transmit or receive a packet. We

assume that a node transmits a received packet in

the next unit. Rerouting paths calculation is discrete,

imitating the real world.

At any time unit, the simulator first checks if any task

expires, then checks if a new task is generated, at last checks

if it is time to call EER algorithm (which specific algorithm

is called depends on an input parameter). If yes, do the EER

algorithm along the path tree; if no, data transfer is

executed. At any step, corresponding energy cost of each

node is deducted. We assume no protocol has capability to

throttle the data transfer of available paths, which means, all

possible data paths are working as long as topology

connectivity and energy residue permit (Fig. 7).

Fig. 7. Simulation result of CNS (Plain). Connection radius ¼ 10.0;

rerouting interval ¼ 60; max time no tasks generated ¼ 200; number of

nodes ¼ 300; difference threshold ¼ 20; task failure ratio when

ending ¼ 0.6; rerouting starting period ¼ 80; task generation

interval ¼ 10; reception energy ¼ 0.5; task duration ¼ 200; sink node

has endless energy; transmission energy ¼ 3.0; use the same series of

randomly generated tasks. Starting period ¼ 80; and end condition: Option

3 (test both the ratio of exhausted nodes and the ratio of failed tasks).

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475 473

5.2. Lifetime and end condition

In our simulation, two lifetimes are defined. One is

physical lifetime, which measures the simulation time from

the beginning to its end for specified end condition. Physical

lifetime includes every second in simulation. It makes no

difference whether 100 tasks are running or no active task is

running. However, the energy dissipation differs greatly. By

this metric, for some protocol that saves and balance energy

well, much more tasks may set up paths and become active

than protocols with poor energy efficiency. Thus during the

same time, much more energy is dissipated by the good

protocol, so its physical lifetime may even be shorter than a

poor protocol.

Physical lifetime does not correctly reflect energy

consumption. We found another metric called collected

lifetime, which is the sum of run time of all active tasks. It

overcomes the deficit of physical lifetime. However, it is not

perfect. For instance, routing trees for tasks vary remarkably

in size, length, nodes involved, and branches. So during the

same time interval, different tasks may consume wildly

different energy.

The definition of network lifetime is the key for many

research topics in WSNs. For a single task, it has been well

defined [7], however, much effort is needed to find a

definition that offers a picture for all task (Fig. 8).

One thing is very interesting in our simulation results

and deserves more attention and further study. That is,

lifetime of network is not linear with the initial energy

level of sensors. For a single sensor or a network with only

a few sensor nodes it is impossible. However, for a large

and dense WSN, it is possible and reasonable. Actually,

most our simulations reflect the same phenomenon with

one accord. Probable explanation is that for a same

deployment of sensor nodes, as time goes by, different

initial energy levels result in considerably different residual

network topologies. Higher level would give a more

connected topology than lower level. Suppose for these

two topologies, current task sets yield same task assign-

ment, i.e. same subset of succeeding tasks; however, a

same succeeding task may have totally different routing

trees in different topologies if there are many source nodes.

Again, higher-level network gives bigger routing tree than

lower level network. Nonetheless, bigger tree may cost

much more energy for same collected lifetime. The

additional energy expenditure may be so much that it

could balance out all the lifetime benefit of higher initial

level and even more, and hence, results in a shorter

collected lifetime and physical lifetime. Fig. 9 shows the

phenomenon clearly. In fact, Figs. 7 and 8 also reflect some

degree of same phenomenon, but since its metrics is

physical lifetime only, it may be result from other causes

like different successive task subset.

In our simulation, lifetime, physical or collected, is

decided by the simulator. We give four options for end

condition. The first is the rate of failed tasks in task set, if the

rate goes over a certain threshold, simulator will stop. This

is the strictest option, sometimes the simulator stops even

when a big portion (50–70%) of nodes have remarkable

energy residue. Second is the rate of exhausted nodes, it is

looser than first, but does not always work when threshold is

high. In many topologies, especially sparse ones, some

critical nodes dominate almost all possible paths; no path

Fig. 8. Simulation results of EERS and EERL. connection radius ¼ 6.0;

rerouting interval ¼ 80; task failure ratio when ending ¼ 0.7; number of

nodes ¼ 50; difference threshold ¼ 50; reception energy ¼ 1; rerouting

starting period ¼ 80; task generation interval ¼ 10; transmission

energy ¼ 3; task duration ¼ 60; starting period ¼ 80; sink node has same

initial energy; and end condition: Option 1. Result is the average of 20 runs

with different network topology.

Fig. 9. Simulation result with physical and collected lifetime. Connection

radius ¼ 10.0; Rerouting interval ¼ 50; max time no tasks

generated ¼ 100; Number of nodes ¼ 150; Difference threshold ¼ 10;

Task failure ratio when ending ¼ 0.9; Rerouting starting period ¼ 50; Task

generation interval ¼ 10; Reception energy ¼ 0.5; Task duration ¼ 300;

Sink node has endless energy; transmission energy ¼ 2.0; use the same

series of randomly generated tasks; starting period ¼ 80; and end

condition: Option 4.

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475474

can be set up when they are exhausted. If only these critical

nodes are exhausted, simulation may run forever without

any change in parameters, because most tasks have failed,

but rate of exhausted sensor nodes keeps very low. The third

is loosest; it requires both rate of failed tasks and rate of

exhausted sensor nodes be over certain threshold. Very long

lifetime is reached for given threshold. The last one is more

practical. Under this end condition, simulator stops when

the life time is longer than another limit while the rate of

failed tasks is more than a given threshold.

6. Conclusion

In this paper, we proposed CNS algorithm as the best

EER approach to balance network wide energy consump-

tion and prolong network lifetime. There are two ways to

reach energy equivalence, that is, neighbor switching and

path rerouting. According to performance of CNS, EERS,

and EERL, neighbor switching is much better. The

simulation results indicate that CNS algorithm outperforms

typical existing protocol. It is a promising approach and

deserves more future research. Future research topics could

be:

† Find algorithms or heuristics to determine appropriate

rerouting interval and difference threshold.

† For CNS algorithm further research is needed to (1) find

the best parameters which give best performance,

especially for network density and initial energy; (2)

investigate two remedies for connection failure—CNS

Alternative and CNS Intermediate, find out if they have

advantage over CNS Plain and identify specific circum-

stances; (3) give a complexity analysis of lifetime and

energy. It is still possible to find better algorithms

because of many unexplored details in the algorithm.

† Find mathematical or algorithmic model for EER, give

upper bound and lower bound of lifetime in complex

real WSNs.

† Try to find means that carry out neighbor switching and

rerouting without interrupting normal data transfer.

Investigate possible conflict between rerouting of co-

existing tasks.

Acknowledgements

This project is partially funded by NSF under contracts

ITR-0312632 and IIS-0329738.

References

[1] I.F. Akyldiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless

sensor networks: a survey, Computer Networks 38 (4) (March 2002)

393–422.

[2] D. Braginsky, D. Estrin, Rumor routing algorithm for sensor networks,

WSNA’02, Atlanta, GA, September, 2002.

[3] F. Ye, S. Lu, L. Zhang, GRAdient Broadcast: a Robust, Long-lived

Large Sensor Network. http://irl.cs.ucla.edu/papers/grab-tech-report.ps.

[4] M.-J. Lin, K. Marzullo, S. Masini, Gossip versus deterministic

flooding: low message overhead and high reliability for broadcasting

on small networks. UCSD Technical Report TR CS99-0637. http://

citeseer.nj.nec.com/278404.html.

[5] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a

scalable and robust communication paradigm for sensor networks,

Proceedings ACM MobiCOM 2000, Boston MA, August 2000.

[6] Y. Yu, R. Govindan, D. Estrin, Geographical and energy aware routing:

a recursive data dissemination protocol for wireless sensor networks,

UCLA Computer Science Department Technical Report UCLA/CSD-

TR-01-0023, May 2001.

[7] M. Bhardwaj, A.P. Chandrakasan, Bounding the lifetime of sensor

networks via optimal role assignments, Proceedings IEEE INFOCOM

2002, New York, June 2002.

[8] M. Singh, V.K. Prasanna, Optimal energy-balanced algorithm for

selection in a single hop sensor network, First IEEE International

Workshop on Sensor Network Protocols and Applications, Anchorage,

AK, May 11, 2003.

[9] B. Krishnamachari, D. Estrin, S. Wicker, Modelling data-centric

routing in wireless sensor networks, Proceedings IEEE INFOCOM

2002, New York, June 2002.

W. Ding et al. / Microprocessors and Microsystems 28 (2004) 467–475 475

http://irl.cs.ucla.edu/papers/grab-tech-report.ps
http://citeseer.nj.nec.com/278404.html
http://citeseer.nj.nec.com/278404.html

	Energy equivalence routing in wireless sensor networks
	Introduction
	Related works
	Energy equivalence approach
	Basic concepts
	Neighbor switching
	Path rerouting

	EER algorithms-CNS and others
	Assumptions
	Common neighbor switching EER algorithm (CNS)
	Shortest rerouting EER algorithm (EERS)
	Longest rerouting EER algorithm (EERL)

	Simulation
	Basic procedure
	Lifetime and end condition

	Conclusion
	Acknowledgements
	References

