
3D large grid route planner
for the autonomous
underwater vehicles

Hua Cao, Nathan E. Brener and S. Sitharama Iyengar
Robotics Research Laboratory, Department of Computer Science,

Louisiana State University, Baton Rouge, Louisiana, USA

Abstract

Purpose – The purpose of this paper is to develop a 3D route planner, called 3DPLAN, which employs
the Fast-Pass A * algorithm to find optimum paths in the large grid.

Design/methodology/approach – The Fast-Pass A * algorithm, an improved best-first search A *

algorithm, has a major advantage compared to other search methods because it is guaranteed to give
the optimum path.

Findings – In spite of this significant advantage, no one has previously used A * in 3D searches. Most
researchers think that the computational cost of using A * for 3D route planning would be prohibitive.
This paper shows that it is quite feasible to use A * for 3D searches if one employs the new mobility and
threat heuristics that have been developed.

Practical implications – This paper reviews the modification of the previous 3DPLAN in the ocean
dynamical environment. The test mobility map is replaced with more realistic mobility map that
consists of travel times of each grid point to each of its 26 neighbors using the actual current velocity
data from the Navy Coastal Ocean Model – East Asian Seas version. Numerical comparison between
the A * and genetic algorithms (GA) shows that the A * algorithm has significantly faster running time
than GA.

Originality/value – These new heuristics substantially speed up the A * algorithm so that the run
times are quite reasonable for the large grids that are typical of 3D searches.

Keywords Programming and algorithm theory, Underwater technology, Robotics,
Underwater navigation

Paper type Research paper

1. Introduction
Route planning has been widely used for civilian and military purposes (Nishi et al.,
2005). 3D route planning is especially useful for the navigation of combat helicopters
and autonomous underwater vehicles (AUVs). 3D route planning is a very challenging
problem because the large grids that are typically required can cause a prohibitive
computational burden if one does not use an efficient search algorithm. Several search
algorithms have been proposed to perform 3D route planning, including case-based
reasoning (Kruusmaa and Svensson, 1998; Vasudevan and Ganesan, 1996) and genetic
algorithms (GA) (Smith and Sugihara, 1996; Sugihara and Yuh, 1997).

Case-based reasoning relies on specific instances of past experience to solve new
problems. A new path is obtained by searching previous routes to locate the one that
matches the current situation in the features, goals and constraints. The new path is

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1756-378X.htm

This paper was supported in part by DOE-ORNL grant No. 4000008407 and by NSF grant.

3D large grid
route planner

455

Received 2 October 2008
Revised 20 December 2008

Accepted 3 January 2009

International Journal of Intelligent
Computing and Cybernetics

Vol. 2 No. 3, 2009
pp. 455-476

q Emerald Group Publishing Limited
1756-378X

DOI 10.1108/17563780910982699



generated by modifying an old path in the previous path database using a set of repair
rules. However, since the number of possible threat distributions is very large for most
battle areas, it would not be feasible to store old routes for all or most of the possible
threat arrangements. Thus, the case-based method is not suitable for handling threats
in route planning. In addition, when it has to synthesize complete new routes (in an
area where no old paths are available) or modify old routes by synthesizing new
segments, it does not use a guaranteed best-first search algorithm such as A *, but
instead uses straight-line segments going around obstacles. Thus, the routes are
neither locally nor globally optimal.

The GA method is a stochastic search technique based on the principles of biological
evolution, natural selection, and genetic recombination. GA generates a population of
solutions. And such solutions mate and bear offspring solutions in the next generation.
The solutions in the population improve over many generations until the best
solution is obtained. However, GA have been accepted slowly for research problems
because crossing two feasible solutions does not, in many cases, result in a feasible
solution as an offspring. The other disadvantage of GA is that although it can generate
solutions to a route planning problem, it cannot guarantee that the solution is
optimal, i.e. it can converge to a local, rather than a global, minimum (Zheng et al., 2005;
Zheng, 2008).

The A * algorithm (Hart et al., 1968), is a guaranteed best-first search algorithm that
has been used previously in 2D route planning by several researchers (Benton et al.,
1996; Brener et al., 2004). A major advantage of the A * algorithm compared to the other
methods is that A * is guaranteed to give the optimum path. In spite of this significant
advantage, no one has previously used the A * algorithm for 3D route planning. Most
people think that the computational cost of using A * for 3D route planning would be
prohibitive (Szczerba et al., 2000; McVey et al., 1999). In this paper, we show that, it is
quite feasible to use the Fast-Pass A * for 3D searches if one employs the new mobility
and threat heuristics that we have developed. These new heuristics substantially speed
up the A * algorithm so that the run times are quite reasonable for the typical large grids
3D searches.

2. 2D mobility and threat maps
2.1 Mobility and threat maps
Brener and Iyengar, in collaboration with Benton, have previously developed a 2D A *

route planner (Benton et al., 1996; Brener et al., 2004), called the Predictive Intelligence
Military Tactical Analysis System (PIMTAS), for military terrain vehicles such as
tanks.

Figure 1 shows an example of a 2D mobility map (top) and 2D threat map (bottom)
that were used as input to PIMTAS. The upper map in the figure is an actual mobility
map of an area near Lauterbach, Germany, and the lower map is a prototype threat
map which was generated in order to test the program. Both maps have 237 by 224
grid points. The mobility map has four types of GO regions represented by the colors
green, light green, yellow-orange, and orange, which denote unlimited, limited, slow,
and very slow areas, respectively. The mobility penalty for grid points in the unlimited,
limited, slow, and very slow regions is 1-4, respectively. Thus, the minimum mobility
penalty at each grid point is 1. In general, the mobility map has three types of NO-GO
regions represented by the colors red, blue, and white, which denote impassable

IJICC
2,3

456



obstacles, water, and urban areas, respectively. This last restriction follows military
doctrine that urban areas are to be avoided. In the prototype threat map, each threat is
modeled by a red inner circle where the vehicle is not allowed to go since it would
almost certainly be destroyed if it came that close to the threat, and an orange outer
circle where the vehicle is within range of the threat. The green regions are outside of
the range of all of the threats. The threat penalty for each threat varies linearly from 1
to 0 as one goes radically outward from the boundary of the red circle to the boundary
of the orange circle. If a grid point is within the orange circle of more than one threat,
the threat penalty at that point is the sum of the threat penalties of all of the threats
acting on that point. Grid points in the green regions have a threat penalty of 0.

2.2 Fast-pass A * algorithm
PIMTAS employs the A * algorithm, in which the total cost, f, of the path that goes
through a particular grid point (this grid point will be referred to as the current point) is
given by:

f ¼ g þ h ð1Þ

where g is the actual cost that was accumulated in going from the starting point to the
current point and h is an underestimate of the remaining cost required to go from the

Figure 1.
2D mobility map (top) and

2D threat map (bottom)

Unlimited

Limited

Slow

Very slow

Impossible

No threat cost

Threat cost

No-Go

Urban

Water

3D large grid
route planner

457



current point to the target. The heuristic h is the key quantity that determines how
efficiently the algorithm works. h must not only be a guaranteed underestimate of the
remaining cost, which ensures that no potential optimum paths will be discarded due to
overestimating their total cost, but must also provide as close an estimate as possible of
the remaining cost. The closer h is to the actual remaining cost is, the faster the
algorithm will find the optimum path. With a proper choice of h, the algorithm can be
highly efficient.

The actual accumulated cost g is given by:

g ¼ amM þ atT ð2Þ

where, M, accumulated mobility penalty; T, accumulated threat penalty; am, mobility
weight; at, threat weight.

The weights am and at are entered by the military planner.
The accumulated mobility and threat penalties are given by:

M ¼

P
RiðMi21 þMiÞ

2
ð3Þ

T ¼

P
RiðTi21 þ TiÞ

2
ð4Þ

where the sum is over the grid points traversed in going from the starting point to the
current point, Mi is the mobility penalty at grid point i, Ti is the threat penalty at grid
point i, and Ri is the stepsize to go from grid point i 2 1 to grid point i.

The heuristic, which is an underestimate of the remaining cost required to go from
the current point to the target, is given by:

h ¼ amhm þ atht ð5Þ

where, hm, underestimate of remaining mobility penalty (mobility heuristic); ht,
underestimate of remaining threat penalty (threat heuristic).

2.3 Mobility heuristic
The mobility heuristic employed in the presented A * algorithm is more efficient
than the straight line heuristic used in previous A * approaches, since our new heuristic
is larger than the straight line heuristic and still is an underestimate of the remaining
cost.

Figure 2 shows a 2D mobility map that consists of a square grid of points. The step
size in the x and y directions is labeled r1 and the diagonal step size will be labeled r2,
where r2 ¼

ffiffiffi
2

p
£ r1. In this figure, each grid point has a mobility penalty of either 1, 2,

3, or 4 (i.e. 1 is the minimum mobility penalty at each grid point) and P1, P2, and P3 are
the start point, current point, and target point, respectively.

Let, nx, number of steps in x-direction between current point and target; ny, number
of steps in y-direction between current point and target.

Then the mobility heuristic hm is given by:

hm ¼
nyr2 þ ðnx 2 nyÞr1 for nx . ny

nxr2 þ ðny 2 nxÞr1 for ny $ nx
ð6Þ

IJICC
2,3

458



In the example shown in Figure 2, the mobility heuristic to go from the current point P2

to the target P3 is:

hm ¼ 4 £ r2 þ 2 £ r1 ð7Þ

This is larger than the straight line distance from P2 to P3, which is what other authors
have used as the heuristic, and is still a guaranteed underestimate of the remaining
mobility penalty to go from P2 to P3. Thus, our mobility heuristic will cause the A *

algorithm to run faster than it would with a straight line heuristic.

3. 3D mobility and threat maps
In our new 3D route planner (3DPLAN), the 2D mobility and threat maps described
above have been extended to 3D in order to test the program. In 3DPLAN, the search
region is represented by a digital map consisting of a Cartesian grid of points in which
the step size in the x- and y-directions is the same but the step size in the z-direction is
in general different. Both the 3D mobility map and the 3D threat map have
237 £ 224 £ 150 grid points in the x, y, and z-directions for a total of almost 8 million
points. To our knowledge, this is the largest number of grid points that has ever been
used in an A * search. In the 3D mobility map, each grid point in the GO regions has a
mobility penalty of 1, 2, 3, or 4 depending on the mobility conditions. Grid points that
are located in impassible areas are labeled as avoided points where the vehicle is not
allowed to go. This test mobility map will be replaced with a realistic map of actual
travel times when 3DPLAN is applied to underwater vehicles. In our prototype
3D threat map, each threat is modeled by an inner sphere where the vehicle is not
allowed to go and an outer sphere where the vehicle is within range of the threat. For
each threat, the threat penalty varies linearly from 1 to 0 as one goes radially outward

Figure 2.
2D mobility map

consisting of a square
grid of points

P3

P2

P1

3D large grid
route planner

459



from the surface of the inner sphere to the surface of the outer sphere. As in the 2D case,
if a grid point is within the range of more than one threat, its threat penalty is the sum
of the penalties of all of the threats acting on that point. Grid points that are outside of
the range of all of the threats have a threat penalty of 0.

Given this underwater scenario, a starting point, and a target to be reached, the
military planner enters a weight for each of the two path cost factors being considered:

(1) mobility; and

(2) threats.

3DPLAN will then quickly generate the lowest cost path from the starting point to the
target, where the cost of the path is determined by multiplying the weight for each
factor by the accumulated penalty for that factor. By entering a particular set of
weights, the military planner can put any desired degree of emphasis on each of the
cost factors. For example, a large weight for mobility and a small weight for threats
would produce a fast path that may go close to enemy threats, while a large weight
for threats and a small weight for mobility would produce a path that stays as far
away from threats as possible and consequently may require a considerably longer
travel time.

3.1 3D mobility heuristic
It is straightforward to extend this mobility heuristic to 3D. Figure 3 shows a cell in the
3D map in which the step size in the x- and y-directions is the same but the step size in
the z-direction is in general different. The figure shows the five possible step sizes,
labeled r1,-r5, that the vehicle can take to go from a grid point to one of its neighbors,
where, r1, step size in x- and y-directions; r2, sqrt(2) Xr1; r3, step size in z-direction;

r4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
3

q
; r5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 þ r2
3

q
.

Let, nx, number of steps in x-direction between current point and target; ny, number
of steps in y-direction between current point and target; nz, number of steps in
z-direction between current point and target.

Figure 3.
A cell in the 3D
mobility map

r1

r2

r5r4

r3

r1

z 
y

x

IJICC
2,3

460



The 3D mobility heuristic hm is then given by:

hm ¼

nx*r5 þ ðny 2 nxÞ*r4 þ ðnz 2 nyÞ*r3

nx*r5 þ ðnz 2 nxÞ*r4 þ ðny 2 nzÞ*r1

for nx # ny # nz

for nx # nz # ny

ny*r5 þ ðnx 2 nyÞ*r4 þ ðnz 2 nxÞ*r3

ny*r5 þ ðnz 2 nyÞ*r4 þ ðnx 2 nzÞ*r1

nz*r5 þ ðnx 2 nzÞ*r2 þ ðny 2 nxÞ*r1

nz*r5 þ ðny 2 nzÞ*r2 þ ðnx 2 nyÞ*r1

for ny # nx # nz

for ny # nz # nx

for nz # nx # ny

for nz # ny # nx

ð8Þ

3.2 Threat heuristic
A threat heuristic has been rarely used in the A * algorithm because the minimum
threat penalty is 0 rather than 1. Thus, if one tried to use the same technique for the
threat heuristic as was used for the mobility heuristic, the threat heuristic would be 0.
In this paper, we present a nonzero threat heuristic that is different from the mobility
heuristic and is. Thus, our new threat heuristic will speed up the A * algorithm
compared to not having a threat heuristic.

Figure 4 shows the same square grid of points that was shown in Figure 2. The
threat heuristic ht will be an underestimate of the remaining threat penalty to go from
the current point to the target point. In order to construct this threat heuristic, the
concentric squares around the target are labeled 1, 2, 3. . . and the target point is square
zero. In order to go from the current point to the target, the vehicle must visit each

Figure 4.
Threat heuristic

in 2D map

P3

P2

P1

1

2

3

4

5

3D large grid
route planner

461



square at least once. In order to ensure that the threat heuristic is a guaranteed
underestimate, we use the minimum threat penalty in the square as the threat penalty
of the point that the vehicle visits. The threat heuristic is then given by:

ht ¼
r1ðTc þ Tn;min Þ

2
þ

P
r1ðTi;min þ Ti21;min Þ

2
ð9Þ

where, Tc is the threat penalty of the current point; Ti,min is the minimum threat
penalty in square i; n is the number of squares between the current point and the target,
the sum is over all squares between the current point and the target, and we have
multiplied r1 by the smaller of the two step sizes that the vehicle can take, in order to
ensure that the threat heuristic is an underestimate.

It is straightforward to extend this 2D threat heuristic to 3D. 3DPLAN uses concentric
rectangular boxes around the target. The vehicle will then have to visit each box at least
once to go from the current point to the target. For the large boxes, the minimum threat
penalty in the box may often be 0, depending on the distribution of threats. However,
for small boxes (the ones close to the target), the minimum threat penalty in the box
is less likely to be 0, if there is a dense distribution of threats around the target.
In these cases, the threat heuristic will significantly speed up the A * algorithm.

4. The implementation and comparison of heuristics
In the implementation, we used two different mobility maps, labeled M1 and M2, and
two different threat maps, labeled T1 and T2. In the mobility map M1, all of the grid
points in the GO areas have a mobility penalty of 1 (i.e. the mobility is uniform except
for the obstacles), while in mobility map M2, the points in the GO areas have a mobility
penalty of 1, 2, 3, or 4. The threat maps T1 and T2 contain 24 and 26 threats,
respectively. All four of these maps have 237 £ 224 £ 150 grid points for a total of
almost eight million points, which is the largest number of grid points that has ever
been used in an A * search. We used four different combinations of these maps: M1T1,
M1T2, M2T1, and M2T2. For each of these combinations of a mobility map and a threat
map, we calculated three different paths by choosing three different pairs of
start/target points, which are given in Table I. Thus, altogether, we calculated 12
different optimum paths in a search space of approximately 8 million grid points. In all
of the path calculations, the mobility weight am and threat weight at were both
set equal to 1. For each of the 12 optimum paths, we did four different calculations
using the following four combinations of the mobility and threat heuristics:

(1) our new mobility heuristic, our new threat heuristic;

(2) our new mobility heuristic, no threat heuristic;

(3) straight line mobility heuristic, our new threat heuristic; and

(4) straight line mobility heuristic, no threat heuristic.

Paths Start point Target

Path 1 (6, 22, 0) (236, 218, 149)
Path 2 (6, 22, 0) (136, 218, 89)
Path 3 (100, 0, 50) (236, 218, 149)

Table I.
Start point and
target of three paths

IJICC
2,3

462



Combinations 1-3 enable us to compare our new mobility and threat heuristics with the
heuristic that other authors have used in A * searches (Combination 4).

These optimum path calculations were implemented on a Dell PC with a 3.06 GHz
Pentium IV processor. One of these optimum paths, Path 1 for the map combination
T1M2, is shown in Figure 5. The spheres in this figure are the inner spheres
surrounding the threats, the rectangular solids are the obstacles in the mobility map,
and the optimum path goes from the lower left to the upper right.

Tables II-V give the CPU time in seconds for the optimum path calculations. These
tables show that when our new mobility and threat heuristics are used, all of the path
calculations require less than one-and-a-half-minutes of CPU time. The tables also show

Figure 5.
Path 1 for the map
combination T1M2

Path 1 Path 2 Path 3

Our mobility heuristic, and our threat heuristic 27.718 9.469 11.718
Our mobility heuristic, and no threat heuristic 37.219 13.124 15.140
Straight line mobility heuristic, and our threat heuristic 51.343 22.64 26.281
Straight line mobility heuristic, and no threat heuristic 58.589 26.156 30.469

Table II.
Map T1M1

Path 1 Path 2 Path 3

Our mobility heuristic, and our threat heuristic 62.438 11.843 20.327
Our mobility heuristic, and no threat heuristic 68.125 14.141 24.140
Straight line mobility heuristic, and our threat heuristic 80.984 22.313 35.359
Straight line mobility heuristic, and no threat heuristic 85.656 25.343 40.344

Table III.
Map T1M2

Path 1 Path 2 Path 3

Our mobility heuristic, and our threat heuristic 8.391 30.343 15.828
Our mobility heuristic, and no threat heuristic 11.062 35.219 18.672
Straight line mobility heuristic, and our threat heuristic 28.828 41.039 34.094
Straight line mobility heuristic, and no threat heuristic 33.390 47.031 38.250

Table IV.
Map T2M1

3D large grid
route planner

463



that for the 12 test paths considered, our new heuristics reduce the CPU time by up to 67
percent compared to a straight line mobility heuristic and no threat heuristic. In addition,
the tables show that our new mobility heuristic alone reduces the CPU time by up to 60
percent and our new threat heuristic alone reduces the CPU time by up to 20 percent,
compared to straight line mobility heuristic and no threat heuristic, respectively.
These results demonstrate that our new mobility and threat heuristics significantly
speed up the A * algorithm.

5. Application to autonomous underwater vehicles
In the AUV application, we replace the test mobility map described above with a map
of realistic travel times which depend on ocean currents and the still water speed of the
AUV. In the test calculations described in the previous section, the path cost depends
on mobility penalties (to which the travel time is roughly proportional), but in the AUV
application in this section, the path cost is equal to the actual travel time rather than
just being approximately proportional to it.

In order to construct the map of travel times, we first created an ocean current map
using the current velocity data from the Navy Coastal Ocean Model – East Asian Seas
version, which was provided by the Naval Research Laboratory at the Stennis Space
Center in Mississippi. In this 3D ocean current map, there are 229 £ 128 £ 35 grid
points in the x, y and z-directions for a total of more than 1 million grid points. The x
coordinate goes from longitude 1158 E to 1358 E in steps of 11.4 min of arc, the y
coordinate goes from latitude 208 N to 308 N in steps of 11.4 min, and the z coordinate
goes from 0 (the ocean surface) to a maximum depth of 4,655 m.

At each grid point, the map gives the two components of the current velocity: the U
velocity, which is in the x (East/West) direction, and the V velocity, which is in the y
(North/South) direction, where East and North are positive and West and South are
negative, and the velocities are in m/s. There is no current velocity in the z-direction.

The 3D ocean current map described above is used to construct the 3D travel time
map, which gives the times in seconds required for the AUV to go from each grid point
to its 26 neighbors, taking into account the ocean currents and the still water speed of
the AUV. Thus, this map has 26 real numbers at each grid point. Figure 6 shows a grid
point, labeled Y, and its 26 neighbors labeled A-X, above, and below.

The grid point Y is the central grid point and the points A-X are referred to as
follows:

. A – Southwest above, B – Southwest same level, C – Southwest below;

. D – South above, E – South same level, F – South below;

. G – Southeast above, H – Southeast same level, I – Southeast below;

. J – West above, K – West same level, L – West below;

. M – East above, N – East same level, O – East below;

Path 1 Path 2 Path 3

Our mobility heuristic, and our threat heuristic 56.813 38.109 38.844
Our mobility heuristic, and no threat heuristic 66.406 42.328 41.594
Straight line mobility heuristic, and our threat heuristic 75.687 46.813 55.656
Straight line mobility heuristic, and no threat heuristic 79.250 52.187 58.968

Table V.
Map T2M2

IJICC
2,3

464



. P – Northwest above, Q – Northwest same level, R – Northwest below;

. S – North above, T – North same level, U – North below; and

. V – Northeast above, W – Northeast same level, X – Northeast below.

In this figure, the scale in the z-direction is different from the scale in the x- and y-directions
so that the grid can conveniently be displayed. In order to calculate the travel times to the
N, S, E, W, NE, NW, SE, and SW neighbors in the planes above and below, we use only the
component of the distance in the x-y plane, because the AUV can move up or down by
simply changing its ballast and thus vertical motion that occurs at the same time as
horizontal motion does not require any additional travel time. This assumption is valid as
long as the vertical spacing between the grid points is substantially smaller than the
horizontal spacing, which is the case here. Hence, the difference in travel time to a neighbor
in the plane above and the corresponding neighbor in the same plane (e.g. NE above and
NE same level) are due only to the difference between the U and V velocities at the two
neighbors and not to their distances from the central point.

In Figure 7, P1 is the central point, P2 is the NE same level neighbor, d1 is the grid
point spacing for the latitude of P1, and d2 is the grid point spacing for the latitude of P2.

Figure 6.
A grid point with

26 neighbors

Below

Above

P S V

W

X

M

G

O

I

H

T

Y

U
E

F

R

L

B

K

Q D

J

C

A

Figure 7.
Calculation of the travel
time to the NE neighbor

from P1 to P2

d

d2
P2

d1

d1P1

d1

af
q

3D large grid
route planner

465



The grid point spacing for a given latitude gives the distance to neighboring points in
the East, West, and North directions, while the distance to the South neighbor is given
by the grid point spacing for the South neighbor’s latitude, which is slightly larger.
In other words, the spacing between the grid points slowly decreases as the
latitude increases, which reflects the fact that the distance between latitude and
longitude circles on the earth’s surface gets smaller as the latitude gets larger. The
angles a, u, f, and the distance d between the central point P1 and the neighbor P2 are
given by:

a ¼ cos21 d1 2 d2

2d1

� �
ð10Þ

u ¼ cos21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 þ d2

4d1

s !
ð11Þ

f ¼ a2 u ð12Þ

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1Þ

2 þ d1d2

q
ð13Þ

The travel time t to go from P1 to P2 is then calculated as follows:

U a ¼
U 1 þ U 2

2
ð14Þ

V a ¼
V 1 þ V 2

2
ð15Þ

C12 ¼ U acosðuÞ þ V acosðfÞ ð16Þ

Cp ¼ U asinðuÞ2 V asinðfÞ ð17Þ

S12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S 2 2 ðCpÞ

2
q

ð18Þ

VN ¼ S12 þ C12 ð19Þ

t ¼
d

VN
ð20Þ

where, U1, U velocity at P1; V1, V velocity at P1; U2, U velocity at P2; V2, V velocity at P2;
Ua, average of U velocities at P1 and P2; Va, average of V velocities at P1 and P2; C12,
component of current velocity along the line joining P1 and P2; Cp, component of current
velocity perpendicular to the line joining P1 and P2; S, AUV’s still water horizontal
velocity; S12, component of AUV’s still water horizontal velocity along the line
joining P1 and P2; VN, net velocity of AUV (the net velocity is along the line joining P1

and P2).
In Figure 8, P1 is the central point, P2 is the E same level neighbor, and d1, the grid

point spacing for the latitude of P1, is the distance between P1 and P2. The travel time t
to go from P1 to P2 is calculated as follows:

IJICC
2,3

466



U a ¼
U 1 þ U 2

2
ð21Þ

V a ¼
V 1 þ V 2

2
ð22Þ

S12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S 2 2 ðV aÞ

2

q
ð23Þ

VN ¼ S12 þ U a ð24Þ

t ¼
d1

VN
ð25Þ

5.1 Above and below neighbors
The travel time to go from the central point to the neighbor directly above or below is
given by:

t ¼
d

Sv
ð26Þ

where d is the distance to the neighbor and Sv is the velocity of the AUV in the vertical
direction (due to changing the ballast).

5.2 A * equations
When the travel time map, rather than the mobility map, is used, equations (2), (3), and
(5) become:

g ¼ attTT þ atT ð27Þ

TT ¼
X

TTi ð28Þ

h ¼ atthtt þ atht ð29Þ

where, TT, accumulated travel time; att, travel time weight; TTi, travel time to go from
grid point i 2 1 to grid point i; htt, travel time heuristic (underestimate of remaining
travel time needed to reach the target).

The travel time heuristic htt is given by an expression similar to the one in
equation (8):

Figure 8.

P1 P2
d1

Note: Calculation of the travel time to east
neighbor from P1 to P2

3D large grid
route planner

467



htt ¼

nx*t5 þ ðny 2 nxÞ*t4 þ ðnz 2 nyÞ*t3

nx*t5 þ ðnz 2 nxÞ*t4 þ ðny 2 nzÞ*t1

for nx # ny # nz

for nx # nz # ny

ny*t5 þ ðnx 2 nyÞ*t4 þ ðnz 2 nxÞ*t3

ny*t5 þ ðnz 2 nyÞ*t4 þ ðnx 2 nzÞ*t1

nz*t5 þ ðnx 2 nzÞ*t2 þ ðny 2 nxÞ*t1

nz*t5 þ ðny 2 nzÞ*t2 þ ðnx 2 nyÞ*t1

for ny # nx # nz

for ny # nz # nx

for nz # nx # ny

for nz # ny # nx

ð30Þ

where, t1, smallest travel time to go from a central point to an E, W, N, or S neighbor in
the same plane; t2, smallest travel time to go from a central point to a NE, NW, SE, or
SW neighbor in the same plane; t3, smallest travel time to go from a central point to a
neighbor directly above or below; t4, smallest travel time to go from a central point to
an E, W, N, or S neighbor in the plane above or below; t5, smallest travel time to go
from a central point to a NE, NW, SE, or SW neighbor in the plane above or below.

5.3 Threats
Threats are handled the same way as previously described, where each threat is
modeled by an inner sphere called the NO-GO sphere where the AUV is not allowed to
go, and an outer sphere called the penalty sphere where the AUV is within range of the
threat and hence incurs a threat penalty. Thus, if the line between a central point and a
neighbor passes through the no-go sphere of a threat, the AUV is not allowed to travel
from the central point to that neighbor. If the threat is an underwater mine, it has a
no-go sphere but no penalty sphere.

5.4 Sample path calculations
We used Microsoft Visual Cþþ6.0 to develop 3DPLAN, the travel time map, and the
AUV version of 3DPLAN, which will be called AUVPLAN. We then used AUVPLAN
and the travel time map to perform optimum path calculations in a region of the East
China Sea that contains Taiwan and neighboring islands. Figures 9-15 show the results
of these optimum path calculations, which were done on a Dell PC with a 1.7 GHZ
Pentium IV processor. All of the path calculations required less than 2 min of CPU time.
Note that the optimum paths move up and down in order to find the most favorable
currents. As discussed above, the use of the A * algorithm guarantees that the
calculated paths have the shortest possible travel times. This cannot be guaranteed
when other route planning algorithms, such as the GA, are used.

5.5 Avoidance of underwater mines
If there are underwater mines in the region between the start point and the target,
AUVPLAN will calculate the fastest path that avoids the NO-GO spheres around the
mines. Also, if previously undetected mines are discovered near an optimum path that
has already been determined, AUVPLAN will quickly calculate a new path that safely
bypasses the mines. As an example, Figure 16 shows an initial optimum path that was
calculated in the Persian Gulf, previously unknown mines that lie close to this path,
and the new path that maintains a safe distance from these mines. This new path is
optimal subject to the constraint of avoiding the mines.

IJICC
2,3

468



6. Numerical comparison of A * algorithm and genetic algorithm
To evaluate the performance of A * algorithm with our heuristic, we did the numerical
comparison of the route design results with those of GA. We created other smaller size
maps with 22 £ 12 £ 16 and 110 £ 60 £ 25 dimensions. For Paths 1 and 2, both A * and
GA find the optimal paths for all three maps. A * always finds the optimal paths for
each of those five paths. GA does not. On average, GA got the optimal path for Path 1
by running the program for twice, for Path 2 by running the program for 20 times. For
other Paths 3-5, GA failed to find any paths.

Figure 9.
Starting point (33, 40, 4),
ending point (208, 8, 13)

Figure 10.
Starting point (9, 28, 3),
ending point (201, 83, 6)

3D large grid
route planner

469



6.1 Small size map (map size is 22 £ 12 £ 16 ¼ 4,224 grid points)
Tables VI-VIII show the small size map.

6.2 Medium size map (map size is 110 £ 60 £ 25 ¼ 165,000 grid points)
Tables IX-XII show the medium size map.

6.3 Full size map (map size is 22912835 ¼ 1,025,920 grid points)
Tables XIII-XVII show the full size map.

Figure 11.
Starting point (93, 86, 8),
ending point (189, 2, 21)

Figure 12.
Starting point (83, 116, 3),
ending point (205, 2, 7)

IJICC
2,3

470



7. Conclusion
We have developed a 3D A * route planner, called 3DPLAN, which runs efficiently for
the large grids that are typical of 3D maps. The A * algorithm has a major advantage
compared to other search methods because it is guaranteed to give the optimum path.
To our knowledge, this is the first time that A * has been used in 3D searches. Most
researchers think that the computational cost of using A * for 3D route planning would
be prohibitive. We have shown that on the contrary, it is quite feasible to use A * for 3D
searches as a result of the new mobility and threat heuristics presented in this paper.

Figure 13.
Starting point (109, 28, 23),
ending point (205, 119, 17)

Figure 14.
Starting point (9, 8, 13),

ending point (108, 119, 7)

3D large grid
route planner

471



Figure 15.
Starting point (9, 8, 6),
ending point (108, 88, 9)

Figure 16.
Two paths in Persian Gulf
– one path goes close to
the mines, while the new
path avoids the mines

Path cost (travel time) CPU time Path length

A * algorithm 9.97 h 0.015 s 5
Genetic algorithm 9.97 h 0.344 s 5

Table VI.
Path 1: starting point
(3, 2, 6), ending point
(7, 5, 4)

IJICC
2,3

472



These new heuristics substantially speed up the A * algorithm and make it a useful and
efficient method for 3D route planning. We have also modified the previous 3DPLAN
by replacing the test mobility map with the more realistic mobility map. The new
mobility map we have created is based on the impacts of the oceans’ dynamics on
AUVs. The travel time, we have calculated from each underwater grid point to its
neighbors consists of our new mobility map.

Path cost (travel time) CPU time Path length

A * algorithm 20.42 h 0.046 s 12
Genetic algorithm 20.42 h 19.546 s 12

Table VII.
Path 2: starting point
(4, 6, 7), ending point

(15, 9, 11)

Path cost (travel time) CPU time Path length

A * algorithm 36.66 h 0.062 s 22
Genetic algorithm Failed N/A N/A

Table VIII.
Path 3: starting point

(21, 1, 15), ending point
(0, 11, 6)

Path cost (travel time) CPU time Path length

A * algorithm 9.97 h 0.047 s 5
Genetic algorithm 9.97 h 0.610 s 5

Table IX.
Path 1: starting point
(3, 2, 6), ending point

(7, 5, 4)

Path cost (travel time) CPU time Path length

A * algorithm 20.42 h 0.079 s 12
Genetic algorithm 20.42 h 45.600 s 12

Table X.
Path 2: starting point
(4, 6, 7), ending point

(15, 9, 11)

Path cost (travel time) CPU time Path length

A * algorithm 36.66 h 0.140 s 22
Genetic algorithm Failed N/A N/A

Table XI.
Path 3: starting point

(21, 1, 15), ending point
(0, 11, 6)

Path cost (travel time) CPU time Path length

A * algorithm 197.46 h 1.719 s 112
Genetic Algorithm Failed N/A N/A

Table XII.
Path 4: starting point

(109, 59, 19), ending point
(0, 1, 5)

3D large grid
route planner

473



3DPLAN can also handle dynamic (changing) threats. If new threats appear or known
threats disappear or move while the vehicle is travelling along its path, the military
planner can quickly update the threat map. 3DPLAN will then rapidly generate a new
optimum path from the current position to the target.

At present, the threats in our threat map are the static small size threats like under
water mines. In the future, we plan to introduce the dynamic larger size threats like
enemy’s submarines and surface destroyers. In the future, we also plan to test 3DPLAN
with real battlefield and oceanographic data and adapt it to combat helicopters and
various types of manned and unmanned underwater vehicles.

Path cost (travel time) CPU time Path length

A * algorithm 9.97 h 0.218 s 5
Genetic algorithm 9.97 h 0.579 s 5

Table XIII.
Path 1: starting point
(3, 2, 6), ending point
(7, 5, 4)

Path cost (travel time) CPU time Path length

A * algorithm 20.42 h 0.219 s 12
Genetic algorithm 20.42 h 12.656 s 12

Table XIV.
Path 2: starting point
(4, 6, 7), ending point
(15, 9, 11)

Path cost (travel time) CPU time Path length

A * algorithm 36.66 h 0.297 s 22
Genetic algorithm Failed N/A N/A

Table XV.
Path 3: starting point
(21, 1, 15), ending point
(0, 11, 6)

Path cost (travel time) CPU time Path length

A * algorithm 197.46 h 5.016 s 112
Genetic algorithm Failed N/A N/A

Table XVI.
Path 4: starting point
(109, 59, 19), ending point
(0, 1, 5)

Path cost (travel time) CPU time Path length

A * algorithm 383.55 h 13.359 s 229
Genetic algorithm Failed N/A N/A

Table XVII.
Path 5: starting point
(228, 127, 30), ending
point (0, 1, 5)

IJICC
2,3

474



References

Benton, J.R., Iyengar, S.S., Deng, W., Brener, N.E. and Subrahmanian, V.S. (1996), “Tactical route
planning: new algorithms for decomposing the map”, International Journal on Artificial
Intelligence Tools, Vol. 5 Nos 1/2, pp. 199-218.

Brener, N., Iyengar, S. and Benton, J. (2004), Predictive Intelligence Military Tactical Analysis
System (PIMTAS), Louisiana State University and US Army Topographic Engineering
Center, Alexandria, VA.

Hart, P., Nilsson, N. and Raphael, B. (1968), “A formal basis for the heuristic determination of
minimum cost paths”, IEEE Transactions of Systems Science and Cybernetics, Vol. 4,
pp. 100-7.

Kruusmaa, M. and Svensson, B. (1998), “Combined map-based and case-based path planning for
mobile robot navigation”, Proceedings of International Symposium on Intelligent Robotic
Systems, January, pp. 10-12.

McVey, C., Clements, D., Massey, B. and Parkes, A. (1999), Worldwide Aeronautical Route
Planner, American Association for Artificial Intelligence, Menlo Park, CA.

Nishi, T., Ando, M. and Konishi, M. (2005), “Distributed route planning for multiple mobile
robots using an augmented Lagrangian decomposition and coordination technique”, IEEE
Transactions on Robotics, Vol. 21 No. 6, pp. 1191-200.

Smith, J. and Sugihara, K. (1996), “GA toolkit on the web”, Proceedings of the 1st Online
Workshop on Soft Computing, August, pp. 93-8.

Sugihara, K. and Yuh, J. (1997), “GA-based motion planning for underwater robotic
vehicles”, Proceedings of the 10th International Symposium on Unmanned Untethered
Submersible Technology, Autonomous Undersea Systems Institute, Durham, NH,
pp. 406-15.

Szczerba, R., Galkowski, P., Glicktein, I. and Ternullo, N. (2000), “Robust algorithm for real-time
route planning”, IEEE Transactions on Aerospace and Electronic Systems, Part 1, Vol. 36
No. 3, pp. 869-78.

Vasudevan, C. and Ganesan, K. (1996), “Cased-based path planning for autonomous underwater
vehicles”, Autonomous Robots, Vol. 3 Nos 2/3, pp. 79-89.

Zheng, C. (2008), “Evolutionary route planner for unmanned air vehicles”, Proceedings of the
Annual 10th Conference on Genetic and Evolutionary Computation, Atlanta, GA,
pp. 1477-84.

Zheng, C., Li, L., Xu, F., Sun, F. and Ding, M. (2005), “Evolutionary path planner for UAVs in
realistic environments”, IEEE Transactions on Robotics, Vol. 21 No. 4, pp. 609-20.

About the authors

Hua Cao received the BE degree of Management Information Systems from
University of Finance and Economics, China in 2000, the MS degree of Systems
Science from Louisiana State University, USA in 2003, and the PhD degree of
Computer Science from Louisiana State University, USA in 2008. She is a Senior
Research Scientist in the Computer Science Department and Ophthalmology
Department at Louisiana State University, USA. Her current research interests
include route planning, biomedical imaging, feature detection, data registration,

image fusion, and artificial intelligence. Hua Cao is the corresponding author and can be
contacted at: hcao@csc.lsu.edu

3D large grid
route planner

475



Nathan E. Brener received the BA degree of Physics from Brandeis University in
1965 and the PhD degree of Physics from Louisiana State University in 1971. He
is a Faculty Member of Computer Science Department, Louisiana State
University. He has approximately 35 years experience in the development of fast
algorithms for high-performance computing. Since 1983, he has conducted
research on applications of artificial and predictive intelligence to military
analysis and planning systems. He has developed a software package, called the

Combat Helicopter Expert Navigation Assistant. He later developed, in collaboration with Dr
Iyengar and John Benton of the US Army Topographic Engineering Center, the PIMTAS, which
is a military route planning system applicable to terrain vehicles. He has more than 50 research
publications in refereed journals and has made numerous presentations at scientific meetings.
His research interests include predictive intelligence, artificial intelligence, route planning
algorithms, and parallel processing. His personal homepage is: www.csc.lsu.edu/faculty/people
_brener.html

S. Sitharama Iyengar received the MS degree from the Indian Institute of Science,
Bangalore, in 1970 and the PhD degree from Mississippi State University in 1974.
He is the Chairman and Roy Paul Daniels Chaired Professor of Computer Science
at Louisiana State University, Baton Rouge, and is also the Satish Dhawan
Chaired Professor at the Indian Institute of Science. His publications include
13 books (Prentice-Hall, CRC Press, IEEE Computer Society Press, Wiley, etc.)
and more than 280 research papers. He is the founder and Editor-in-chief of

the International Journal of Distributed Sensor Networks. He has been involved with research in
high-performance algorithms, data structures, sensor fusion, data mining, and intelligent
systems. He was awarded the Distinguished Alumnus Award by the Indian Institute of Science
in March 2003. He has served as an Associate Editor for the IEEE and as a Guest Editor for the
IEEE Transactions on Knowledge and Data Engineering, the IEEE Transactions on Systems,
Man, and Cybernetics, and the IEEE Transactions on Software Engineering. He is a fellow of the
IEEE, the ACM, and the AAAS. His personal homepage is: http://csc.lsu.edu/, iyengar

IJICC
2,3

476

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


