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Abstract

Many defense and civilian applications require algorithms with great correctness and
precision, and work with limited or incomplete information. This paper provides an overview

of a new data analysis technique for many of these applications. r 2001 The Franklin
Institute. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Modern battle spaces have become technologically very large and complex.
Information must be collected and put into comprehensible form. Algorithms are
needed to study postulated battle space environments to reduce them into
fundamental information components. Then algorithms are needed to provide real
time elemental information in a concise format in actual deployment. Algorithms
must adapt to new patterns in the data and provide feedback to the collection
process. Military applications require algorithms with great correctness and
precision, and work with limited or incomplete information (Fig. 1).
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Traditional fusion analysis is assumption driven in the sense that a hypothesis is
validated against the data. However the proposed k-systems analysis is pattern
driven in the sense that patterns are automatically extracted from the data. The
k-systems theory studies the relationship between parts and wholes in systems. It
uses maximum entropy mathematics, and avoids contamination by a model, or the
introduction of extraneous information. It brings correctness to the study of systems
that was never before possible. k-systems has many maximum entropy algorithms,
which are broadly applicable in many disciplines.

This k-systems theory was invented in 1985 by Bush Jones (one of the PIs of this
investigation), and has undergone development over the last 14 years. Most
problems in k-systems are solved, and there exists a 10,000-line program for doing
this analysis. However, there remains a problem in information fusion that is still
only partially solved. This problem is to fuse information from subsystems into total
system information in its most general case. In this process many measures of system
interrelationships can be produced as well, as a global system description. This leads
to better understanding and predictability of the whole system.

This paper focuses on proposing a data analysis method and then proves this data
analysis technique to detect, recognize and identify targets of interests from sensor
data in its most general case. Currently, we are developing an interactive software
visualization tool for a general use.

2. Identification and significance of the problem

Advances in sensor technology have led to better and cheaper sensors. These
advances beget more complex tactical deployment of sensors. Such deployment
requires new and sophisticated techniques for information analysis and fusion of
information. The k-systems theory is a new branch of analysis that studies the
relationships of parts and wholes in systems. In particular, it treats the fusion of
information from multiple subsystems into an overall system.

Fig. 1. Distributed MEMS (micro-electro-mechanical systems) sensors.
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The problem: Consider the following scenario. Sensors are grouped into nets or
nodes, and these nets are deployed into ‘‘regions of darkness’’ in a tactical field. We
refer to these as pockets on the field, and these pockets may be disjoint or
overlapping. Each sensor provides information to one or more pockets, and
information from the pockets fuses to form total system information (Fig. 2).

At the lowest level, the sensors provide raw data in the form of real numbers. The
pockets are mathematical functions of this raw data. That is, the pockets fuse the real
numbers into meaningful functions. Now, these pocket functions are themselves
fused into a master function, which is descriptive of the whole scenario. This master
function may be a decision table, or other concise representation of relevant decision
criteria. It is particularly important that data in its most elemental form be
incorporated at each level, screening out extraneous information. k-systems work
with data ‘‘information’’ as developed in the Information Theory of Claude
Shannon.

Allowing a sensor to be contained in more than one pocket enhances field
coverage reliability; but, more importantly, mathematical accuracy of the total
system is enhanced. This is a multi-function scenario where there is a function
associated with each pocket, and an overall function that fuses the information from
the pockets. This is referred to as the identification problem in k-systems theory. In
k-systems theory, each sensor would be represented by a variable si; which is discrete
or continuous. There is a real function (discrete or continuous) of the pocket
variables for the mth pocket, mkð:Þ; which would represent the information of the mth
pocket subsystem. It is the fusion of the mkð:Þ functions of the subsystems into an
overall system function kð:Þ; that is critical to the success of the identification
problem. In k-systems theory, this is accomplished by the maximum entropy

extension of the subsystems mkð:Þ to the overall system function kð:Þ: The ability to do
this extension, for deterministic functions, mkð:Þ and kð:Þ; as well as probabilistic
functions, is unique to k-systems. The maximum entropy extension is an unbiased
estimator. It neither loses any information content nor adds any extraneous
information content to the mkð:ÞFa claim unique to k-systems.

Fig. 2. Deployment of sensor clusters to detect regions of targets.

S.S. Iyengar, B. Jones / Journal of the Franklin Institute 338 (2001) 571–582 573



2.1. Introduction to k-systems

This new k-systems theory studies the relationships between the parts and wholes
of systems. It uses the mathematics of entropy, and does not depend on an assumed
model, and never introduces information extraneous to the data. k-systems is an
analysis that is as correct as the data. There are two basic problems broached by k-
systems.

2.1.1. Reconstruction problem
Given information on the whole system, determine the most important subsystems

and how they are important. Sensor problems require that only the most
fundamental units of information be employed. The reconstruction problem
solution allows these elements to be identified in postulated battlespaces before
actual deployment in real time.

Problem in context of investigation: Given information on the subsystems,
determine information on the whole system. This is the real time step wherein the
elemental units of information are examined to yield global system information in a
concise and meaningful form.

The reconstruction problem has been solved for any system described by any real
valued function. The identification problem has only been solved for probabilistic
functions. Part of this proposal is to solve the identification problem by entropy
mathematics for any real valued functions.

k-systems (new technique developed by Dr. Jones): Sensor data raw information is
in the form of real numbers, and subsequently in the form of real valued functions.
These functions are not necessarily probabilistic or [0,1] functions. This is where
traditional information analysis comes to a crashing halt, but k-systems theory
allows information theory to proceed by construction of a isomorphic or mirror
system in [0,1] space.

Before entropy mathematics is employed on a system, the system undergoes a
scalar transformation to reduce it to a [0,1] function system. If the original system
functions were probability functions, the transformation leaves them invariant. In
either case, no information is lost, and we say the systems are isomorphic. We call
this a mapping from a real world g-system to a k-system.

We first review the definition of g-system and k-system. Associated with a system
is a finite set of variables fvig which take values from finite sets f0; 1; 2ynig: Each
nonempty subset of the variables identifies one subsystem of the system. States f !aag
and substates f #aag of the system are determined by particular value assignments to
the variables.

Associated with the overall system is a behavior function f ð:Þ If A is the set of all
states of the system, and Rþ is a set of positive real numbers, then f :AsRþ is a
function which represents information associated with system states. We define

mf ðbÞ ¼
X

a>b

f ðaÞ
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as a set of functions fmf ð:Þg; one for each subsystem. These functions are simply
marginal totals (marginal distributions if the functions are probabilistic). We also
define a parameter:

t ¼
X

a=t

f ðaÞ

This is simply a sum of the system function over all system states.

Definition. A g-system is atuple:

ðt; fvig; fpg; fbg; f ð:Þ; fmf ð:ÞgÞ

(1) t is a scaling parameter
(2) {vi} is a set of variables
(3) {p} is a set of states
(4) {b} is a set of substates
(5) f ð:Þ is a function on {p}
(6) fmf ð:Þg are functions of {b}

The k-system is directly obtained by a simple scaling. The function f ð:Þ is a
measure of some type of information on system states and commonly has some type
of units associated with it (e.g. temperature-degrees centigrade, etc.). We remove
such units from the system and accomplish the first part of our

kðaÞ ¼ f ðaÞ=t

transformation by the normalization:
This is done for every p. Then clearly,

X

a

kðaÞ ¼ 1

Next we define the functions mkð:Þ for each subsystem of the original system as
We now define a k-system

Definition. We define a k-System as:

ðt; fvig; fpg; fbg; kð:Þ; fmkð:ÞgÞ

(1) t is a scaling parameter
(2) {vi} is a set of variables
(3) {p} is a set of states
(4) {b} is a set of substates
(5) kð:Þ is a function on {p}
(6) fmkð:Þg are functions on {b}

The set of equations defined above describes the system effects and interactions.
These equations are similar to the equations of Analysis of Variance (ANOVA) in
statistics. However, we do not assume a model as is done in ANOVA, but we are
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able to solve them directly by a maximum entropy algorithm thereby avoiding
contamination by a model. These equations are linear, but the effects and
interactions they describe can be nonlinear. We obtain a system function of
nonlinear complexity, and our method is valid for any degree of nonlinearity. This is
not the case with ANOVA, which describes only a linear function.

2.2. A new paradigm: maximum entropy algorithm

The maximum entropy algorithm to accomplish the extension from the mkð:Þ
functions to the kð:Þ function was given by Jones [1]. Also unique to the algorithm by
Jones is the ability to accomplish the extension from only partial information on the
subsystem functions mkð:Þ: First, the equations are ‘‘partitioned’’ into classes, which
normalizes the equations (details of this normalization can be found in Jones [1]).
Then the algorithm works by iteratively scaling one side of the equations (the
unknown kð:Þ values) to satisfy the other sides (the known mkð:Þ values). The
technique has been proven to converge, and to converge to the unique maximum
entropy solution. Below is a description of the algorithm.

Let ai ¼mkð:Þ where the vi that
mk is a function of, take specific values. Denote the

real values of kð:Þ by kij : We can associate a set or subset of linear equations that
capture system.

Interactions for any set have given ai as
X

j

kij ¼ ai

Now partition the equations.
Then we solve these equations by the following iterative maximum entropy

algorithm:

(1) Initialize kð:Þ to a flat distribution (all kij equal to mean).
(2) For all i:

New kij=old kij (ai=a0i) for every j: where a0i is derived from the current
estimate of kij and ai is a true value.

(3) Convergence Test:
New kij�Old kij less than tolerance for all ij?

If satisfied, stop
If not satisfied, go to (2)

2.3. Reconstruction algorithm

We examine independent mkð:Þ or #aa and determine which have the greatest
information content towards the determination of the overall function kð:Þ: This is
done as follows:

1. Initialize an approximation to kð:Þ; call it k0ð:Þ; to a state of complete entropy.
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2. Pick that independent mkð:Þ or #aa that does the most to bring k0ð:Þ toward kð:Þ; for
example, by taking a maximum entropy approximation to kð:Þ using each mkð:Þ in
turn, and measuring the information distance between kð:Þ and k0ð:Þ – picking the
mkð:Þ or #aa that yields the smallest distance. (A shortcut algorithm exists to do this.)

3. Update k0ð:Þ with the information. Repeat step 2, picking new mkð:Þ or #aa until the
f #aag or fmkð:Þg functions describe the kð:Þ function within the desired information
distance.

2.3.1. Time series illustration
Suppose we view a target identification function over 16 time periods. As the

function increases, we become more certain of a target identification. Suppose we
also view three sensors as we view the target identification function. These
observations could come from field experimentation, simulations, or be postulated.
We are interested to see if we can identify a target from the sensors alone for one
time period of lookahead. That is, based on the current values of the sensors, can we
predict the target will be present in the next time period.

We have 16 total observations and three variables besides time. These
observations are given in Table 1. The program would first cluster each continuous
sensor variable into an optimal number of clusters. We do our analysis for 1 time
period look ahead. Output from analysis is now given for a system accuracy of 98%.

Recall that these sensor values actually represent regionsFthe user would refer to
the cluster maps in the output to see the ranges for each sensor. The factors (sensor
values) output is to view as prevailing conditions, and the effect is to be viewed as 1
time period ahead. Two factors (the first and fourth) are particularly good
conditions for designating a target for the next time period since 1 time period after
they occur the target value is experiencing its highest values. In the future when these
conditions approximately hold, a target can be expected in the next time period. In
order to determine the extent to which they should approximately hold, the user
should examine the cluster maps for each of the variables concerned. Many other
measures such as interactions can be obtained by k-systems analysis. This shows the
power of k-systems in the reconstruction problem to extract elemental information in
system behavior.

2.4. Identification problems and proposed information fusion

Given information on the subsystems, the identification problem is to identify the
overall system. For example, suppose we have a probabilistic system with three
variables: v1; v2; and v3: We would like to know the behavior of this system
123f ðv1; v2; v3Þ; but we only have information on its subsystems or marginal
distributions, and even this information is incomplete. This can occur due to the
cost of viewing the entire system, or because the total system information is just not
available. For instance, we know the probability of (v1 ¼ 0; v3 ¼ 2), but not of
(v1 ¼ 0; v2 ¼ 1; v3 ¼ 0).
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Table 1

Time Sensor1 Sensor2 Sensor3 Target value

1 8.2 4.2 20.6 11.0

2 7.8 4.1 23.9 12.1

3 8.1 4.5 21.1 12.3

4 9.6 4.4 21.7 11.6

5 8.4 4.2 27.1 12.4

6 7.8 6.6 22.0 12.0

7 8.1 6.9 24.1 17.4

8 8.2 7.1 28.4 22.7

9 9.2 5.2 22.1 11.6

10 9.3 4.7 23.8 12.2

11 9.7 4.3 28.7 12.6

12 9.6 6.1 22.0 14.2

13 9.8 6.9 24.2 19.4

14 9.9 7.2 28.9 24.7

15 9.8 7.1 28.8 21.2

16 9.4 5.2 27.9 14.1

Number of controlling factors: 5

Number of distinct variables in controlling factors: 3

System accuracy of controlling factors: 98.1%

Average error for the reproduced system: 0.30

Maximum error for the reproduced system: 0.61

Factor Isolated effect on flat system

(effect value)

System accuracy after adding

this factor (%)

SENSOR2=6.843 50.72% (23.7) 86.08

SENSOR3=24.000

SENSOR2=6.843 17.01% (18.4) 91.81

SENSOR3=21.583

SENSOR1=9.589 1.27% (15.4) 95.12

SENSOR3=28.300

SENSOR1=9.589 30.90% (20.6) 97.58

SENSOR2=6.843

SENSOR2=4.533 �16.69% (13.1) 98.11

SENSOR3=28.300
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The situation is given below:

v1 v2 j 12f ð:Þ

1 1 j 0:25

v2 v3 j 23f ð:Þ

1 0 j 0:14

1 1 j 0:18

1 2 j 0:23

v1 v3 j 13f ð:Þ

0 1 j 0:14

0 2 j 0:18

1 0 j 0:20

1 1 j 0:20

1 2 j 0:17

we can readily determine 123f ð:Þ: The maximum entropy algorithm given earlier can
solve this problem with probabilistic functions, which for this example readily yields:

v1 v2 v3
123f ð:Þ

0 0 0 j 0:079

0 0 1 j 0:088

0 0 2 j 0:083

0 1 0 j 0:031

0 1 1 j 0:052

0 1 2 j 0:097

1 0 0 j 0:091

1 0 1 j 0:072

1 0 2 j 0:037

1 1 0 j 0:109

1 1 1 j 0:128

1 1 2 j 0:133

The problem above can only be solved by Jones’ algorithm, which allows a solution
for incomplete information. This algorithm is very useful in pattern recognition.

We desire solutions when the functions involved are general real valued functions
(as treated in the reconstruction problem earlier). There are no known solutions to
this problem, despite its obvious importance. This is especially true as systems and
subsystems become larger and more complex.

For one example, consider a real valued system function f ðx1; x2;yxnÞ over a
large number of variables. This can be a pattern recognition function, decision
function, etc. In most real applications, we can observe f ð:Þ only over subsets of the
variables (or indeed only over certain substates), and this may vary dynamically in
time. We allow that these subsets may not be disjoint. We can view the observations
of f ð:Þ over a subset as a subsystem function. For instance, observations of f ð:Þ over
(x1; x2) as

12f ðx1;x2Þ: From subsystem functions, we would then want to characterize
f ð:Þ:
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Another example would be where there are distinct subsystem functions over
possibly intersecting subsets of the variables, and we desire to coalesce these into a
unique system function with meaningful interpretations.

The solutions to these problems are not readily apparent, but the authors believe
that modifications of the k-system framework will resolve them. Effects and
interactions of the subsystems might be used to build a global system function by
maximum entropy mathematics. In so doing, many useful measures descriptive of
the total system would be generated as well as the global system function or
functions. This would give a better understanding of the operation of the system and
subsystems, and would allow greater precision in predicting or identifying system
and subsystem behaviors. Problems of incomplete data, continuous as well as
discrete data, time variant data, contradictions in data, and inconsistencies in
functions would be treated.

3. New framework and conclusions

The objectives of this new frame work are to develop and prove this new data
fusion techniques to detect, recognize and identify targets of interest from sensor
data in its general case. In particular, an interactive software and visualization
toolkit would be developed and tested on many defense installations. There are
number of interesting research issues that would be investigated in this proposal are
sketched in Figure F
: More importantly, the reconstructions obtained by the
directed search algorithm capture as much of the system’s behavior as the all-
substate search using almost the same number of factors. In this respect, the fact that
the technique may produce a different reconstruction that searching all substates
should be of no more than one set of factors. In a very real and important sense, the
directed search technique can be considered an effective alternative to searching all
substates.

However, if the goal is to explore system structure, it seems that merely measuring
the degree to which a system’s behavior is reproduced is only part of what is needed.
It seems irresponsible to assert that we can impose a structure on the search process
without imposing some structure on the resulting reconstruction. The directed search
given here is essentially an ‘‘outside-in’’ process, which explores the most visible
structures until deeper order is revealed. This mechanism also seems to be present to
some degree in all the substates search, through the fact that the two techniques do
not always choose the same factor implies that other mechanisms are also at work in
the more general search technique.

While there is no existing framework for a rigorous comparison of the two
techniques, the principle differences can be illustrated through analogy. The concept
of a fitness landscape is a central element of the study of complex systems and
machine learning. In this context, the goal is normally to find the highest or lowest
point on a landscape, which has not been fully explored. However, solving the
reconstructability problem can be viewed as an attempt to identify features of a
known landscape, which is responsible for its shape Figs. 3 and 4.
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In order to validate our hypothesis we will determine appropriate optimization
techniques to examine different reconstruction methodologies through a simulation
technique. The simulation will be carried out using a hypothetical but a realizable
tactical database from one of the defense agencies.
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