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Abstract

Given the increasing importance of optimal sensor deployment for battlefield strategists, the
converse problem of reacting to a particular deployment by an enemy is equally significant and
not yet addressed in a quantifiable manner in the literature. We address this issue by modeling
a two stage game in which the opponent deploys sensors to cover a sensor field and we attempt
to maximally reduce his coverage at minimal cost. In this context, we introduce the concept of
minimal sensor integrity which measures the vulnerability of any sensor deployment. We find the
best response by quantifying the merits of each response. While the problem of optimally deploying
sensors subject to coverage constraints is NP-Complete [3], in this paper we show that the best
response (i.e the maximum vulnerability) can be computed in polynomial time for sensors with
arbitrary coverage capabilities deployed over points in any dimensional space. In the special case when
sensor coverages form an interval graph (as in a linear grid), we describe a better O(min(M2, NM))
dynamic programming algorithm.

Keywords: Sensor Networks, Game Theory, Sensor Integrity, Graph Algorithms.

1 Introduction

Distributed, real-time sensor networks are essential for effective surveillance in the digitized bat-
tlefield and for environmental monitoring. In general, the surveillance zone for the sensors can be
viewed as a multidimensional grid with sensors being placed at some of these grid points. Sensors
can vary in their monitoring ranges and coverage capabilities of grid points, and have correspond-
ingly different costs. There is a substantial body of literature in sensor networks that addresses
techniques for efficient sensor communication [9, 5] and data fusion [8]. With the increasing preva-
lence of sensor based field operations, research on efficient sensor deployment strategies has also
become important [2, 4]. Recently, [3], presented a systematic theory that leads to sensor de-
ployment strategies for effective surveillance and target location. They provide a simplified target
location scheme in which every grid point is covered by a unique subset of sensors.
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Given the importance of optimal sensor deployment strategies to battlefield commanders and
strategists, the converse problem of reacting to a particular deployment by an enemy is equally
significant. In particular, issues related to the vulnerability of different deployment strategies must
also be examined. In a battlefield environment, for example, one can naturally expect sensors to
be the targets of enemy attacks. To the best of our knowledge, there has been no previous work
on quantifying the susceptibility of different placement schemes. In [3], optimal sensor deployment
is considered only in the context of coverage and cost constraints while the vulnerability of the
deployment has been ignored. Clearly from the deployers perspective, a brute force approach to
minimizing grid vulnerability is by maximizing coverage of grid points. However this will unnec-
essarily increase the deployment cost resulting in inefficient utilization of sensor resources. Thus
there is need for a formal framework relating optimal sensor placement to vulnerability.

In this paper, we introduce for the first time the notion of minimal sensor integrity. Sensor
integrity is a measure of the vulnerability of any sensor placement strategy to attack. Given that the
object of any placement strategy is the maximization of a (point) coverage function, the minimal
sensor integrity of a placement strategy is the worst case loss of (point) coverage that can be
inflicted at least cost.

Our concept of sensor integrity can be better understood from a game-theoretic viewpoint where
there are two players: Player 1 deploys M sensors to cover up to N points in a multidimensional
grid while satisfying his coverage and cost constraints. Player 2 attempts to destroy sensors based
on her removal costs and point uncoverage thereby taking into account the tradeoffs between costs
and vulnerability. In this paper, we find our best-response to any deployment by player 1.

We can consider two types of point coverages by sensors. In the simple case, the coverage
area of a sensor is based on its geographical proximity to the points being sensed. For example,
consider sensors equipped with heat or infra-red detection capabilities deployed over a battlefield
surveillance zone. Each sensor detects intrusions in the geographical area surrounding it. Thus in
general, the total coverage area of a sensor deployment is the intersection of regular polyhedra, each
representing the coverage area of an individual sensor (for example, line segments in the 1-D and
polygons in the 2-D cases, respectively). In the more general case, the coverage area of a sensor can
be arbitrary, i.e., not based on geographical proximity. To illustrate this scenario, consider sensors
deployed in battlefields for monitoring and/or jamming enemy RF transmissions emanating from
different sites. The given deployment covers these transmission points, however the point coverage
area of a sensor depends on the specific frequencies it is monitoring. Thus the overall coverage
scheme cannot be represented as an intersection of regular polyhedra.

In this paper, we show that the minimal sensor integrity can be computed in O(min(MD2, ND2))
time for sensors with arbitrary coverage over grids of any dimension, where D represents the total
coverage by sensors over all points. For the particular case of deployment over a linear grid, we
present a dynamic programming solution with a better time complexity of O(min(M2, NM)) and
O(N + M) storage. In this paper, we do not explicitly find player 1’s best-response deployment
to player 2’s actions. However, since we find player 2’s best response to every possible deployment
of player 1, our technique can be used to identify sensor deployments and removals that form a
sub-game perfect Nash equilibrium [11]. Such sequential move games under different deterministic
or probabilistic deployment scenarios will be the subject of future research.

2 Sensor Integrity

We begin by formally defining the problem of computing minimal sensor integrity along with a
description of the parameters in our model set up. Let S = {S1, S2, . . . , SM} be a set of sensors
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deployed over a region G = {P1, P2, . . . , PN} of points under any one of a set T = {T1, . . . , Tr}
of possible sensor placement strategies in the given deployment domain. Each sensor placement
strategy Ti is characterized by a given amount of point coverage and has a corresponding deployment
cost. For example, one can consider strategies that minimize the cost while satisfying mandated
surveillance accuracy parameters. Alternatively, sensors can be placed in such a way as to simplify
target location.

Given a placement strategy Ti, the destruction of sensor set L ⊆ S leaves uncovered the set
of points UL ⊆ G. We represent the advantage to the opponent of uncovering points in G by a
benefit function B : G → �+. To uncover these points, the opponent pays a sensor removal cost
represented by a cost function C : S → �+.

The minimal sensor integrity (MSI) of a given sensor placement strategy Ti ∈ T , is defined as:

min
L




∑
Si∈L

C(Si) −
∑

Pi∈UL

B(Pi)


 ∀L ⊆ S. (1)

We use the term ‘sensor integrity’ to refer to the value of the second term in the above equation.
The minimization yielding the minimal sensor integrity is carried out over all possible subsets L of
S. Thus the set UL associated with the optimal set of destroyed sensors L in Equation (1) gives
the worst case loss of point coverage that can be inflicted at least cost. We denote these optimal
sets by U∗

L and L∗.
It is to be noted that equation (1) implicitly assumes an additive mechanism for computing

the cumulative costs and benefits of removing and uncovering multiple sensors and points. This
assumption need not always be true, for example when the benefits of uncovering adjacent points are
correlated. However, in this paper, we solve the MSI problem under the additive assumption. We
also assume that sensor placement has been apriori determined using some independent algorithm,
for example, one that considers cost and coverage constraints as in [3] and only consider the problem
of finding L∗ and U∗

L for a given sensor placement strategy.

3 Computing Minimal Sensor Integrity

We consider the problem of computing sensor integrity given a set of M sensors covering a set of
N points, with sensor removal cost function C and point uncovering benefit function B. Typically,
sensor coverage areas are restricted to be regular polygons. For example, the 2-D problem consists
of removing subsets of rectangles or spheres covering a grid. In this and higher dimensional cases,
obvious choices of algorithms for computing sensor integrity do not seem to possess either greedy
or divide-and-conquer properties. Moreover, the converse problem of optimally deploying sensors
subject to coverage constraints is NP-Complete [3] as are the related problems of packing or covering
a hyperplane with hyperrectangles [6, 7].

We develop a polynomial time algorithm for minimal sensor integrity by a simple reduc-
tion to maxflow on a directed bipartite graph. This directed, edge-capacitated bipartite graph
Q = (V1, V2, E) is constructed as follows: Vertices X and Y act as the source and sink respec-
tively. The set of grid points in G and sensors in S form the other vertices of Q, such that
V1 = X

⋃
G and V2 = Y

⋃
S. The edge set E is defined as follows: There are N directed

edges {(X, P1), . . . , (X, Pi), . . . , (X, PN )} assigned flow capacities of B(Pi) each. M directed edges
{(S1, Y ), . . . , (Sj , Y ), . . . , (SM , Y )} are assigned flow capacities of C(Sj) each. Further, for each
point Pi ∈ G, 1 ≤ i ≤ N , we add outgoing edges (Pi, Sj) directed from Pi to those sensors Sj ∈ S
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which cover Pi. The capacity of these edges are set to ∞. Thus this last set of edges ensures that
the bipartite graph Q corresponds to the chosen sensor placement strategy.

We reduce the MSI problem to a maxflow problem on Q as follows. Let L ⊆ S be any set of
sensors that are destroyed by the enemy. Let G ⊆ G be the set of grid points that still remain
covered after the removal of L, with UL = G\G the set of uncovered points1. We use the following
notations for simplicity: (X, G) refers to the set of directed edges in Q from X to vertices in G,
i.e., {(X, Pi)},∀Pi ∈ G, while (L, Y ) denotes the directed edges from vertices in L to Y . (X, UL)
and (S\L, Y ) are defined in a similar manner.B(G) denotes the benefit sum

∑

Pi∈G

B(Pi). The terms

B(UL), C(L) and C(S\L) are defined similarly.
The following result shows that every mincut in Q corresponds to an optimal solution of MSI

and vice versa.

Theorem 1 Any arbitrary destroyed sensor set L and associated uncovered points UL will be the
optimal solution to the MSI problem if and only if (X, G)

⋃
(L, Y ) form a mincut in Q, with corre-

sponding maxflow of B(G) + C(L).

Proof : Assume that L and UL is an optimal solution for the given MSI problem instance. By
Equation (1), the sensor integrity value

C(L) − B(UL) ≤ C(L′) − B(UL′),∀L′ ⊆ S.

Adding B(G) =
∑
Pi∈G

B(Pi) to both sides, we get

C(L) + B(G) ≤ C(L′) + B(G\UL′),∀L′ ⊆ S. (2)

Given Equation (2), it now suffices to show that edges (X, G)
⋃

(L, Y ) form a cut of the directed
bipartite graph Q, in order to prove that they also form a mincut. Note that there can be no directed
edges in Q from any vertex in UL to any vertex in S\L, since points in UL become uncovered when
sensors in L are removed. There are no directed paths between such vertices either. Hence, removal
of the edges (X, G)

⋃
(L, Y ) will disconnect source X from sink Y . Therefore (X, G)

⋃
(L, Y ) form

a mincut in Q whenever L and UL is an optimal solution to the MSI problem2.
For the converse part of the proof, consider an arbitrary mincut in Q. Denote the edges in

this mincut by (X, α) and (β, Y ), where α and β are the actual vertices in G and S respectively,
participating in the mincut. For notational convenience, we relabel α as G and β as L respectively.
Clearly, no edge of the form (Pi, Sj) can be part of the mincut.

First we need to show that the mincut defines a solution to the MSI problem. To see this,
note that there can be no directed paths (and hence no edges) from vertices in G\G to vertices in
S\L since none of the edges in (X, G\G) and (S\L, Y ) belong in the mincut. Therefore the points
corresponding to vertices in G\G are uncovered when sensors corresponding to vertices in L are
removed. Secondly, every vertex Pi in G must have at least one edge directed to some vertex in
S\L. Otherwise, the edge (X, Pi) is unnecessary in the mincut which is a contradiction. Therefore,
the points corresponding to vertices in G remain covered when sensors corresponding to L are
destroyed. Hence the given mincut of capacity C(L)+B(G) defines a solution to the MSI problem

1Without loss of generality, we assume that every grid point is originally covered by at least one sensor in S. Thus
G = G if L = Φ. We also assume that every sensor covers at least one point.

2It is to be noted that this result relies on graph Q being directed. Otherwise, paths traversing vertices from
(X, UL, L, G, S\L, Y ) in order, will keep Q connected even after removal of edges (X, G)

⋃
(L, Y ).
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with a sensor integrity value of C(L)−B(G\G). To show that this solution is also optimal, we note
from the preceding result that the optimal MSI solution L∗ and U∗

L defines a mincut of capacity
C(L∗) + B(G\U∗

L). Since all mincuts have the same capacity, we must have

C(L) + B(G) − B(G) = C(L∗) + B(G\U∗
L) − B(G)

and therefore the sensor integrity

C(L) − B(G\G) = C(L∗) − B(U∗
L)

Thus any mincut (X, G)
⋃

(L, Y ) in Q corresponds to an optimal solution to the MSI problem. �

Figure 1 ilustrates the directed bipartite graph corresponding to the deployment of sensor set
S = {S1, S2} over points G = {P1, P2}, with S2 covering P2 and S1 covering P1 and P2. The
points have benefits B(P1) = 100 and B(P2) = 1 with sensor removal costs of C(S1) = 1 and
C(S2) = 100 respectively. The optimal solution to the MSI problem is to remove S1 and uncover
P1 which corresponds to the mincut shown in the figure. Note that if the graph were undirected,
the reduction in Theorem 1 would not be valid as the optimal MSI solution no longer corresponds
to a mincut.
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Figure 1: Maxflow reduction for a given sensor deployment.

Using standard maxflow techniques [1], L∗ and U∗
L can be computed in O(min(M2E, N2E)),

where E is the edge set of the bipartite graph Q. Note that this reduction allows us to compute
the minimal sensor integrity even while considering sensors of arbitrary ranges and unrestricted
(non-polygonal) coverage areas. Hence this allows us to consider situations such as sensors in a 3-D
grid monitoring RF transmissions from arbitrary points on specific wavelengths.

In the special case of sensors with linear ranges, we can find a poynomial time solution of much
lower complexity by exploiting the order among the sensors. We note that the intersection graph
of sensors covering a linear grid forms an interval graph. There are many instances of problems
that are more easily solved on interval graphs, for example [10] shows that weighted integrity is
polynomial on interval graphs, while it is NP-Complete for comparability graphs.

Let τopt refer to the optimal value of minimal sensor integrity obtained from equation (1) with
L∗ and U∗

L. Note that the optimal solution in linear grids posseseses the following property.

Observation 1 Any optimal solution τPi
opt in which point Pi is uncovered will have value

τPi
opt = τ−Pi

opt − B(Pi) +
∑

Sj∈SPi

C(Sj),
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where SPi is the set of sensors that cover Pi and τ−Pi
opt is the optimal solution computed from S\SPi

and G\Pi. The overall optimal solutions over S and G are related to the individual optimal solutions
as follows:

τopt = min
Pi∈G

{τPi
opt}.

U∗
L = {Pj |τPj

opt = τopt}.

L∗ = {
⋃

SPj |Pj ∈ U∗
L}.

Unlike in higher dimensional grids, a property of linear grids is that removing a point Pi from
G and SPi from S disconnects both sets, leading to two smaller subproblems. The following result
suggests a dynamic programming algorithm for computing minimal sensor integrity in a linear grid
by exploiting the order among sensors to eliminate sensors and grid points not contributing to the
optimal solution. Consider any set of sensors S = {S1, S2, . . . SM}, where Si = [PAi , PEi ]. S is
ordered such that PE1 ≤ PE2 . . . ≤ PEM

. Thus each sensor in S corresponds to a closed interval
of its coverage points. Ai and Ei are indices representing the beginning point and end point of
sensor Si’s coverage, 1 ≤ Ai, Ei ≤ N . Let τ l(Pj) represent the minimal sensor integrity when
considering only grid points in [P1 . . . Pj ], where j < N and sensors S1, S2 . . . Sl, 1 ≤ l ≤ M . Define
τ0(Pj) =

∑j
t=1 B(Pt). Note that τ0(Pj) merely represents the boundary case of the benefit sum of

the first j points and is defined for mathematical convenience. No interpretation may be attached
to it.

Let P−
Ai

refer to the point immediately preceding point PAi , 1 ≤ Ai ≤ N . Similarly P+
Ei

refers
to the point immediately following point PEi , 1 ≤ Ei ≤ N . For any sensor Si, we consider the
projection of P−

Ai
onto ranges of sensors preceding Si in S. Let Sl denote the last sensor in S such

that either P−
Ai

∈ Sl or P−
Ai

> PEl
, 1 ≤ l < i ≤ M . If no sensor satisfying these conditions exists,

then assign l = 0. Then we have the following result.

Theorem 2 The minimal sensor integrity for sensor set S′ = {S1, S2, . . . Si}, 1 ≤ i ≤ M is given
by

τ i
PEi

= min


0, τ i−1(PEi−1) + C(Si) −

PEi∑

P+
Ei−1

B(j),




τ l(P−
Ai

) if P−
Ai

∈ Sl

τ l(PEl
) −

∑P−
Ai

P+
El

B(j) if P−
Ai

	∈ Sl

−τ0(P−
Ai

) if l = 0





 (3)

Proof : Let L∗ ⊆ S be the optimal subset of sensors to be removed for minimal integrity.
Consider sensor Si, the last element of S′. If Si ∈ L∗ then points [P+

Ei−1
, PEi ] are uncovered

exclusively by removing Si. This contributes C(Si) −
∑PEi

P+
Ei−1

B(j) to the optimal value of sensor

integrity. The remaining contribution to the optimal must be τ i−1(PEi−1). Conversely, if Si 	∈ L∗

then points [PAi , PEi ] are not included in the optimal uncovering. If P−
Ai

intersects the range of any
preceding sensors, then the optimal solution is τ l(P−

Ai
), where l is the last such sensor. Otherwise,

the optimal solution is τ l(PEl
) plus the benefit of removing points from P+

El
to P−

Ai
. If no such

preceding sensor exists, then the optimal solution only contains the benefits of removing points
from P1 to P−

Ai
. �
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Remark 1 From 3, note that in addition to the endpoints, the optimal solution must also be
computed up to any point within the range of a sensor that just precedes the beginning point of any
succeeding sensor. Let Pj ∈ Si, i.e Pj is a point in the range of sensor Si. Then,

τ i
Pj

= min


 0,




τ r(Pj) + C(Si) if Pj ∈ Sr

τ r(PEr) + C(Si) −
∑Pj

P+
Er

B(t) if Pj 	∈ Sr

C(Si) − τ0(Pj) if r = 0




,




τ l(P−
Ai

) if P−
Ai

∈ Sl

τ l(PEl
) −

∑P−
Ai

P+
El

B(j) if P−
Ai

	∈ Sl

−τ0(Pj) if l = 0





 (4)

where Sr and Sl are the last sensors preceding Si in S, which either contain or are to the left of Pj

and P−
Ai

respectively. The proof is similar to Theorem 2.

To reduce the computation overhead of τ i
Pj

, note that the only points of interest at each Si are
the pre-beginning points of succeeding sensors that are within the range of Si. All such points,
along with the optimal solutions at these points can be computed at the time a sensor is first
considered for inclusion in the optimal set. For each sensor Si in the right endpoint ordered set
S, define W i = {P−

Ai

⋃
P−

Ap

⋃
PEi}, ∀P−

Ap
∈ Si, i + 1 ≤ p ≤ M . These are the points in Si, where

the optimal sensor integrity must be computed. To compute τ i{W i}, we need to determine the
nearest preceding sensor Sr from S, for each point Pj in W i. We may also need the sum of benefits
from P+

Er
to Pj . To avoid repeated computations, we can precompute and store this term for all

such points Pj . This can be done by scanning a sorted list of all points in the grid from left to
right while keeping a single running sum of point benefits. This sum is initialized to zero at the
beginning and whenever we reach a point that is also a sensor endpoint. The current running sum
is stored at each pre-beginning point (P−

Ap
) that is encountered until the next sensor endpoint is

reached.

Algorithm MIN SENSOR INTEGRITY

Input:
1. Linear array G = (P1, P2, . . . PN ) of grid points.
2. set S = {S1, S2, . . . , SM} of sensors covering G, where Sk = [PAk

, PEk
], PAk

∈ G, PEk
∈ G, 1 ≤

k ≤ M .
3. Benefit function B : G → �+.
4. Cost function C : S → �+.
Output: Value = min (0,C(L∗) − B(U∗

L)); Optimal set of uncovered points U∗
L; Optimal set of

removed sensors L∗.
Preprocessing:
1. Sort G in increasing order.
2. Sort S in non-decreasing order of right end points.
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3. Compute running sum of point benefits from each endpoint to all pre-beginning points until the
next endpoint.
Procedure:
1. I0 = Φ ;
2. U∗

L = [P1 . . . P−
A1

] ;
3. FOR k = 1 to M {
4. Ik = Ik−1

⋃
Sk; /* Add Sk to set of sensors considered */

5. U∗
L = U∗

L

⋃
{[P+

Ek−1
. . . PEk

]}; /* Assume Sk ∈ L∗ */
6. Compute

W k = {P−
Ak

⋃
P−

Ap

⋃
PEk

},∀P−
Ap

∈ Sk, k + 1 ≤ p ≤ M.

7. ∀Pj ∈ W k, Compute Sr : r = Max{q|Pj ∈ Sq or Pj > PEq}, Sq ∈ Ik−1.
8. ∀Pj ∈ W k, compute τ i

Pj
as in Equation 4.

9. If τk(PEk
) implies Sk 	∈ L∗, then U∗

L = U∗
L − {[PAk

, PEk
]}.

10. } End FOR

Theorem 3 The value of the minimal sensor integrity is min(τM (PEM
)−

∑
P+

EM

B(j)) and can be

computed in O(min(M2, MN)) time with O(M + N) storage. The optimal set of uncovered points
is U∗

L from which the set of sensors to be removed L∗ can be calculated.

Proof : The preprocessing steps in lines 1 and 2 can be completed in O((N +M) log(N +M)) time
while the running sums of line 3 can be computed and stored at each point in O(N) time. The
For loop in line 3 is executed M times. There are O(M) points in W k in line 8 for each of which
τ values are calculated in O(1) time. Note that if N < M , the algorithm can be easily modified to
run in O(NM) time by computing the τ values at each point instead of at each sensor. �

4 Conclusions

In this paper we have presented a model that takes into account the costs and benefits of sensor
removal and point uncoverage. We have shown that the problem of computing the minimal sensor
integrity, i.e., the best response to any sensor deployment is polynomial time solvable. This is in
sharp contrast to the sensor deployment problem which is NP-Complete. Furthermore, the algo-
rithm remains polynomial when sensors with arbitrary (non-polygonal) coverage areas are deployed
over any dimensional grid.
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