
Proc. Of WTR 2004 – 6th Brazilian Workshop on Real-Time Systems
May 14th , 2004

An Efficient Energy-Optimal Device-Scheduling Algorithm for
Hard Real-Time Systems

S. Chakravarthula2 S.S. Iyengar*
Microsoft, srinivac@microsoft.com Louisiana State University, iyengar@bit.csc.lsu.edu

K. Chakrabarty3 V. Swaminathan4

Duke University, krish@ee.duke.edu Duke University, ss@ee.duke.edu

* Corresponding Author

Abstract
Dynamic Power Management (DPM) of system components has emerged as a leading research
area that aims at minimizing energy consumption in battery-powered electronics such as mobile
and embedded systems. An interesting problem under DPM is energy-optimal device scheduling
that aims at minimizing device energy consumption for a given task set. In this paper, we present
an improved version of Energy-optimal Device Scheduler (EDS), an algorithm originally
proposed by Swaminathan and Chakrabarty [34] to solve the problem for hard real-time
systems. The improved algorithm cuts down execution time by as much as 99% and memory
usage by up to 30% for task sets with a low execution time/period ratio. We also present a
heuristic method called Device-Energy Optimizer (DEO) that attempts to find near-optimal
solutions and performs remarkably well in comparison to EDS.

1. Introduction
Power management is an important design parameter for computing systems such as laptops,
cellular phones and other portable electronics. Most of such systems operate on battery power
and minimizing their energy consumption would prolong their operational life. Additionally, in
certain situations such as a distributed sensor network over a battlefield, replacing battery packs
can turn out to be an expensive affair. Under such circumstances, extending operational life by
minimizing energy consumption while guaranteeing task efficiency has tremendous advantages.

The processor and the I/O subsystem are two major components that contribute
significantly to a computer system’s total energy consumption. Cutting down the energy usage
of these subsystems would lead to considerable savings in total power consumption. Several
hardware and software techniques have been proposed to achieve this goal.

Most processor-based techniques that have been proposed use two methods for saving
energy: 1) powering down the processor when it is idle and 2) scheduling different tasks to run at
different speeds by varying a processor’s execution voltage. Several popular manufacturers are
now shipping processors that have multiple operating voltages ([1], [12], [18], and [31]) thereby
allowing the OS to dynamically control the energy consumption of the processor(s). Such a
technique of OS-controlled energy management of system components is known as dynamic
power management (DPM). CPU-centric DPM has been an active area of research for the past
several years and many interesting and efficient approaches have been proposed that aim at
minimizing the energy consumption of processors ([6], [10], [11], [13], [14], [17], [19], [20],
[23]—[26], [29], [33], [35], and [37]).

Most approaches to I/O-centric DPM are probability, timeout, and statistic based.

* This project is funded in part by NSF and DARPA IT Grants

mailto:srinivac@microsoft.com
mailto:iyengar@bit.csc.lsu.edu
mailto:krish@ee.duke.edu
mailto:ss@ee.duke.edu

Stochastic approaches make use of probability to predict future idle times, whereas timeout-
based methods shut down devices after a certain period of idle time. (The industry standard
ACPI is a popular implementation of timeout-based DPM.) Statistical techniques, on the other
hand, make use of past history of a device to anticipate future requests and then change a
device’s power state accordingly. Table 1 summarizes prior research in the field of DPM.

An interesting feature that is common to all the above-mentioned approaches to I/O-
centric DPM is that they use statistical and probabilistic methods for making device-transition
decisions and are therefore not always 100% accurate. Consequently, such methods are
unsuitable for hard real-time systems, which are characterized by a high degree of uncertainty in
the generation of device requests and stringency in tasks meeting their deadlines.

Scientist Approach Method Used/Suggested

Greenawalt, 1994 [9] Statistical Equation modeling for hard disk power
management

Hwang and Wu, 1997 [17] Probabilistic

Exponential-average method in
conjunction with prediction-miss
correction and pre-wakeup mechanisms

Benini et al., 1999 [5] Finite machines Finite-state, abstract-system model based
on Markov decision processes

Simunic et al., 1999 [30] Finite machines Suggested modifications to Benini et al.’s
method:

• switching to a semi-Markov model
• using a continuous time model

Chung et al., 1999 [7] Probabilistic and
Statistical

Adaptive Learning Tree data structure

Lu et al., 2000 [22] Exact solutions
(non-probabilistic,
non-statistical)

Re-arrange task executions to prolong
device idle periods

Swaminthan et al., 2001 [32] Exact solutions LEDES algorithm – rearranges task
executions (online)

Swaminathan and
Chakrabarty, 2002 [34]

Exact solutions EDS algorithm (online) – rearranges task
executions (offline)

Table 1: Summary of prior I/O-centric DPM research

Swaminathan and Chakrabarty [34] proposed an offline device-scheduling algorithm
named EDS (Energy-optimal Device Scheduler) for hard real-time systems. The EDS algorithm
works by trying to keep a device busy for as long as possible. It does this by executing tasks
with high device usage overlap one after another thereby minimizing energy consumption of the
system as a whole. In this paper, we discuss an improved version of the EDS algorithm that was
proposed by Swaminathan and Chakrabarty [34]. The new version runs as much as 200 times
faster for certain task sets and uses significantly lesser (up to 30%) memory.

2. Preliminaries, Notations, and Assumptions
This section describes the problem domain in detail. We also state the notations and assumptions
used in this paper.

The energy-optimal device-scheduling (EODS) problem can be stated as follows: Given a
task set t = {t1, t2, … tn} and an associated device-usage list dul = {d1, d2, … dk} for each task,

 2

develop a task schedule that minimizes the energy consumption of all devices while guaranteeing
that no task misses its deadline. Table 2 lists task and device characteristics.

The following are a few notations used in this paper:

• H: hyperperiod of the task set; defined as the least common multiple of the periods of all
tasks.

• n: number of tasks
• l: number of jobs = ∑i = 1 to n H/pi for a periodic task set.
• k: number of devices

We make the following assumptions:

• min(ci) of all jobs is greater than max (tti) of all devices
• pwi > pti > psi
• devices can serve requests only in the working state
• a device state transition can take place at any time instant
• a device schedule can be generated from a given a task schedule by determining the state

of each device at the start and completion of each job based on the task’s dul.

Task Characteristics Device Characteristics
• ai – arrival time
• ci – completion time (worst-case

execution time)
• pi – period (1/pi gives the frequency of

task arrival)

• a low-power sleeping state
• a high-power working state
• transition time from one power state to

another tti
• power consumed in working state pwi
• power consumed in sleep state psi
• power consumed during transition pti

Table 2: Task and device characteristics

2.1 Computational Complexity
In this subsection we provide a proof that the energy-optimal device-scheduling problem for hard
real-time systems is NP-complete. EODS is a typical example of an optimization problem
wherein we are trying to minimize the energy consumed by a set of devices for a given task set.
In order to simply the proof of NP-completeness, we recast EODS as a decision problem as
follows: given a constant C and a task set T (with release time and deadline constraints for each
task) that uses a device set D, is there a feasible schedule for T such that D's total energy
consumption is less than or equal to C? Let us call this recast version of EODS as Decision-
EODS. To show that EODS is NP-complete, we need to prove that: 1) Decision-EODS is NP;
and that 2) Decision-EODS is NP-hard.

Theorem 1: Decision-EODS is NP.
Proof: The proof of this theorem is trivial. Given a task schedule, it is very easy to check in
polynomial time whether device-energy consumption is indeed at most C.

Theorem 2: Decision-EODS is NP-hard.

 3

Proof: To prove that Decision-EODS is NP-hard, we consider a special case where device usage
of all tasks is zero, i.e., D is a null set. Decision-EODS then transforms to the following
problem: Given a task set T (with release time and deadline constraints for each task), is there a
feasible schedule that guarantees to meet all release-time and deadline constraints? In other
words, we have equated Decision-EODS to the famous non-preemptive scheduling with release
times and deadlines problem, which has been proven to be NP-complete ([8]). Decision-EODS
is therefore NP-hard.

Since we have proven that Decision-EODS belongs to class NP and is NP-hard, we can conclude
that EODS is NP-complete.

3. Energy-Optimal Device Scheduler (EDS)
A naïve straightforward approach to solving the EODS problem is to compute all feasible task
schedules, calculate their respective device energy consumptions, and then choose the one that
has the minimal value. A tree-based method could be used to implement such an approach.
Given an l-job set (a job is an instant of a task), a schedule tree consisting of nodes and directed
edges could be constructed, wherein each node, identified by a {id, scheduled-time} tupple,
would be a schedulable instant of a released job. By “schedulable instant” we mean a time
instant that guarantees a job’s completion before its deadline. Directed edges exist between
parent and child nodes. A parent node a can have a child node b if b can be scheduled after the
completion of a. The root of the schedule tree is a dummy node identified by {0,0}. A path of
depth l from the root node to a leaf node gives a complete feasible schedule.

id ai ci di dul

j1 0 1 2 {d1,d2}
j2 0 1 3 {d2,d3}
j3 2 1 4 {d1,d2}
j4 3 1 6 {d2,d3}
j5 4 1 6 {d1,d2}

Table 3: Job characteristics

id pwi
(J/s)

psi
(J/s)

pti
(J/s)

tti
(J/s)

d1 2.30 1.00 1.50 0.60
d2 0.30 0.10 0.20 0.50
d3 0.63 0.25 0.40 0.50

Table 4: Device characteristics

We now describe the generation of a schedule tree in more detail using the job set given
in Table 3 (device characteristics are given in Table 4). First, at time = 0, we find all released
jobs, which are j1 and j2 in our example. We then find all schedulable instants for j1 and j2. j1
can be scheduled at time = 0 and time = 1 without missing its deadline and j2 can be scheduled at
time = 0, time = 1, and time = 2. We therefore create the nodes (1,0), (1,1), (2,0), (2,1), and (2,2)
and then draw edges from the root to these nodes. What we are doing is, in essence, converting

 4

each job into a set of nodes representing all schedulable instants of that particular job. We
proceed to the next level and for each node at that level we generate child nodes in a similar
fashion. For example, the node (1,0) tells us that j1 completes at time = 1. We find all released
unscheduled jobs up to time = 1. We see that the only unscheduled released job at time = 1 is j2.
We compute all schedulable instants of j2, which are {(2,1), (2,2)}, and then draw edges from
(1,0) to these nodes. We expand all the other nodes at this level {(1,1), (2,0), (2,1), and (2,2)} in
a similar fashion.

Sometimes, no job might have arrived by the time the current job completes. Under such
circumstances, we advance current time to the nearest job arrival time. At other times, a node can
fail to generate vertices for a released unscheduled job because of deadline problems.
Consequently, that particular node can be safely pruned because it will fail to grow into a
complete schedule. We call such a method of pruning as temporal pruning (pruning based on
deadlines). For example, the node (2,1) informs us that j2 completes at time = 2 (since cj2 = 1),
therefore, the earliest time instant any job can be scheduled next is time = 2. Also, the jobs
released but not scheduled by time = 2 are j1 and j3. However, it can be observed that j1 cannot
meet its deadline if it were scheduled at time = 2 (since cj1 = 1 and dj1 = 2). We now know that
node (2,1) will definitely fail to grow into a complete feasible schedule. It can therefore be
safely pruned.

We continue expanding the schedule tree until all nodes have been expanded and we
reach the lth level. If we fail to reach level l, we can conclude that no feasible schedule exists for
the given task set. Figure 1 shows the complete schedule tree for the job set given in Table 3.
Once we have the set of feasible schedules, we calculate the device-energy consumption in each
schedule and then choose the schedule with the minimal value.

It can be observed that a schedule tree grows “factorially” with l. We have already
proved that EODS is NP-complete and therefore no algorithm exists as of today to solve it in
polynomial time. However, [34] identified some approaches that lead to a significant reduction
in the size of the schedule tree thereby making larger data sets solvable. They proposed an
algorithm called EDS (Energy-optimal Device Scheduler) that implemented their tree-size-
reduction techniques with remarkable results. The basic idea behind the EDS algorithm is to
prune certain “superfluous” branches of the schedule tree based on energy computation.

 5

Branches are labeled “superfluous” when it can be guaranteed that the optimal solution does not
exist along them. Such superfluous branches are identified and removed using a pruning method
known as energy-based pruning. The second technique they proposed was to treat each node at
level 1 as a root node and thereafter proceed with the schedule tree generation for each such root
node separately. This, in effect, is like generating sub-problems and solving them separately.
The latter technique is directed towards reducing the memory usage of the schedule tree thereby
providing scope for solving larger data sets that have higher memory requirement. The
interested reader is referred to [34] for details on how energy-based pruning is implemented.

The denser the tree gets the more the number of branches that get pruned as a result of the
above techniques thereby yielding remarkable reductions in the algorithm’s running time and
memory usage in practice. Once the tree is fully developed, a path of depth l from the root to a
leaf node with the least energy value is the most energy-optimal task schedule (there can be more
than one energy-optimal task schedules). Figure 3 gives the complete schedule tree for the job
set given in Table 3 (device characteristics are given in Table 4). The most energy-optimal task
schedule(s) are indicated using shaded vertices.

 6

4. An Improved Version of EDS
In this section, we propose improvements to EDS that make it even more efficient. Our
observations led us to two avenues that could potentially lead to improvements in the algorithm.
They are: 1) reducing the size of the tree by introducing new methods of pruning, and 2)
improving the search time in lines 14 through 21 in the algorithm (Figure 4). The improvements
we suggest yield remarkable reductions in running time and memory usage.

The first improvement we propose aims at reducing the number of nodes generated in the
tree by adopting a new pruning technique. The pruning method we suggest is called look-ahead
temporal pruning. In this method of pruning, we avoid generating nodes that will lead to dead
ends deeper in the schedule tree. The basic idea behind look-ahead temporal pruning is
explained next.

Under certain circumstances, even though a job jx can be scheduled at a specific time
instant sx (with an energy consumption of ex), it may render other released jobs “unschedulable”
because of deadline problems and thus lead to a dead end in the task schedule. We would
therefore save time and memory if the node (jx,sx,ex) were not generated in the first place.
Assume that we are currently expanding a node (jc, sc, ec). We can implement look-ahead
temporal pruning by adopting the following 3-step procedure for each job jnext that can be
scheduled next:

1. define a set UR of all unscheduled jobs
2. determine the smallest dj-cj value (= sd; secondary deadline) in the set UR
3. schedule jnext up to min(dnext-cnext, sd-cnext)

Following the above procedure guarantees that a feasible schedule will be generated (if

one exists) while simultaneously implementing look-ahead temporal pruning. What we are
essentially doing by following the above procedure is determining a secondary deadline for the
current job by using the deadlines of all unscheduled jobs. We then use this secondary deadline
to determine the maximum schedulable instant for the current job. Doing so will guarantee that
the current job will not make a job released later “unschedulable”.

We illustrate look-ahead temporal pruning using the example job set given in Table 3.
Figure 5 shows a partial schedule tree for the example job set. Energy values are not shown
because they do not play a role in look-ahead temporal pruning. At this point in the
development of the schedule tree, we are at level 0 expanding the node {0,0} by processing j2 (j1
and j2 are the jobs that have arrived by time instant 0 and we have already processed j1). The
possible nodes that can be generated for j2 at this juncture are {2,0}, {2,1}, and {2,2}. However,
if j2 were to be scheduled at time instant 1, we would not be able to schedule j1 later because dj1
= 2 and cj1 = 1. We should therefore avoid scheduling j2 at time instant 1 and refrain from
creating the node {2,1}. A similar argument holds for the node {2,2}. We can determine the
maximum schedulable instant for j2 by following the above-mentioned 3-step procedure. For
this example, jnext = j2, dnext = 3, cnext = 1, UR = {j1,j3, j4, j5} and sd = 1. As per the above-
mentioned metric, the maximum schedulable time instant for job j2 would then be min(dnext-cnext
= 2, sd-cnext = 0), which is 0. We can now safely avoid generating the “superfluous” nodes {2,1}
and {2,2}.

 7

The way the older version of EDS works is that it first creates such “superfluous” nodes,
stores them, and deletes them much later only when it has moved on to the next level and has
started processing them at that level. The drawbacks with such an approach are: 1) valuable
processor time is consumed for creation of the “superfluous” nodes; 2) time spent on the search
section of the algorithm increases; and 3) memory usage of the algorithm is higher. The new
look-ahead temporal pruning approach on the other hand identifies such superfluous nodes well
in advance and avoids creating them thus saving time and memory. Section 7 shows
experimental proof of its effectiveness in reducing the total number of nodes generated in a
schedule tree.

The second improvement we put forward reduces the time spent on the search section of
the algorithm (lines 14 through 21 in Figure 4). The way the search section of the older version
of EDS works is it first generates all nodes at a particular level, stores them in list, and then does
a pair-wise comparison of nodes to eliminate some of them using energy-based pruning. This
involves an O(s2) worst-case-time search, where s is the number of nodes at a level. For larger
data sets, s can become prohibitively large as we go deeper in the schedule tree thereby
exploding the running time of the algorithm in practice. We recommend using a hash-based
search to facilitate energy-based pruning that brings down the search time to O(s). A hash table
can be used to store and search nodes. As and when a node is generated, we avoid duplication
by using the hash table to determine if such a node already exists (a node having same energy-
based pruning criteria as this node, i.e., representing the same job scheduled at the same time
instant and having identical ordering of previously scheduled jobs = partial schedule).
Consequently, at any point of time, at each level we keep only one node with the least device
energy consumption value representing a particular job scheduled at a particular time instant
having a particular partial schedule. This reduces the size of the hash table significantly and
improves the search time. Our experiments, discussed in Section 7, show that the hash-based
search method dramatically improves running time thereby providing scope for solving larger
data sets. Such large data sets were previously unsolvable in a reasonable amount of time using
EDS. The Improved EDS algorithm is given in Figure 6.

 8

 9

5. A Heuristic Solution
Given that EDS is factorial in time complexity, the improvements suggested in Section 5 might
not appear to be that effective. Theoretically, this assumption is quite true since any polynomial
improvement to a super-polynomial algorithm is not good enough to bring down the running
time considerably. Consequently, finding near-optimal solutions that have polynomial-time
complexity would appear to be more logical. In this section, we present a heuristic approach for
solving the EODS problem in polynomial-time. The heuristic we propose is called the Device-
Energy Optimizer (DEO).

DEO takes a feasible task schedule as input and tries to rearrange task executions such
that device energy consumption is minimized. A feasible schedule for a given job set can be
easily generated using one of several algorithms such as Earliest Deadline First (EDF). The task
schedule given as input to the DEO algorithm is in the form of a time array T with each element
of the array representing a time slot. Each element stores a pointer to the job that executes
during that time slot. The DEO algorithm works as follows. At the completion of a time slot,
DEO scans the rest of the time array to find a 'swappable' slot that has the closest device-usage
list to the current job. We illustrate the idea of 'swappable' using the following example.
Assume that we just completed executing job ji during the time slot T[i] and that the job in the
next immediate time slot T[i+1] is jj. We now find a job (in a slot T[z]) in the range T[i+2 ... H-
1] that has arrived by i+1 and has maximum device overlap with ji. We then swap jz with jj.
However, we also have to make sure that z is less than jj's deadline. The DEO algorithm is given
in Figure 7. After the algorithm finishes, the time array T gives us a task schedule with
significantly lower device energy consumption. The reason for reduced energy consumption of
this task schedule is that devices remain in a certain power state for an extended period of time
instead of constantly switching between on and off states, which causes consumption spikes.
DEO reduces energy consumption by trying to schedule together jobs that have higher device
usage overlap

The running time of DEO is O(kH2), which is polynomial in time complexity. As
discussed earlier, EDS has super-polynomial time complexity and even with all the
improvements listed in Section 5, it still takes prohibitively large amounts of time even for data
sets with just over 20 jobs. We attempted to solve data sets using both improved EDS and DEO
and the results are listed in Table 4. The table compares the performance of improved EDS and
DEO and makes it evident how excellent a choice DEO is for solving larger data sets with a little
tradeoff in energy consumption.

6. Experimental Results
We evaluated the improved EDS algorithm by using task sets (listed in Table 3) with varying
hyperperiods (and consequently, varying number of jobs). Device characteristics are listed in
Table 4. Table 5 shows the running time and memory usage of the improved EDS algorithm for
these data sets. Running time of the algorithms was measured using the ‘time’ command in
LINUX. The number of nodes generated was used as a metric for memory usage. Table 5 also
lists the running time and memory usage of the original EDS algorithm for the same data sets. A
PC with a Pentium3-800MHz processor and 256MB of RAM was used for conducting the
experiments.

 10

Task Set EDS Improved EDS

 Time

Memory
Usage

(Number
of Nodes)

Time

Memory
Usage

(Number
of Nodes)

H = 20; l = 9 < 1s 75 < 1s 42
H = 30; l = 11 < 1s 247 < 1s 163
H = 35; l = 12 < 1s 439 < 1s 300
H = 40; l = 13 < 1s 799 < 1s 590
H = 45; l = 14 < 1s 1193 < 1s 902
H = 55; l = 16 1.03s 2717 < 1s 1909
H = 60; l = 17 3.91s 4045 < 1s 2939
H = 65; l = 18 17.23s 6035 < 1s 4472
H = 70; l = 19 48.43s 8155 < 1s 6205
H = 80; l = 21 5m42.71s 15822 4.31s 11065
H = 85; l = 22 14m18.95s 21043 10.05s 15099
H = 90; l = 23 38m53.44s 28381 25.35s 20541
H = 95; l = 24 90m11.04s 36047 1m01.22s 26668
H = 105; l = 26 575m30.36s 62525 5m06.52s 42889
H = 110; l = 27 1479m06.84s 77889 9m36.74s 54484
H = 115; l = 28 4384m25.74s 98721 19m09.83s 69381

Table 5: EDS versus Improved EDS.

 11

It is evident from Table 5 that the Improved EDS algorithm cuts down running time by
more than 99% and memory usage by up to 34% when compared to the original version. Such
improvements are a direct result of implementing look-ahead temporal pruning, which is well
complemented by the hashing-based search system we suggested. Data sets that earlier took
more than a day (for example, the last 2 data sets in Table 5) to be solved can now be run to
completion in less than 20 minutes. It should be noted that both the old and the new EDS
algorithms are actually super-polynomial in complexity and therefore, as a consequence, no
significant theoretical improvements are evident. However, our experimental results prove
beyond doubt that the improvement in the practical running time is quite remarkable. These
results also suggest that practical improvements to optimal algorithms can be significant even if
theoretical improvements are not apparent. Table 5 also suggests that running time of the
improved EDS algorithm does not explode as much as that of the old EDS algorithm when data
set size increases. The other aspect of the improved EDS algorithm is that it cuts down memory
usage by more than 25% for most of the data sets.

Table 5 also suggests that look-ahead temporal pruning is most effective in cutting down
running time and memory usages for data sets that have tasks with low ci/pi ratio, i.e., tasks
having greater number of schedulable instants. Such tasks actually generate greater number of
nodes in the original EDS algorithm. Most of these nodes run into dead ends deeper in the
schedule tree because of deadline problems with other tasks (as discussed in Section 5). Look-
ahead temporal pruning removes these “superfluous” nodes quite early in the development of the
schedule tree thereby cutting down the running time and memory usage. It would seem logical
to assume that hard real-time systems would be quite conservative in that the window of
scheduling instants they would provide for each task would be quite wide, i.e., for most tasks ci
would be much less than pi (that is, they would be characterized by a low ci/pi ratio). Therefore,
if this assumption were true, look-ahead temporal pruning would result in tremendous
improvements in running time and memory usage in practice for hard real-time systems.

 12

Figure 8 shows the rate of growth of running time for EDS and Improved EDS. It can be
observed that when number of jobs is beyond 26, EDS explodes in running time. On the other
hand, Improved EDS’ running time shows minimal increase. Its rate of growth is much less than
that of EDS. In fact, Improved EDS takes less than 1/200th the time EDS takes for solving a 28-
job set. Figure 9 depicts the rate of growth of memory usage for the two algorithms. Similar to
running time, EDS’ memory usage increases dramatically when the number of jobs touches 26.
Improved EDS on the other hand has significantly lower memory usage for the same job set. It
can also be observed that the memory usage of Improved EDS for solving a 28-job set is
approximately 30% less than that of EDS. These properties of Improved EDS – reduced rate of
growth in running time and memory usage – suggest that the algorithm can be used to solve
larger data sets with relative ease when compared to EDS. We highlight these properties as
salient features of Improved EDS.

We now discuss how our heuristic solution performs in comparison to EDS. Table 6 lists

the results of comparisons between DEO and improved EDS. It is evident that DEO has the
ability to solve very large data sets in relatively negligible amounts of time. It can also be seen
that task schedules generated using DEO have only a maximum of 5% increase in device energy
consumption when compared with those generated using EDS. This 5% increase is an
acceptable tradeoff given the savings of up to 99.99% in running time. Figure 10 gives a visual
comparison of energy solutions from EDS and DEO. It can be concluded that DEO is a first-rate
alternative for EDS when near-optimal solutions to EODS are tolerable.

7. Conclusions
Energy conservation in embedded and portable systems is an active area of research currently.
Most of such systems depend on battery power for entirety of their life. Bringing down the
power consumption of system components would therefore result in an extension of operational
life of such battery-powered systems. The I/O subsystem in such systems is as much a powerful

 13

Task Set EDS DEO

 Time Energy
(Joules) Time Energy

(Joules)
H = 20; l = 9 < 1s 44.12 < 1s 45.25
H = 30; l = 11 < 1s 60.92 < 1s 62.72
H = 35; l = 12 < 1s 69.85 < 1s 72.42
H = 40; l = 13 < 1s 78.17 < 1s 80.68
H = 45; l = 14 < 1s 87.13 < 1s 90.38
H = 55; l = 16 1.03s 104.33 < 1s 106.88
H = 60; l = 17 3.91s 112.73 < 1s 115.13
H = 65; l = 18 17.23s 121.53 < 1s 123.38
H = 70; l = 19 48.43s 129.93 < 1s 131.6
H = 80; l = 21 5m42.71s 147.13 < 1s 148.12
H = 85; l = 22 14m18.95s 156.00 < 1s 156.37
H = 90; l = 23 38m53.44s 164.33 < 1s 164.62
H = 95; l = 24 90m11.04s 170.45 < 1s 172.87
H = 105; l = 26 575m30.36s 186.23 < 1s 189.37
H = 110; l = 27 1479m06.84s 194.22 < 1s 197.47
H = 115; l = 28 4384m25.74s 200.12 < 1s 206.35

Table 6: Improved EDS versus DEO.

candidate as the processor for cutting down energy usage. The I/O subsystem consists of
peripheral devices such as display, storage, and communication units. Dynamically (through an
OS) changing the power states of such units (i.e., scheduling devices) can minimize device
energy consumption.

Energy-optimal device scheduling for hard real-time systems (EODS) has been proven to
be NP-complete. The EDS algorithm proposed by [34] was the first attempt to come up with an
efficient algorithm to solve the problem. In this paper, we have presented an improved version

 14

of EDS that introduces a new method of pruning known as look-ahead temporal pruning. We
also suggest a change in the search method used by the original EDS algorithm. Our
experiments show that these changes bring about a remarkable reduction in running time and
memory usage. We also presented a new heuristic algorithm called DEO for finding near-
optimal solutions to EODS. Our experimental results show that DEO is an excellent choice for
finding fast solutions to EODS problem with very little tradeoff in device energy consumption.

9. References
1. AMD. Athlon 4 Processor Data Reference Sheet #24319. Advanced Micro Devices,

Inc., 2001.
2. Benini, L. and Micheli, G. De. System-level power optimization: techniques and

tools. ACM Transactions on Design Automation of Electronic Systems, vol. 5, pp.
115-192, 2000.

3. Benini, L., Bogliolo, A., and Micheli, G. De. A survey of design techniques for
system-level dynamic power management. IEEE Transactions on VLSI Systems, pp.
299-316, 2000.

4. Benini, L., Bogliolo, A., Cavalucci, S., and Ricco, B. 1998. Monitoring system
activity for OS-directed dynamic power management. Low Power Electronics and
Design, pp. 185-190, 1998.

5. Benini, L., Bogliolo, A., Paleologo, G., and Micheli, G. Policy optimization for
dynamic power optimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, pp. 813-833, 1999.

6. Brown, J., Chen, D., Greenwood, G., Hu, X., and Taylor, R. Scheduling for power
reduction in a real-time system. Proceedings of the International Symposium on
Low Power Electronics and Design, pp. 84-87, 1997.

7. Chung E.-Y., Benini, L., and Micheli, G. Dynamic power management using
adaptive learning tree. International Conference on Computer-Aided Design, pp.
274-279, 1999.

8. Garey, M. and Johnson, D. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman. San Fransisco. 1979.

9. Greenawalt, P. Modeling power management of hard disks. Proceedings of the
Second International Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pp. 62-66, 1994.

10. Gruian F. and Kuchcinski K. LEneS: Task scheduling for low-energy systems
using variable supply voltage processors.
http://www.cs.lth.se/Research/ESD/doc/aspdac01.pdf

11. Gruian, F. Hard real-time scheduling for low-energy using stochastic data and DVS
processors. Proceedings of the International Symposium on Low Power Electronics
and Design, pp. 46-51, 2001.

12. Hitachi, Inc. SH1: SH7032/SH7034 Product Brief.
13. Hong, I., Qu, G., Potkonjak, M., and Srivastava, M. Synthesis techniques for low-

power hard real-time systems on variable voltage processors. Real-Time Systems

 15

Symposium, pp. 178-187, 1998.
14. Hsu, C.-H., Kremer, U., and Hsiao, M. Compiler-directed dynamic

voltage/frequency scheduling for energy reduction in microprocessors. Proceedings
of the International Symposium on Low Power Electronics and Design, pp. 275-278,
2001.

15. http://developer.intel.com/technology/iapc/acpi/
16. Hwang, C.-H. and Wu, A. A predictive system shutdown method for energy saving

of event-driven computation. ACM Transactions on Design Automation of
Electronic Systems, vol. 5, pp. 226-241, 2000.

17. Hwang, C.-H. and Wu, A. A predictive system shutdown method for energy saving
of event-driven computation. International Conference on Computer-Aided Design,
pp. 28-32, 1997.

18. IBM Documentation at http://www-3.ibm.com/chips/products/powerpc/chips/
19. Ishihara, T. and Yasuura, H. Voltage scheduling problem for dynamically variable

voltage processor. Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 197-202, 1998.

20. Lee, Y.-H., Doh, Y., Krishna, C. EDF scheduling using two-mode voltage-clock-
scaling for hard-real-time systems. Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pp. 221-228, 2001.

21. Lorch, J. and Smith, A. Software strategies for portable computer energy
management. 1998. IEEE Personal Communications, vol. 5(3), pp. 60-73, 1998.

22. Lu, Y.-H., Benini, L., and Micheli, G. Low-power task scheduling for multiple
devices. International Workshop on Hardware/Software Codesign, pp. 39-43, 2001.

23. Manzak, A. and Chakrabarti, C. Variable voltage task scheduling for minimizing
energy. Proceedings of the International Symposium on Low Power Electronics and
Design, pp. 279-282, 2001.

24. Nakamoto Y., Tsujino Y., and Tokura N. Real-time task scheduling algorithms for
maximum utilization of secondary batteries in portable devices. Proceedings of the
Seventh International Conference on Real-Time Computing Systems and
Applications, pp. 347-354, 2000.

25. Okuma, T., Yasuura, H., and Ishihara, T. Software energy reduction techniques for
variable-voltage processors. IEEE Design and Test of Computers, vol. 18(2), pp.
31-41, 2001.

26. Pering, T., Bird T., and Broderson, R. The simulation and evaluation of dynamic
voltage scheduling algorithms. Proceedings of the International Symposium on Low
Power Electronics and Design, pp. 76-81, 1998.

27. Puterman, M. Finite Markov decision process. New York: Wiley. 1994.
28. Quan, G. and Hu, X. Energy efficient fixed-priority scheduling for real-time

systems on variable voltage processors. Design Automation Conference, pp. 828-
833, 2001.

29. Shin, D., Kim J., and Lee, S. Intra-task voltage scheduling for low-energy hard real-
time applications. IEEE Design and Test of Computers, vol. 18(2), pp. 20-30, 2001.

 16

30. Simunic, T., Benini, L., and Micheli, G. Event-driven power management of
portable systems. Proceedings of the 12th International Symposium on System
Synthesis, pp. 18 –23, 1999.

31. Suziki, K., Mita, S., Fijita, T., Yamane, F., Sano, F., Chiba, A., Watanabe, Y.,
Matsuda, K., Maeda, T., and Kuroda, T. A 300 MIPS/W RISC core processor with
variable supply-voltage scheme in variable threshold-voltage CMOS. Proceedings
of the IEEE Custom Integrated Circuits Conference, pp. 587-590, 1997.

32. Swaminathan, V., Chakrabarty, K., and Iyengar, S. Dynamic I/O power
management for hard real-time systems. Proceedings of the International
Symposium on Hardware/Software Co-Design, pp. 237-243, 2001.

33. Swaminathan, V. and Chakrabarty, K. Investigating the effect of voltage-switching
on low-energy task scheduling in hard real-time systems. Proceedings of the ASP-
DAC, pp. 251-254, 2001.

34. Swaminathan, V. and Chakrabarty, K. Pruning-based energy-optimal device
scheduling for hard real-time systems. Proceedings of the International Symposium
on Hardware/Software Codesign, pp. 175-180, 2002.

35. Yao, F., Demers, A., and Shanker S. A scheduling model for reduced CPU energy.
IEEE Annual Foundations of Computer Science, pp. 374-382, 1995.

36. Zhang, Y., Hu, X., and Chen, D. Task scheduling and voltage selection for energy
minimization. Design Automation Conference, pp. 183-188, 2002.

 17

	An Efficient Energy-Optimal Device-Scheduling Algorithm for
	Abstract
	1. Introduction
	2. Preliminaries, Notations, and Assumptions
	3. Energy-Optimal Device Scheduler (EDS)
	Table 4: Device characteristics

	4. An Improved Version of EDS
	5. A Heuristic Solution
	6. Experimental Results
	7. Conclusions
	9. References

