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Abstract
Dynamic Power Management (DPM) of system components has emerged as a leading research 
area that aims at minimizing energy consumption in battery-powered electronics such as mobile 
and embedded systems. An interesting problem under DPM is energy-optimal device scheduling 
that aims at minimizing device energy consumption for a given task set. In this paper, we present 
an improved version of Energy-optimal Device Scheduler (EDS), an algorithm originally 
proposed by Swaminathan and Chakrabarty [34] to solve the problem for hard real-time 
systems. The improved algorithm cuts down execution time by as much as 99% and memory 
usage by up to 30% for task sets with a low execution time/period ratio.  We also present a 
heuristic method called Device-Energy Optimizer (DEO) that attempts to find near-optimal 
solutions and performs remarkably well in comparison to EDS. 

1.  Introduction 
Power management is an important design parameter for computing systems such as laptops, 
cellular phones and other portable electronics.  Most of such systems operate on battery power 
and minimizing their energy consumption would prolong their operational life.  Additionally, in 
certain situations such as a distributed sensor network over a battlefield, replacing battery packs 
can turn out to be an expensive affair.  Under such circumstances, extending operational life by 
minimizing energy consumption while guaranteeing task efficiency has tremendous advantages. 

The processor and the I/O subsystem are two major components that contribute 
significantly to a computer system’s total energy consumption.  Cutting down the energy usage 
of these subsystems would lead to considerable savings in total power consumption.  Several 
hardware and software techniques have been proposed to achieve this goal. 

Most processor-based techniques that have been proposed use two methods for saving 
energy: 1) powering down the processor when it is idle and 2) scheduling different tasks to run at 
different speeds by varying a processor’s execution voltage.  Several popular manufacturers are 
now shipping processors that have multiple operating voltages ([1], [12], [18], and [31]) thereby 
allowing the OS to dynamically control the energy consumption of the processor(s).  Such a 
technique of OS-controlled energy management of system components is known as dynamic 
power management (DPM).  CPU-centric DPM has been an active area of research for the past 
several years and many interesting and efficient approaches have been proposed that aim at 
minimizing the energy consumption of processors ([6], [10], [11], [13], [14], [17], [19], [20], 
[23]—[26], [29], [33], [35], and [37]).  

Most approaches to I/O-centric DPM are probability, timeout, and statistic based.  
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Stochastic approaches make use of probability to predict future idle times, whereas timeout-
based methods shut down devices after a certain period of idle time.  (The industry standard 
ACPI is a popular implementation of timeout-based DPM.)  Statistical techniques, on the other 
hand, make use of past history of a device to anticipate future requests and then change a 
device’s power state accordingly.  Table 1 summarizes prior research in the field of DPM. 

An interesting feature that is common to all the above-mentioned approaches to I/O-
centric DPM is that they use statistical and probabilistic methods for making device-transition 
decisions and are therefore not always 100% accurate.  Consequently, such methods are 
unsuitable for hard real-time systems, which are characterized by a high degree of uncertainty in 
the generation of device requests and stringency in tasks meeting their deadlines. 

 
Scientist Approach Method Used/Suggested 

Greenawalt, 1994 [9] Statistical Equation modeling for hard disk power 
management 

Hwang and Wu, 1997 [17] Probabilistic 
 

Exponential-average method in 
conjunction with prediction-miss 
correction and pre-wakeup mechanisms 

Benini et al., 1999 [5] Finite machines Finite-state, abstract-system model based 
on Markov decision processes 

Simunic et al., 1999 [30] Finite machines Suggested modifications to Benini et al.’s 
method: 

• switching to a semi-Markov model 
• using a continuous time model 

Chung et al., 1999 [7] Probabilistic and 
Statistical 

Adaptive Learning Tree data structure 

Lu et al., 2000 [22] Exact solutions 
(non-probabilistic, 
non-statistical) 

Re-arrange task executions to prolong 
device idle periods 

Swaminthan et al., 2001 [32] Exact solutions LEDES algorithm  – rearranges task 
executions (online) 

Swaminathan and  
Chakrabarty, 2002 [34] 

Exact solutions EDS algorithm (online) – rearranges task 
executions (offline) 

Table 1:  Summary of prior I/O-centric DPM research 
 

Swaminathan and Chakrabarty [34] proposed an offline device-scheduling algorithm 
named EDS (Energy-optimal Device Scheduler) for hard real-time systems.  The EDS algorithm 
works by trying to keep a device busy for as long as possible.  It does this by executing tasks 
with high device usage overlap one after another thereby minimizing energy consumption of the 
system as a whole.  In this paper, we discuss an improved version of the EDS algorithm that was 
proposed by Swaminathan and Chakrabarty [34].  The new version runs as much as 200 times 
faster for certain task sets and uses significantly lesser (up to 30%) memory. 

2.  Preliminaries, Notations, and Assumptions 
This section describes the problem domain in detail.  We also state the notations and assumptions 
used in this paper. 

The energy-optimal device-scheduling (EODS) problem can be stated as follows: Given a 
task set t = {t1, t2, … tn} and an associated device-usage list dul = {d1, d2, … dk} for each task, 
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develop a task schedule that minimizes the energy consumption of all devices while guaranteeing 
that no task misses its deadline.  Table 2 lists task and device characteristics. 
 
The following are a few notations used in this paper: 

• H: hyperperiod of the task set; defined as the least common multiple of the periods of all 
tasks. 

• n: number of tasks 
• l: number of jobs = ∑i = 1 to n H/pi for a periodic task set. 
• k: number of devices 

 
We make the following assumptions: 

• min(ci) of all jobs is greater than max (tti) of all devices 
• pwi > pti > psi 
• devices can serve requests only in the working state 
• a device state transition can take place at any time instant 
• a device schedule can be generated from a given a task schedule by determining the state 

of each device at the start and completion of each job based on the task’s dul. 
 

Task Characteristics Device Characteristics 
• ai – arrival time 
• ci – completion time (worst-case 

execution time) 
• pi – period (1/pi gives the frequency of 

task arrival) 
 

• a low-power sleeping state 
• a high-power working state 
• transition time from one power state to 

another tti 
• power consumed in working state pwi 
• power consumed in sleep state psi 
• power consumed during transition pti 

 

Table 2:  Task and device characteristics 
 
2.1 Computational Complexity 
In this subsection we provide a proof that the energy-optimal device-scheduling problem for hard 
real-time systems is NP-complete.  EODS is a typical example of an optimization problem 
wherein we are trying to minimize the energy consumed by a set of devices for a given task set.  
In order to simply the proof of NP-completeness, we recast EODS as a decision problem as 
follows:  given a constant C and a task set T (with release time and deadline constraints for each 
task) that uses a device set D, is there a feasible schedule for T such that D's total energy 
consumption is less than or equal to C?  Let us call this recast version of EODS as Decision-
EODS.  To show that EODS is NP-complete, we need to prove that:  1) Decision-EODS is NP;  
and that 2) Decision-EODS is NP-hard.   
 
Theorem 1:  Decision-EODS is NP. 
Proof:  The proof of this theorem is trivial.  Given a task schedule, it is very easy to check in 
polynomial time whether device-energy consumption is indeed at most C. 
 
Theorem 2:  Decision-EODS is NP-hard. 
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Proof:  To prove that Decision-EODS is NP-hard, we consider a special case where device usage 
of all tasks is zero, i.e., D is a null set.  Decision-EODS then transforms to the following 
problem:  Given a task set T (with release time and deadline constraints for each task), is there a 
feasible schedule that guarantees to meet all release-time and deadline constraints?  In other 
words, we have equated Decision-EODS to the famous non-preemptive scheduling with release 
times and deadlines problem, which has been proven to be NP-complete ([8]).  Decision-EODS 
is therefore NP-hard. 
 
Since we have proven that Decision-EODS belongs to class NP and is NP-hard, we can conclude 
that EODS is NP-complete. 

3. Energy-Optimal Device Scheduler (EDS) 
A naïve straightforward approach to solving the EODS problem is to compute all feasible task 
schedules, calculate their respective device energy consumptions, and then choose the one that 
has the minimal value.  A tree-based method could be used to implement such an approach.  
Given an l-job set (a job is an instant of a task), a schedule tree consisting of nodes and directed 
edges could be constructed, wherein each node, identified by a {id, scheduled-time} tupple, 
would be a schedulable instant of a released job.  By “schedulable instant” we mean a time 
instant that guarantees a job’s completion before its deadline.  Directed edges exist between 
parent and child nodes.  A parent node a can have a child node b if b can be scheduled after the 
completion of a.  The root of the schedule tree is a dummy node identified by {0,0}. A path of 
depth l from the root node to a leaf node gives a complete feasible schedule. 
 

id ai ci di dul 

j1 0 1 2 {d1,d2} 
j2 0 1 3 {d2,d3} 
j3 2 1 4 {d1,d2} 
j4 3 1 6 {d2,d3} 
j5 4 1 6 {d1,d2} 

Table 3:  Job characteristics 
 

id pwi 
(J/s) 

psi 
(J/s) 

pti 
(J/s) 

tti 
(J/s) 

d1 2.30 1.00 1.50 0.60 
d2 0.30 0.10 0.20 0.50 
d3 0.63 0.25 0.40 0.50 

Table 4:  Device characteristics 
 

We now describe the generation of a schedule tree in more detail using the job set given 
in Table 3 (device characteristics are given in Table 4).  First, at time = 0, we find all released 
jobs, which are j1 and j2 in our example.  We then find all schedulable instants for j1 and j2.  j1 
can be scheduled at time = 0 and time = 1 without missing its deadline and j2 can be scheduled at 
time = 0, time = 1, and time = 2.  We therefore create the nodes (1,0), (1,1), (2,0), (2,1), and (2,2) 
and then draw edges from the root to these nodes.  What we are doing is, in essence, converting 
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each job into a set of nodes representing all schedulable instants of that particular job.  We 
proceed to the next level and for each node at that level we generate child nodes in a similar 
fashion.  For example, the node (1,0) tells us that j1 completes at time = 1.  We find all released 
unscheduled jobs up to time = 1.  We see that the only unscheduled released job at time = 1 is j2.  
We compute all schedulable instants of j2, which are {(2,1), (2,2)}, and then draw edges from 
(1,0) to these nodes. We expand all the other nodes at this level {(1,1), (2,0), (2,1), and (2,2)} in 
a similar fashion.   

Sometimes, no job might have arrived by the time the current job completes.  Under such 
circumstances, we advance current time to the nearest job arrival time. At other times, a node can 
fail to generate vertices for a released unscheduled job because of deadline problems.  
Consequently, that particular node can be safely pruned because it will fail to grow into a 
complete schedule.  We call such a method of pruning as temporal pruning (pruning based on 
deadlines).  For example, the node (2,1) informs us that j2 completes at time = 2 (since cj2 = 1), 
therefore, the earliest time instant any job can be scheduled next is time = 2.  Also, the jobs 
released but not scheduled by time = 2 are j1 and j3.  However, it can be observed that j1 cannot 
meet its deadline if it were scheduled at time = 2 (since cj1 = 1 and dj1 = 2).  We now know that 
node (2,1) will definitely fail to grow into a complete feasible schedule.  It can therefore be 
safely pruned. 

We continue expanding the schedule tree until all nodes have been expanded and we 
reach the lth level.  If we fail to reach level l, we can conclude that no feasible schedule exists for 
the given task set.  Figure 1 shows the complete schedule tree for the job set given in Table 3.  
Once we have the set of feasible schedules, we calculate the device-energy consumption in each 
schedule and then choose the schedule with the minimal value. 
 
 

 
 
 

It can be observed that a schedule tree grows “factorially” with l.  We have already 
proved that EODS is NP-complete and therefore no algorithm exists as of today to solve it in 
polynomial time.  However, [34] identified some approaches that lead to a significant reduction 
in the size of the schedule tree thereby making larger data sets solvable. They proposed an 
algorithm called EDS (Energy-optimal Device Scheduler) that implemented their tree-size-
reduction techniques with remarkable results.  The basic idea behind the EDS algorithm is to 
prune certain “superfluous” branches of the schedule tree based on energy computation.  
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Branches are labeled “superfluous” when it can be guaranteed that the optimal solution does not 
exist along them.  Such superfluous branches are identified and removed using a pruning method 
known as energy-based pruning.  The second technique they proposed was to treat each node at 
level 1 as a root node and thereafter proceed with the schedule tree generation for each such root 
node separately.  This, in effect, is like generating sub-problems and solving them separately.  
The latter technique is directed towards reducing the memory usage of the schedule tree thereby 
providing scope for solving larger data sets that have higher memory requirement.  The 
interested reader is referred to [34] for details on how energy-based pruning is implemented. 
 
 

 
 

The denser the tree gets the more the number of branches that get pruned as a result of the 
above techniques thereby yielding remarkable reductions in the algorithm’s running time and 
memory usage in practice.  Once the tree is fully developed, a path of depth l from the root to a 
leaf node with the least energy value is the most energy-optimal task schedule (there can be more 
than one energy-optimal task schedules).  Figure 3 gives the complete schedule tree for the job 
set given in Table 3 (device characteristics are given in Table 4).  The most energy-optimal task 
schedule(s) are indicated using shaded vertices.  
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4. An Improved Version of EDS 
In this section, we propose improvements to EDS that make it even more efficient.  Our 
observations led us to two avenues that could potentially lead to improvements in the algorithm.  
They are: 1) reducing the size of the tree by introducing new methods of pruning, and 2) 
improving the search time in lines 14 through 21 in the algorithm (Figure 4).  The improvements 
we suggest yield remarkable reductions in running time and memory usage.  

The first improvement we propose aims at reducing the number of nodes generated in the 
tree by adopting a new pruning technique.  The pruning method we suggest is called look-ahead 
temporal pruning.  In this method of pruning, we avoid generating nodes that will lead to dead 
ends deeper in the schedule tree.  The basic idea behind look-ahead temporal pruning is 
explained next. 

Under certain circumstances, even though a job jx can be scheduled at a specific time 
instant sx (with an energy consumption of ex), it may render other released jobs “unschedulable” 
because of deadline problems and thus lead to a dead end in the task schedule.  We would 
therefore save time and memory if the node (jx,sx,ex) were not generated in the first place.  
Assume that we are currently expanding a node (jc, sc, ec).  We can implement look-ahead 
temporal pruning by adopting the following 3-step procedure for each job jnext that can be 
scheduled next: 

1. define a set UR of all unscheduled jobs 
2. determine the smallest dj-cj value (= sd; secondary deadline) in the set UR 
3. schedule jnext up to min(dnext-cnext, sd-cnext) 

 
Following the above procedure guarantees that a feasible schedule will be generated (if 

one exists) while simultaneously implementing look-ahead temporal pruning.  What we are 
essentially doing by following the above procedure is determining a secondary deadline for the 
current job by using the deadlines of all unscheduled jobs.  We then use this secondary deadline 
to determine the maximum schedulable instant for the current job.  Doing so will guarantee that 
the current job will not make a job released later “unschedulable”. 

We illustrate look-ahead temporal pruning using the example job set given in Table 3.  
Figure 5 shows a partial schedule tree for the example job set.  Energy values are not shown 
because they do not play a role in look-ahead temporal pruning.  At this point in the 
development of the schedule tree, we are at level 0 expanding the node {0,0} by processing j2 (j1 
and j2 are the jobs that have arrived by time instant 0 and we have already processed j1).  The 
possible nodes that can be generated for j2 at this juncture are {2,0}, {2,1}, and {2,2}.  However, 
if j2 were to be scheduled at time instant 1, we would not be able to schedule j1 later because dj1 
= 2 and cj1 = 1.  We should therefore avoid scheduling j2 at time instant 1 and refrain from 
creating the node {2,1}.  A similar argument holds for the node {2,2}.  We can determine the 
maximum schedulable instant for j2 by following the above-mentioned 3-step procedure.  For 
this example, jnext = j2, dnext = 3, cnext = 1, UR = {j1,j3, j4, j5} and sd = 1.  As per the above-
mentioned metric, the maximum schedulable time instant for job j2 would then be min(dnext-cnext 
= 2, sd-cnext = 0), which is 0.  We can now safely avoid generating the “superfluous” nodes {2,1} 
and {2,2}. 
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The way the older version of EDS works is that it first creates such “superfluous” nodes, 
stores them, and deletes them much later only when it has moved on to the next level and has 
started processing them at that level.  The drawbacks with such an approach are:  1) valuable 
processor time is consumed for creation of the “superfluous” nodes;  2) time spent on the search 
section of the algorithm increases;  and 3) memory usage of the algorithm is higher.  The new 
look-ahead temporal pruning approach on the other hand identifies such superfluous nodes well 
in advance and avoids creating them thus saving time and memory.  Section 7 shows 
experimental proof of its effectiveness in reducing the total number of nodes generated in a 
schedule tree. 

The second improvement we put forward reduces the time spent on the search section of 
the algorithm (lines 14 through 21 in Figure 4).  The way the search section of the older version 
of EDS works is it first generates all nodes at a particular level, stores them in list, and then does 
a pair-wise comparison of nodes to eliminate some of them using energy-based pruning.  This 
involves an O(s2) worst-case-time search, where s is the number of nodes at a level.  For larger 
data sets, s can become prohibitively large as we go deeper in the schedule tree thereby 
exploding the running time of the algorithm in practice.  We recommend using a hash-based 
search to facilitate energy-based pruning that brings down the search time to O(s).  A hash table 
can be used to store and search nodes.  As and when a node is generated, we avoid duplication 
by using the hash table to determine if such a node already exists (a node having same energy-
based pruning criteria as this node, i.e., representing the same job scheduled at the same time 
instant and having identical ordering of previously scheduled jobs = partial schedule).  
Consequently, at any point of time, at each level we keep only one node with the least device 
energy consumption value representing a particular job scheduled at a particular time instant 
having a particular partial schedule.  This reduces the size of the hash table significantly and 
improves the search time.  Our experiments, discussed in Section 7, show that the hash-based 
search method dramatically improves running time thereby providing scope for solving larger 
data sets.  Such large data sets were previously unsolvable in a reasonable amount of time using 
EDS.  The Improved EDS algorithm is given in Figure 6. 
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5.  A Heuristic Solution 
Given that EDS is factorial in time complexity, the improvements suggested in Section 5 might 
not appear to be that effective.  Theoretically, this assumption is quite true since any polynomial 
improvement to a super-polynomial algorithm is not good enough to bring down the running 
time considerably.  Consequently, finding near-optimal solutions that have polynomial-time 
complexity would appear to be more logical.  In this section, we present a heuristic approach for 
solving the EODS problem in polynomial-time.  The heuristic we propose is called the Device-
Energy Optimizer (DEO). 

DEO takes a feasible task schedule as input and tries to rearrange task executions such 
that device energy consumption is minimized.  A feasible schedule for a given job set can be 
easily generated using one of several algorithms such as Earliest Deadline First (EDF).  The task 
schedule given as input to the DEO algorithm is in the form of a time array T with each element 
of the array representing a time slot.  Each element stores a pointer to the job that executes 
during that time slot.  The DEO algorithm works as follows.  At the completion of a time slot, 
DEO scans the rest of the time array to find a 'swappable' slot that has the closest device-usage 
list to the current job.  We illustrate the idea of 'swappable' using the following example.  
Assume that we just completed executing job ji during the time slot T[i] and that the job in the 
next immediate time slot T[i+1] is jj.  We now find a job (in a slot T[z]) in the range T[i+2 ... H-
1] that has arrived by i+1 and has maximum device overlap with ji.  We then swap jz with jj.  
However, we also have to make sure that z is less than jj's deadline.  The DEO algorithm is given 
in Figure 7.  After the algorithm finishes, the time array T gives us a task schedule with 
significantly lower device energy consumption.  The reason for reduced energy consumption of 
this task schedule is that devices remain in a certain power state for an extended period of time 
instead of constantly switching between on and off states, which causes consumption spikes.  
DEO reduces energy consumption by trying to schedule together jobs that have higher device 
usage overlap 

The running time of DEO is O(kH2), which is polynomial in time complexity.  As 
discussed earlier, EDS has super-polynomial time complexity and even with all the 
improvements listed in Section 5, it still takes prohibitively large amounts of time even for data 
sets with just over 20 jobs.  We attempted to solve data sets using both improved EDS and DEO 
and the results are listed in Table 4.  The table compares the performance of improved EDS and 
DEO and makes it evident how excellent a choice DEO is for solving larger data sets with a little 
tradeoff in energy consumption. 

6. Experimental Results 
We evaluated the improved EDS algorithm by using task sets (listed in Table 3) with varying 
hyperperiods (and consequently, varying number of jobs).  Device characteristics are listed in 
Table 4.  Table 5 shows the running time and memory usage of the improved EDS algorithm for 
these data sets.  Running time of the algorithms was measured using the ‘time’ command in 
LINUX.  The number of nodes generated was used as a metric for memory usage.  Table 5 also 
lists the running time and memory usage of the original EDS algorithm for the same data sets.  A 
PC with a Pentium3-800MHz processor and 256MB of RAM was used for conducting the 
experiments. 

 10



 
 

Task Set EDS Improved EDS 

 Time 

Memory 
Usage 

(Number 
of Nodes)

Time 

Memory 
Usage 

(Number 
of Nodes) 

H = 20; l = 9 < 1s 75 < 1s 42 
H = 30; l = 11 < 1s 247 < 1s 163 
H = 35; l = 12 < 1s 439 < 1s 300 
H = 40; l = 13 < 1s 799 < 1s 590 
H = 45; l = 14 < 1s 1193 < 1s 902 
H = 55; l = 16 1.03s 2717 < 1s 1909 
H = 60; l = 17 3.91s 4045 < 1s 2939 
H = 65; l = 18 17.23s 6035 < 1s 4472 
H = 70; l = 19 48.43s 8155 < 1s 6205 
H = 80; l = 21 5m42.71s 15822 4.31s 11065 
H = 85; l = 22 14m18.95s 21043 10.05s 15099 
H = 90; l = 23 38m53.44s 28381 25.35s 20541 
H = 95; l = 24 90m11.04s 36047 1m01.22s 26668 
H = 105; l = 26 575m30.36s 62525 5m06.52s 42889 
H = 110; l = 27 1479m06.84s 77889 9m36.74s 54484 
H = 115; l = 28 4384m25.74s 98721 19m09.83s 69381 

Table 5:  EDS versus Improved EDS. 
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It is evident from Table 5 that the Improved EDS algorithm cuts down running time by 
more than 99% and memory usage by up to 34% when compared to the original version.  Such 
improvements are a direct result of implementing look-ahead temporal pruning, which is well 
complemented by the hashing-based search system we suggested.  Data sets that earlier took 
more than a day (for example, the last 2 data sets in Table 5) to be solved can now be run to 
completion in less than 20 minutes.  It should be noted that both the old and the new EDS 
algorithms are actually super-polynomial in complexity and therefore, as a consequence, no 
significant theoretical improvements are evident.  However, our experimental results prove 
beyond doubt that the improvement in the practical running time is quite remarkable.  These 
results also suggest that practical improvements to optimal algorithms can be significant even if 
theoretical improvements are not apparent.   Table 5 also suggests that running time of the 
improved EDS algorithm does not explode as much as that of the old EDS algorithm when data 
set size increases.  The other aspect of the improved EDS algorithm is that it cuts down memory 
usage by more than 25% for most of the data sets.   

Table 5 also suggests that look-ahead temporal pruning is most effective in cutting down 
running time and memory usages for data sets that have tasks with low ci/pi ratio, i.e., tasks 
having greater number of schedulable instants.  Such tasks actually generate greater number of 
nodes in the original EDS algorithm.  Most of these nodes run into dead ends deeper in the 
schedule tree because of deadline problems with other tasks (as discussed in Section 5).  Look-
ahead temporal pruning removes these “superfluous” nodes quite early in the development of the 
schedule tree thereby cutting down the running time and memory usage.  It would seem logical 
to assume that hard real-time systems would be quite conservative in that the window of 
scheduling instants they would provide for each task would be quite wide, i.e., for most tasks ci 
would be much less than pi (that is, they would be characterized by a low ci/pi ratio).  Therefore, 
if this assumption were true, look-ahead temporal pruning would result in tremendous 
improvements in running time and memory usage in practice for hard real-time systems. 
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Figure 8 shows the rate of growth of running time for EDS and Improved EDS.  It can be 
observed that when number of jobs is beyond 26, EDS explodes in running time.  On the other 
hand, Improved EDS’ running time shows minimal increase.  Its rate of growth is much less than 
that of EDS.  In fact, Improved EDS takes less than 1/200th the time EDS takes for solving a 28-
job set.  Figure 9 depicts the rate of growth of memory usage for the two algorithms.  Similar to 
running time, EDS’ memory usage increases dramatically when the number of jobs touches 26.  
Improved EDS on the other hand has significantly lower memory usage for the same job set.  It 
can also be observed that the memory usage of Improved EDS for solving a 28-job set is 
approximately 30% less than that of EDS.  These properties of Improved EDS – reduced rate of 
growth in running time and memory usage – suggest that the algorithm can be used to solve 
larger data sets with relative ease when compared to EDS.  We highlight these properties as 
salient features of Improved EDS. 

 
We now discuss how our heuristic solution performs in comparison to EDS.  Table 6 lists 

the results of comparisons between DEO and improved EDS.  It is evident that DEO has the 
ability to solve very large data sets in relatively negligible amounts of time.  It can also be seen 
that task schedules generated using DEO have only a maximum of 5% increase in device energy 
consumption when compared with those generated using EDS.  This 5% increase is an 
acceptable tradeoff given the savings of up to 99.99% in running time.  Figure 10 gives a visual 
comparison of energy solutions from EDS and DEO.  It can be concluded that DEO is a first-rate 
alternative for EDS when near-optimal solutions to EODS are tolerable. 

 

7. Conclusions 
Energy conservation in embedded and portable systems is an active area of research currently.  
Most of such systems depend on battery power for entirety of their life.  Bringing down the 
power consumption of system components would therefore result in an extension of operational 
life of such battery-powered systems.  The I/O subsystem in such systems is as much a powerful  
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Task Set EDS DEO 

 Time Energy 
(Joules) Time Energy 

(Joules) 
H = 20; l = 9 < 1s 44.12 < 1s 45.25 
H = 30; l = 11 < 1s 60.92 < 1s 62.72 
H = 35; l = 12 < 1s 69.85 < 1s 72.42 
H = 40; l = 13 < 1s 78.17 < 1s 80.68 
H = 45; l = 14 < 1s 87.13 < 1s 90.38 
H = 55; l = 16 1.03s 104.33 < 1s 106.88 
H = 60; l = 17 3.91s 112.73 < 1s 115.13 
H = 65; l = 18 17.23s 121.53 < 1s 123.38 
H = 70; l = 19 48.43s 129.93 < 1s 131.6 
H = 80; l = 21 5m42.71s 147.13 < 1s 148.12 
H = 85; l = 22 14m18.95s 156.00 < 1s 156.37 
H = 90; l = 23 38m53.44s 164.33 < 1s 164.62 
H = 95; l = 24 90m11.04s 170.45 < 1s 172.87 
H = 105; l = 26 575m30.36s 186.23 < 1s 189.37 
H = 110; l = 27 1479m06.84s 194.22 < 1s 197.47 
H = 115; l = 28 4384m25.74s 200.12 < 1s 206.35 

Table 6: Improved EDS versus DEO. 
 
 

 
 
 
candidate as the processor for cutting down energy usage.  The I/O subsystem consists of 
peripheral devices such as display, storage, and communication units.  Dynamically (through an 
OS) changing the power states of such units (i.e., scheduling devices) can minimize device 
energy consumption. 

Energy-optimal device scheduling for hard real-time systems (EODS) has been proven to 
be NP-complete.  The EDS algorithm proposed by [34] was the first attempt to come up with an 
efficient algorithm to solve the problem.  In this paper, we have presented an improved version 
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of EDS that introduces a new method of pruning known as look-ahead temporal pruning.  We 
also suggest a change in the search method used by the original EDS algorithm.  Our 
experiments show that these changes bring about a remarkable reduction in running time and 
memory usage.  We also presented a new heuristic algorithm called DEO for finding near-
optimal solutions to EODS.  Our experimental results show that DEO is an excellent choice for 
finding fast solutions to EODS problem with very little tradeoff in device energy consumption. 

9. References 
1. AMD.  Athlon 4 Processor Data Reference Sheet #24319. Advanced Micro Devices, 

Inc., 2001.  
2. Benini, L. and Micheli, G. De.  System-level power optimization: techniques and 

tools.  ACM Transactions on Design Automation of Electronic Systems, vol. 5, pp. 
115-192, 2000. 

3. Benini, L., Bogliolo, A., and Micheli, G. De.  A survey of design techniques for 
system-level dynamic power management.  IEEE Transactions on VLSI Systems, pp. 
299-316, 2000. 

4. Benini, L., Bogliolo, A., Cavalucci, S., and Ricco, B.  1998.  Monitoring system 
activity for OS-directed dynamic power management. Low Power Electronics and 
Design, pp. 185-190, 1998. 

5. Benini, L., Bogliolo, A., Paleologo, G., and Micheli, G.  Policy optimization for 
dynamic power optimization.  IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, vol. 18, pp. 813-833, 1999. 

6. Brown, J., Chen, D., Greenwood, G., Hu, X., and Taylor, R.  Scheduling for power 
reduction in a real-time system.  Proceedings of the International Symposium on 
Low Power Electronics and Design, pp. 84-87, 1997. 

7. Chung E.-Y., Benini, L., and Micheli, G.  Dynamic power management using 
adaptive learning tree.  International Conference on Computer-Aided Design, pp. 
274-279, 1999. 

8. Garey, M. and Johnson, D.  Computers and Intractability:  A Guide to the Theory of 
NP-Completeness.  W. H. Freeman.  San Fransisco.  1979. 

9. Greenawalt, P.  Modeling power management of hard disks.  Proceedings of the 
Second International Workshop on Modeling, Analysis, and Simulation of Computer 
and Telecommunication Systems, pp. 62-66, 1994. 

10. Gruian F. and Kuchcinski K.  LEneS:  Task scheduling for low-energy systems 
using variable supply voltage processors.  
http://www.cs.lth.se/Research/ESD/doc/aspdac01.pdf 

11. Gruian, F.  Hard real-time scheduling for low-energy using stochastic data and DVS 
processors.  Proceedings of the International Symposium on Low Power Electronics 
and Design, pp. 46-51, 2001. 

12. Hitachi, Inc.  SH1: SH7032/SH7034 Product Brief. 
13. Hong, I., Qu, G., Potkonjak, M., and Srivastava, M.  Synthesis techniques for low-

power hard real-time systems on variable voltage processors. Real-Time Systems 

 15



Symposium, pp. 178-187, 1998. 
14. Hsu, C.-H., Kremer, U., and Hsiao, M.  Compiler-directed dynamic 

voltage/frequency scheduling for energy reduction in microprocessors.  Proceedings 
of the International Symposium on Low Power Electronics and Design, pp. 275-278, 
2001. 

15. http://developer.intel.com/technology/iapc/acpi/ 
16. Hwang, C.-H. and Wu, A.  A predictive system shutdown method for energy saving 

of event-driven computation.  ACM Transactions on Design Automation of 
Electronic Systems, vol. 5, pp. 226-241, 2000. 

17. Hwang, C.-H. and Wu, A.  A predictive system shutdown method for energy saving 
of event-driven computation.  International Conference on Computer-Aided Design, 
pp. 28-32, 1997. 

18. IBM Documentation at http://www-3.ibm.com/chips/products/powerpc/chips/ 
19. Ishihara, T. and Yasuura, H.  Voltage scheduling problem for dynamically variable 

voltage processor.  Proceedings of the International Symposium on Low Power 
Electronics and Design, pp. 197-202, 1998. 

20. Lee, Y.-H., Doh, Y., Krishna, C.  EDF scheduling using two-mode voltage-clock-
scaling for hard-real-time systems.  Proceedings of the International Conference on 
Compilers, Architecture, and Synthesis for Embedded Systems, pp. 221-228, 2001. 

21. Lorch, J. and Smith, A.  Software strategies for portable computer energy 
management.  1998.  IEEE Personal Communications, vol. 5(3), pp. 60-73, 1998. 

22. Lu, Y.-H., Benini, L., and Micheli, G.  Low-power task scheduling for multiple 
devices.  International Workshop on Hardware/Software Codesign, pp. 39-43, 2001. 

23. Manzak, A. and Chakrabarti, C.  Variable voltage task scheduling for minimizing 
energy. Proceedings of the International Symposium on Low Power Electronics and 
Design, pp. 279-282, 2001. 

24. Nakamoto Y., Tsujino Y., and Tokura N.  Real-time task scheduling algorithms for 
maximum utilization of secondary batteries in portable devices.  Proceedings of the 
Seventh International Conference on Real-Time Computing Systems and 
Applications, pp. 347-354, 2000.  

25. Okuma, T., Yasuura, H., and Ishihara, T.  Software energy reduction techniques for 
variable-voltage processors.  IEEE Design and Test of Computers, vol. 18(2), pp. 
31-41, 2001. 

26. Pering, T., Bird T., and Broderson, R.  The simulation and evaluation of dynamic 
voltage scheduling algorithms.  Proceedings of the International Symposium on Low 
Power Electronics and Design, pp. 76-81, 1998. 

27. Puterman, M.  Finite Markov decision process.  New York: Wiley. 1994. 
28. Quan, G. and Hu, X.  Energy efficient fixed-priority scheduling for real-time 

systems on variable voltage processors.  Design Automation Conference, pp. 828-
833, 2001. 

29. Shin, D., Kim J., and Lee, S.  Intra-task voltage scheduling for low-energy hard real-
time applications.  IEEE Design and Test of Computers, vol. 18(2), pp. 20-30, 2001. 

 16



30. Simunic, T., Benini, L., and Micheli, G.  Event-driven power management of 
portable systems.  Proceedings of the 12th International Symposium on System 
Synthesis, pp. 18 –23, 1999. 

31. Suziki, K., Mita, S., Fijita, T., Yamane, F., Sano, F., Chiba, A., Watanabe, Y., 
Matsuda, K., Maeda, T., and Kuroda, T.  A 300 MIPS/W RISC core processor with 
variable supply-voltage scheme in variable threshold-voltage CMOS.  Proceedings 
of the IEEE Custom Integrated Circuits Conference, pp. 587-590, 1997. 

32. Swaminathan, V., Chakrabarty, K., and Iyengar, S.  Dynamic I/O power 
management for hard real-time systems.  Proceedings of the International 
Symposium on Hardware/Software Co-Design, pp. 237-243, 2001. 

33. Swaminathan, V. and Chakrabarty, K.  Investigating the effect of voltage-switching 
on low-energy task scheduling in hard real-time systems.  Proceedings of the ASP-
DAC, pp. 251-254, 2001. 

34. Swaminathan, V. and Chakrabarty, K.  Pruning-based energy-optimal device 
scheduling for hard real-time systems.  Proceedings of the International Symposium 
on Hardware/Software Codesign, pp. 175-180, 2002. 

35. Yao, F., Demers, A., and Shanker S.  A scheduling model for reduced CPU energy.  
IEEE Annual Foundations of Computer Science, pp. 374-382, 1995. 

36. Zhang, Y., Hu, X., and Chen, D.  Task scheduling and voltage selection for energy 
minimization.  Design Automation Conference, pp. 183-188, 2002. 

 

 17


	An Efficient Energy-Optimal Device-Scheduling Algorithm for 
	Abstract
	1.  Introduction
	2.  Preliminaries, Notations, and Assumptions
	3. Energy-Optimal Device Scheduler (EDS)
	Table 4:  Device characteristics

	4. An Improved Version of EDS
	5.  A Heuristic Solution
	6. Experimental Results
	7. Conclusions
	9. References

