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Abstract - We describe the use of the mobile agent paradigm 
to design an improved infrastructure for data integration in 
Distributed Sensor Network (DSN). We use the acronym 
MADSN to denote the proposed Mobile-Agent-based DSN. 
Instead of moving data to processing elements for data inte- 
gration, as is typical of a cliendserver paradigm, MADSN 
moves the processing code to the data locations. This 
saves network bandwidth and provides an effective means 
for overcoming network latency, since large data transfers 
are avoided. We study two important problems related to 
MADSN design - the distributed integration problem, and 
the optimum performance problem. Compared to DSNs, a 
mobile-agent implementation of multi-resolution data inte- 
gration saves up to 90% of the data transfer time. For a given 
set of network parameters, we analyze the conditions under 
which MADSN performs better than DSN and determine the 
condition under which MADSN reaches its optimum perfor- 
mance level. 
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1 INTRODUCTION 
Distributed Sensor Networks (DSNs) have recently emerged 
as an important research area [6,7,9, 14, 181. This develop- 
ment has been spurred by advances in sensor technology and 
computer networking. Even though it is economically fea- 
sible today to implement DSNs, there are several technical 
challenges that must be overcome before DSNs can be used 
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for today's increasingly complex information gathering tasks. 
These tasks, such as battlefield surveillance, remote sensing, 
global awareness, etc., are usually time-critical, cover a large 
geographical area, and require reliable delivery of accurate 
information for their completion. 

Wesson et a1 [ 181 were among the first to propose the design 
of DSNs. Since then, several efficient DSN architectures have 
been presented in the literature, including the hierarchical and 
committee organization [18], the flat tree network [7, 141, 
the deBruijn based network [6] ,  and the multi-agent fusion 
network [9]. While improving the performance of DSNs in 
different aspects, all these approaches use a common net- 
work computing model: the cliendserver model, which sup- 
ports many distributed systems, such as remote procedure 
calling (RF'C) [2], common object request broker architec- 
ture (CORBA) [l ,  171, etc. In the clientlserver model, the 
client (individual sensor) sends data to the server (processing 
element) where data processing tasks are carried out. 

Recent advances in sensor technology allow better, cheaper, 
and smaller sensors to be used in both military and civilian 
applications, especially when the environment is harsh, unre- 
liable, or even adversarial. A large number of sensors are usu- 
ally deployed in order to achieve quality through quantity. On 
the other hand, sensors typically communicate through wire- 
less networks where the network bandwidth is much lower 
than for wired communication. These issues bring new chal- 
lenges to the design of DSNs: First, data volumes being in- 
tegrated are much larger; Second, the communication band- 
width for wireless network is much lower; Third, the envi- 
ronment is more unreliable, causing unreliable network con- 
nection and increasing the likelihood of input data to be in 
faulty. 

In this paper, we design an improved DSN architecture using 
mobile agents - we refer to this as mobile-agent-based DSN 
(MADSN). In traditional DSNs, data are collected by individ- 
ual sensors, and then transmitted to a higher-level processing 
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element which performs sensor fusion. During this process, 
large amounts of data are moved around the network, as is 
the typical scenario in the clientherver paradigm. MADSN 
adopts a new computation paradigm: data stay at ithe local 
site, while the integration process (code) is moved to the data 
sites. By transmitting the computation engine instead of data, 
MADSN offers the following important benefits: 

Processing Element 

, 
I , I!, ’!, &~), I 

0 Network bandwidth requirement is reduced. Instead I 

of passing large amounts of raw data over the network 
through several round trips, only the agent with small 
size is sent. This is especially important for real-time 
applications and where the communication is through 
low-bandwidth wireless connections. 

0 Better network scalability. The performance of the net- 
work is not affected when the number of sensor is in- 
creased. Agent architectures that support adaptive net- 

matically [ 161. 

0 Extensibility. Mobile agents can be programmed to 
carry task-adaptive fusion processes which extends the 
capability of the system. 

(a) DSN 

work load balancing could do much of a redesign auto- Processing Element 

0 Stability. Mobile agents can be sent when the network 
connection is alive and retum results when the connec- 
tion is re-established. Therefore, the perfonnance of 
MADSN is not much affected by the reliability of the 
network. 

Figure 1 provides a comparison between DSN and MADSN 
from architecture point of view. 

The organization of this paper is as follows: Section dis- 
cusses the definition of mobile agents and application exam- 
ples that benefit from using mobile agents. It also defines 
the two problems studied in the design of MADSN.. Section 
first reviews the multi-resolution data integration algorithm 
implemented under traditional DSN, then describes its im- 
plementation using mobile agents. A case study is provided. 
Section 4.2 compares the performance of DSN and IMADSN. 
For a given set of parameters, it derives the condition under 
which MADSN performs better than DSN, also the condi- 
tion under which MADSN reaches its optimum performance 
level. Section 4.2 summarizes the paper and draws conclu- 
sions. 

2 BACKGROUND 
This section reviews the basic DSN architecture and the key 
characteristics of mobile agents. The problems stuclied in this 
paper are formally defined at the end of the section. 

A general DSN (Fig. 2) consists of a set of sensor nodes, a set 
of Processing Elements (PES), and a communication network 
interconnecting the various PES [6].  One or more sensors is 
associated with each PE. One sensor can report to inore than 

Figure 1: Architecture comparisorl between DSN and 
MADSN. 

one PE. A PE and its associated sensor(s) are referred to as 
a cluster. Data are transferred from sensors to their associ- 
ated PE(s) where the data integration takes place. PES can 
also coordinate with each other to achieve a better estima- 
tion of the environment and report tci higher level PES. In 
the context of this paper, we assume that the sensor field is a 
two-diniensional surface, and the sensor nodes are fixed. 

Generally speaking, mobile agent is a special kind of software 
which can execute autonomously. Once dispatched, it can 
migrate from node to node performing data processing au- 
tonomously, while software can typically only execute when 
being called upon by other routines. 

Lange listed seven good reasons to use mobile agents [ 111, 
including reducing network load, overcoming network la- 
tency, robust and fault-tolerant perfo~mance, etc. Although 
the role of mobile agents in distribute,d computing is still be- 
ing debated mainly because of the security concern [4, 121, 
several applications have shown clear evidence of benefiting 
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Data integration problem: At each sensor site, what kind 
of data processing should be conducted and what integration 
results should be carried with the mobile agent? 

interconnected A4 network 

Optimum performance problem: How to balance the value 
of 7n. and n, such that the performance of MADSN is superior I 

I 
I to DSN. 

, 0 sensornode 

I 
I 
I 

4 MULTI-RESOLUTION a PE 
cluster INTEGRATION ALGORITHM 

Figure 2: The architecture of a general DSN. 

from the use of mobile agents, such as E-commerce [3], dis- 
tributed information retrieval and information dissemination 
[5 ,8 ,  13, 191, etc. 

In this paper, we use mobile agent in DSNs to perform multi- 
resolution data integration and fusion. Problems to be studied 
are defined in the following section. 

3 PROBLEM STATEMENT 
We define the mobile agent as an entity of five attributes: 
identification, itinerary, data, method, and interface. These 
attributes are explained as follows: 

0 Identification: is in the format of 2-tuple ( i , j ) ,  where i 
indicates the identification number of its dispatcher and 
j the serial number assigned by its dispatcher. Each mo- 
bile agent can be uniquely identified by this identifica- 
tion. We use MA;,j to indicate different mobile agents. 

0 Itinerary: includes itinerary information assigned by its 
associated PE when dispatched. 

0 Data: agent’s private data buffer which carries integra- 
tion results and itinerary information. 

Method: the implementation of algorithms. In MADSN, 
the key method is the multi-resolution data integration 
algorithm for sensor fusion. 

0 Interface: provides interface functions for agent and pro- 
cessing element to communicate with each other. 

Let PE; represent a certain processing element with an iden- 
tification i that is in charge of the surveillance of a certain 
area. Let { M A ; , l ,  - . . , MA;,,} represent a group of m mo- 
bile agents dispatched by PE;. Without loss of generality, 
we assume that each MA;,j  visits the same number of sen- 
sor nodes, denoted by n. The parameters m and n are related 
in the sense that their product mn equals the number of sen- 
sor nodes in the field. The problems studied in this paper are 
formally defined as follows: 

As mentioned in Sec. , MADSN must respond to the chal- 
lenges of a large amount of sensor nodes and higher prob- 
ability of faulty sensors. More sensor nodes can increase 
the computation load, while more faulty sensors can cause 
the integration results to be unreliable. Algorithms are there- 
fore sought which should not be significantly affected by net- 
work scaling, and yet provide better performance and higher 
fault tolerance. This section first reviews the original Multi- 
Resolution Integration (MRI) algorithm proposed for DSNs 
[15]. Enhancements to the basic MRI algorithm are then de- 
scribed in order to take advantage of mobile agents to achieve 
better network scalability and fault tolerance. The enhance- 
ments involve a multi-resolution analysis of individual sensor 
readout to generate a simple function (the overlap function) 
at the sensor site, followed by an integration of the simple 
functions at the processing element. Compared to the MRI 
algorithm in traditional DSNs, where the integration of indi- 
vidual sensor readout (carried out at the processing element) 
is followed by the multi-resolution analysis of the integrated 
simple function, the mobile agent implementation of MRI al- 
gorithm reduces the data transfer time by as much as 90%. 

4.1 Original MRI Algorithm in DSNs 
The original MRI algorithm was proposed by Prasad, Iyengar 
and Rao in 1994 [15]. The idea essentially consists of con- 
structing a simple function (the overlap function) from the 
outputs of the sensors in a cluster and resolving this function 
at various successively finer scales of resolution to isolate the 
region over which the correct sensors lie. Each sensor in a 
cluster measures the same parameters. It is possible that some 
of them are faulty. Hence it is desirable to make use of this 
redundancy of the readings in the cluster to obtain a correct 
estimate of the parameters being observed. We first review 
several relevant definitions. 

An abstract sensor is defined as a sensor that reads a physical 
parameter and gives out an abstract interval estimate which is 
a bounded and connected subset of the real line. We clas- 
s@ abstract sensors into two categories: correct sensors and 
faulty sensors. A correct sensor is an abstract sensor whose 
interval estimate contains the actual value of the parameter 
being measured. Otherwise, it is a faulty sensor. A faulty 
sensor is tamely faulty if it overlaps with a correct sensor, 
and is wildly fauity if it does not overlap with any correct 
sensor. 
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(1) 

Let sensors 5'1, . . , S, feed into a processor P. Let the ab- 
stract interval estimate of Sj be Ij (1 < j < n), the closed 
interval [a,, bj]  with end points aj and b j .  The characteristic 
function x of the j th  sensor Sj is defined in Eq. (1). 

1, i f z i s i n I j ,  and1 < j  I n  
X j ( 4  = { 0, i f x i s n o t i n I j ,  and1 < j  <n ,  

Let a( z) = E;=, xj (z) be the overlap function of the n 
abstract sensors. For each z E R, a ( x )  gives the number 
of sensor intervals in which z lies; that is, the number of in- 
tervals overlapping at the z. Crest is a region in the overlap 
function with the highest peak and the widest spread. Figure 
3 illustrates the overlap function for a set of 7 sensors. The 
notion of the overlap function allows us to make the following 
key observations: 

0 Tamely faulty sensors cluster around correct sensors and 
create high and wide (maximal) peaks in the profile of 
fl(z)* 

0 Wildly faulty sensors on the other hand do not overlap 
with correct sensors, and therefore contribute to smaller 
and narrower peaks. 

Therefore, the actual value of the parameter being measured 
lies within regions over which the maximal peaks of a(z) 
occur. 

Figure 3: The overlap function for a set of 7 sensors. 

Multi-Resolution Analysis of the Overlap Function .- Multi- 
resolution analysis provides a hierarchical framework for in- 
terpreting the overlap function. It is natural and more efficient 
to first analyze details at a coarse resolution and then increase 
the resolution for only the region of interest. 

Given a sequence of increasing resolutions 
(2-", 2-"+17. . . , 2 O ) ,  where c is a positive integer, we 
define the difference of function f(z) at resolution 2-"+l 
and resolution 2-" as the details of f (z)  at resolution 2-c+1. 
The algorithm is  described in Algorithm 1. 

This procedure results in the isolation of those regions of the 
real line over which the overlap function fl(z) has a maxi- 
mum value, corresponding to high degree of overlapping of 
individual sensor readouts. The algorithm is optimal, since 
the overall time required is O(n log n), which is the time re- 
quired tcl maintain a ( ~ ) .  This algorithm is also robust, sat- 
isfies a Lipschitz condition [lo], which ensures that minor 
changes in the input intervals cause only minor changes in 
the integrated result. Figure 4 illustrates the multi-resolution 
analysis procedure. 

Algorithm 1: Multi-resolution analysis of the overlap 
function. 

Data : Q(z), 2 k ,  (-c < k 5 0), assuming the coars- 
est resolution is 2-", the highest resolution is 
2'; the initial integration interval [A,B] 

Result : the final crest [7l,7tL] under resolution 2 k ,  
where 72 and Y h  are the lower and higher 
bounds of the crest respectxvely 

t = -c ;  
w h i l e t < = k d o  

resolve R(z) at resolution 2, bX sampling it over 
the interval [A,B] at points n2--,, (A/2-, < n 5 
B/2-,), to obtain fl,(z); 
select the highest peaks from Q,I(z); 
choose from these peaks the one with the widest 
spread [A,, B,]; which is a crest; 
Ql:Z) = flt([At,Bt]); 
A = A,,B = Bt; 
t := t + 1; 

end 
71 = ~ 4 , 7 h  = B 

4.2 MRI Implementation Using Mobile Agents 
In a distributed sensor network (DSN), all readouts from the 
sensor nodes are sent to their correspclnding PES, where the 
overlap function at the $finest resolution is first generated, and 
the multi-resolution analysis procedure is then applied to find 
the crest at the desired resolution. 

In a Mobile-Agent-based DSN (MADSN), the mobile agents 
migrate among the sensor nodes and collect readouts. There- 
fore, M Ai,j always carries a partially integrated overlap 
function which is accumulated into a final version at PE; 
after all the mobile agents return. During this process, if 
MADSN applies the multi-resolution malysis method in the 
same way as DSN does, that is, letting MAi,j carry the par- 
tially integrated overlap function in its finest resolution and 
then use multi-resolution analysis (MFL4) to find the crest at 
desired resolution at PEi, the advantages of mobile agents 
will be nullified because of heavy data migration. 

We enhance the basic multi-resolutioni integration (MRI) al- 
gorithm for MADSNs and present a more efficient implemen- 
tation. The key concept underlying the enhanced algorithm is 
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Figure 4: An overlap function Q(z) and its appearance at different resolutions (The shaded region indicates the region needs to 
be resolved over). 

that MRI is applied before accumulating the overlap function. 
A 1-D array, w;,j, can serve as an appropriate data structure 
to represent the partially-integrated overlap function carried 
by MA;,,. If the size of w;,, is s20 with 2 O  resolution, then 
with resolution 2k (k times coarser than 2O), the size of wi, j  is 
s20/E,  that is, E times less than s20. Algorithms 2-4 describe 
the procedure in detail. A case study is provided as well for 
better illustration. 

Algorithm 2: Modified MRI algorithm for MADSN - be- 
fore MA;,, leaves PE; 

Data : integration interval [A;, B;], highest resolution 

Result : array w;,j to hold partially-integrated overlap 
2 O ,  desired resolution 2k 

function 
= B , - A i + l  . 

2-k ' 
initialize w; i as a zero vector with s elements: 

Algorithm 3: Modified MRI algorithm for MADSN - 
MA;,j at sensor node 

Algorithm 4: Modified MFU algorithm for MADSN - 
MA;,,. back to PE; 

Data 

Result : the final crest [-y1,7,'] under resolution 2k 
create +i as a zero vector of size (B; - Ai + 1); 

whilej <= m do 

: w;,j, 2k ,  m is the total number of agents 

j = 2; 

accumulate wi,j to wi,l ; 
j = j + l ;  

end 
j = 0; 
wl,ilej < Bi-A;+1 do 

2 - k  

+;[ j  : j + 2-k - 11 = w;,1[j/2-"; 
j + + 2 - k ;  

end 
select the highest peak of 4;. If there are multiple peaks 
with the same height, then all the peaks should be se- 
lected; 
choose from these peaks the one with the widest spread 
[TI, ~ h l ,  which is a crest; 

Data : wi,j, 2k ,  readout from the abstract sensor [a, b] 
(a bounded connected set of real numbers) 

Result : ~ i , j  
find the smallest multiple of 2-', dmin, such that 
&in 2 a; 
find the largest multiple of 2-k ,  d,,,, such that d,,, 5 
b; 
increase elements w;,j[* : by 1; 

Case Study - We present a case study to illustrate the 
MADSN-based MRI algorithm. Suppose PE; has 10 sen- 
sor nodes (SI, . . - , Slo), migrated by 2 mobile agents with 
MA,,1 covering SI to SS, and IMAQ covering SS to SIO. 
The readouts of sensors at time t are listed in Fig. 5 .  The in- 
tegration interval [A;, Bi] is [ 1,641. The overlap function at 
its highest resolution then has 64 elements. 
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Figure 5: Readouts fiom 10 sensor nodes at time t. 

Table 1: Tracing the change of WQ generated by M A ~ J .  

If the desired resolution is 2-3 (or eight times coarser than 
the finest resolution), according to Algorithm 2, an array w;,j 
with 8 = 6418 elements will be created and initialized by 
each mobile agent. Tables 1 and 2 list the step-by-step execu- 
tion for each agent according to Algorithm 3. 

According to Algorithm 4, the final integrated & will be 
[0,2,3,5,2,1,1,1]. Compared to the results from DSN, as 
shown in Fig. 6, they are exactly the same. If we define the 
unit data transfer time as the time spent for one MA;,j mi- 
grating from one node to another, carrying a one-element ar- 
ray, then MADSN spends 8 x (5 + 2) = 56 units of time 
(assuming M A ~ J  and MAi,z are executed in parallel when 
migrating from node to node or from PEi to node, 8 x 5, and 
in serial when returning to PEi, 8 x 2),  while DSN spends 
64 x 10 = 640 units of time. Hence, MADSN offers a save 
of up to (91.25% of data transfer time in this case. 

Table 2: Tracing the change of wi,2 generated by iMAi,z. 

Resolution is 8 times m r s e r  

Figure 6: The overlap function at its hdghest resolution and 
the version with 8 times coarser resolution. 

5 PERFORMANCE COMPARISON 
The case study shows that while obtaining the same integra- 
tion results, MADSN saves 91.25% of data transfer time com- 
pared to DSN. However, this does not necessarily mean that 
MADSN is always better than DSN since MADSN also in- 
troduces overhead, such as the agent creation and dispatch 
time. On1 the other hand, DSN needs to transfer data files to 
PEi which also causes overhead due to file accesses. In this 
section, we analyze the relative performances of DSN and 
MADSN, and determine conditions under which an MADSN 
is more efficient than a DSN. These contiitions are determined 
by the network transfer rate vn, the data processing rate V d ,  

the data file size sf, the mobile agent dhta size sa (including 
overlap function array size and the itinerary list size), over- 
head of agent oa, overhead of file acct:ss of, the number of 
sensor nodes p, and thus the balance between the number of 
agents m and the number of sensor nodes each agent migrates 
n (Notice that p = m x n). Equations (2) and (3) are two for- 
mulas estimating the execution time for MADSN (tmal.lun) 

and DSN @dun) .  In both equations, ithe three components 
calculate the data transfer time, the overhead, and the data 
processinghntegration time respectively. 

(3) 
mns j (mn - 1)sf 

t d s n  = - + mnoj + - 
V n  v d  

We use m as the variable. Assume k and j are positive 

order to ensure that t m a d s n  I t d s n ,  Eq. (4) must be satisfied, 
that is, na must be chosen within a range. 

scalars, imd Sf = ICs,, Of = j o a ,  V ;  l / v n ,  V ;  = 1/vd, in 
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Figure 7: Performance evaluation between DSN and 
MADSN: 7n. vs. j .  

Table 3 listed some typical parameter values and the corre- 
sponding performance. We evaluate the performance varia- 
tion of MADSN with respect to relationships between m and 
j , m and w; , and m and p .  m is the number of nodes migrated 
by each mobile agent. j is the overhead ratio between DSN 
and MADSN. vk is the reciprocal of network transfer rate. p 
is the total number of sensor nodes. These parameters play a 
more important role than others. Figures 7-9 demonstrate the 
performance variation with respect to m and j .  

Figure 7 shows a profile of the maximum value of m satisfy- 
ing Eq. 4 when changing the overhead ratio between MADSN 
and DSN, j .  Suppose the size of agent is lKB, the overhead 
of agent is 0.5s (including agent creation time), the network 
transfer rate is lOOKbps, data processing rate is lOOMbps, the 
number of sensor nodes is 1000, and the data size is 10KB. 

If we fix j at 0.25, that is, the overhead of file access is 
one fourth of the overhead of mobile agent, the correspond- 
ing maximum m. satisfying Eq. 4 is then 441 according to 
Fig. 7. By changing m from 1 to 441, we generate the per- 
formance curves for MADSN and DSN using the execution 
time: tm&n and t d s n  as shown in Figs. 8 and 9. 

Figure 8 shows the variation of tdsrL with respect to the num- 
ber of mobile agents m. It is a straight line since t d s n  is inde- 
pendent of the number of mobile agents and the total number 
of sensor nodes is a constant. Figure 9 illustrates the varia- 
tion of t m e d s n  with respect to m. The execution time t m a d s n  

reaches its minimum when m is 4. Note that even though 
in the range of m E [1,441], t m a d s n  is always less than 
t d s n ,  after a decreasing segment at the very beginning, and 

reaching a minimum when m = 4, tmadsn  starts to increase. 
This is because of the overhead from mobile agent: the more 
agents used, the heavier the overhead, the longer execution 
time needed; on the other hand, the less the agents, the lighter 
the overhead, but the longer the migration time. 

Figure 8: Execution time for DSN ( t d s n )  with respect to m 
with p = 1000, vt = lOOKbps, and j = 0.25. 

0 '  
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5  D 

Figure 9: Execution time for MADSN ( t m a d s n )  with respect 
to m with p = 1000, vt = lOOKbps, and j = 0.25. 

6 CONCLUSIONS 
This paper describes the use of the mobile agent paradigm 
to design an improved infrastructure for sensor fusion in dis- 
tributed sensor network (DSN). We use the acronym MADSN 
to denote the proposed mobile-agent-based DSN. Compared 
to the traditional client/server paradigm, where data are 
moved from the client to the processing center, MADSN 
moves the processing code to the data locations. This saves 
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Parameters 
size of agent (:io) 

data processing rate (wd) 
overhead of agent (on ) 

ratio E = 

0.25 0.25 1 500Kbus 1 SoOKbus 1 ratioj = 
network transfer rate (v,) 

case 1 case2 case3 
1K 1K 1K 
10 10 10 

1OOMbps 1OOMbps 1OOMbps 
0.5s 0.5s 0.5s 

total number of sensor nodes (p) 

optimal number of agents (m) 

execution time in DSN (tdsn) 
execution time in MADSN (tmadan) 

execution time saved (wd  x 100%) 

Table 3: Summary of performance comparison between DSN and MADSN. 

lo00 1 lo00 I 3000 I 

network bandwidth and provides and effective means for 
overcoming network latency, since large data transfers are 
avoided. We studied two important problems related to 
MADSN design: the distributed integration problem, and the 
optimum performance problem. We show that MADSN is 
not always better than DSN, since the involvement of mo- 
bile agents adds overhead. We analyze the conditions un- 
der which MADSN performs better than DSN and the con- 
ditions under which MADSN achieves its optimum perfor- 
mance. From the performance comparison results in Table 
3, we can see that for all three cases, MADSN saves up to 
98% of execution time which is mainly contributed from the 
time savcd for transferring raw data. We conclude that mo- 
bile agent paradigm is an effective approach for distributed 
computing, especially when large amount of data bansfer is 
involved., which is the case in distributed sensor networks. 
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