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NC Algorithms for Recognizing Chordal Graphs 
and k Trees 

N. CHANDRASEKHARAN AND S. SITHARAMA IYENGAR 

Abstract-We present parallel algorithms for recognizing the 
chordal graphs and k trees. Under the model of computation 
PRAM with concurrent reading and writing allowed, these 
algorithms take O(log n) time and require O(n4) processors. Our 
algorithms have an improved processor-bound than an indepen- 
dent result by Edenbrandt for recognizing chordal graphs in 
parallel using O(n3m) processors. Furthermore, our characteriza- 
tions for chordal graphs and k trees are interesting in their own 
right. 

Index Terms-Chordal graphs and k trees, NC algorithm, 
parallel algorithm. 

I. INTRODUCTION 

ITH the increasing use of highly parallel computers, it w has become necessary to identify various computational 
problems that can be solved fast in parallel. In particular, there 
has been a considerable interest in problems which have 
parallel algorithms running in time bounded by a polynomial 
in the logarithm of the size of the input (i.e., in poly-log time) 
and using a number of processors polynomial in the input size. 
Such a class of problems is referred to as the class NC 
(Pippenger [18]). Some of the reasons for this interest in the 
class NC are the following. 

1) The “speedup” of the NC algorithms is exponential 
compared to their sequential versions. Furthermore, they 
make use of a “reasonable” amount of hardware, namely, the 
processors. 

2) The class NC is “robust” under reasonable changes in 
the underlying machine models of parallel computation. 

The model of computation used here is the parallel random 
access machine or PRAM in which all the processors have 
access to a common memory and run synchronously (see 
Vishkin [28]). Both simultaneous reading as well as writing on 
common memory locations are allowed. Furthermore, in the 
case of simultaneous writing, an arbitrary processor succeeds 
in writing. 

A class of graphs called the perfect graphs has been the 
focus of extensive study of late (Golumbic [13]). Perfect 
graphs are interesting from both the algorithmic and combina- 
torial points of view. Important among the perfect graphs are 
the chordal graphs, comparability graphs, interval graphs, k 
trees, permutation graphs, cographs, etc. [13]. All these 
graphs arise in various real-life applications and have polyno- 
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mial-time algorithms for recognition (Corneil [6]). Recently, 
NC algorithms have been given for recognizing comparability 
graphs, permutation graphs, and interval graphs (Kozen et al. 
[16], Helmbold and Mayr [15]). For a broader treatment on 
parallel algorithms, see [31]. 

In this paper, we present NC algorithms for recognizing 
chordal graphs and k trees. These algorithms use O(n4) 
processors and take O(1og n) time on the PRAM model of 
computation we have discussed earlier. We just recently came 
to know of an independent result by Edenbrandt [9] who gives 
an NC algorithm for recognizing chordal graphs. Although the 
spirit of our recognition algorithms for the chordal graphs is 
the same, there are, however, some technical differences. In 
particular, Edenbrandt’s algorithm requires O(n 3m) proces- 
sors and O(1og n) time. Since O(n3m) processors in the worst 
case would be O(nS) processors, our algorithm has an 
improved processor-bound. Furthermore, we feel that the 
characterizations we have obtained for chordal graphs and k 
trees are of independent interest. 

II. GRAPH-THEORETIC TERMINOLOGY 

A graph G = (V, E), where Vis the vertex set and E is the 
edge set, is considered here as being finite, undirected, 
connected, and without multiple edges or self-loops. For our 
purposes, the terms subgraph and induced subgraph mean 
the same as the terms clique and complete graph. Further- 
more, we often use the graph for its vertex set. For most of our 
presentation, we follow the standard terminology of Golumbic 
[13], unless otherwise indicated. 

For a pair of nonadjacent vertices U and U of a graph G = 

(V, E) a uu separator is a set S C V of vertices such that U 
and v are in distinct connected components of the graph 
induced by V - S. A uu separator S is minimal if no proper 
subset of S is a uu separator. If the uu separator is a clique, 
then we call it a uu clique separator. A graph G is chordal if 
every simple cycle of length greater than three has a chord. A 
perfect elimination ordering (PEO) is an ordering, say, [xi,, 

e - , xi,,] of the vertices of G such that ADJ(xq) n {xq+ ,, - e ,  

xi,,} induces a clique, for j = 1, 2, - - e ,  n. Here, ADJ(x) = 

{y:{x, U} E E}. Furthermore, we define, for S E V,  
ADJ(S) = U x E s  ADJ(x). A vertex x is said to be simplicial if 
ADJ(x) induces a clique in G. Chordal graphs arise in various 
applications, the most important being the solution of sparse 
systems of linear equations (Rose [22], Rose et al. [24]). 
Other applications of chordal graphs occur in the study of 
evolutionary trees (Buneman [3]), in facility location (Chan- 
drasekharan and Tamir [5]), and in relational database theory 

OO18-9340/88/1OOO-1178$01 .OO O 1988 IEEE 



CHANDRASEKHARAN AND NENGAR: NC ALGORITHMS FOR CHORDAL GRAPHS AND k TREES 1179 

(Beeri et al. [l]). The following characterizations are well 
known for chordal graphs. 

Theorem 2.1: The following are equivalent. 

1) G is chordal. 
2) (Fulkerson and Gross [ 111) G has a perfect elimination 

ordering. 
3) G can be obtained by the following recursive construc- 

tion rules: 
a) Start with any clique, as the basis graph. A clique is a 

chordal graph. 
b) To a chordal graph H,  add a new vertex and make it 

adjacent to some clique subgraph of H (see Pro- 
skurowski [ 191). 

4) (Dirac [7]) Every minimal separator of G induces a 

5) (Gavril [12]) G is the intersection graph of the subtrees 

6) Every subgraph of G is either a clique or contains two 

7) Every connected subgraph with n 2 2 vertices contains 
0 

The sequential algorithms for testing chordality make use of 
various procedures called the PE0 schemes which generate a 
PE0 if it exists. The various PE0 schemes known in the 
literature are the following: 

clique in G. 

of a tree. 

nonadjacent simplicial vertices (see Duchet [SI). 

at most n - 1 cliques (see [SI). 

1) ([24]) Lexicographic Breadth First Search (LBFS), 
2) (Tarjan and Yannakkakis [27]) Maximum Cardinality 

3) (Shier [25]) Maximal Element in Component (MEC), 

4) ([25]) Maximum Cardinality neighborhood in Compp- 

It is not relevant for our purposes to go into the detail of the 
above schemes. But the following result establishes the 
importance of the PE0 schemes in the recognition of chordal 
graphs. 

Theorem 2.2. [24], [25], [27]: A graph G = (V, E) is 
chordal if and only if an ordering of the vertices of G, 
generated by any of the PE0 schemes LBFS, MCS, MEC, 
and MCC, is a PEO. Furthermore, G can be so tested for 

U 
The k trees, introduced by Harary and Palmer [14], are an 

important subclass of chordal graphs. They have been charac- 
terized by Beineke and Pippert [2], and Rose [23] subse- 
quently in many interesting ways. Furthermore, the k trees 
have been extensively investigated in [19]-[21] and Foata 
[lo]. We give below the definition and various characteriza- 
tions of k trees. 

Search (MCS), 

and 

nent (MCC) . 

chordality in O(n + m) time. 

Definition 2.3: A graph is a k tree if it can be obtained by 

a) Start with any k clique as the basis graph. A k clique is a 
k tree. 

b) To any k tree H add a new vertex and make it adjacent 
to a k clique subgraph of H,  to form a (k + 1) clique. 0 

the following recursive construction rules. 

Theorem 2.4: The following are equivalent. 
1) G = (V, E) is a k tree. 
2) 

a) G is connected, 
b) G has a k clique but no (k + 2) clique, and 
c) every minimal vertex separator of G is a k clique [23]. 

a) G is chordal, 
b) IEI = k( VI - k(k + 1)/2, and 
c) G has a k clique but no (k + 2) clique [23]. 

a) G is connected, 
b) [El = kl VI - k(k + 1)/2, and 
c) every minimal vertex separator of G is a k clique [23]. 

5 )  G is chordal and the set of PEO’s generated by the PE0 
scheme MCS is equal to that generated by the scheme 
MCC for G [4]. 

6) G is chordal and the set of PEO’s generated by the 
scheme MEC is equal to that generated by the scheme 

3) 

4) 

ME1 for G [4]. 0 

Note that none of the above characterizations for both the 
chordal graphs and k trees seems to lead to NC algorithms for 
recognition. In particular, it is not clear whether a PE0 can be 
generated by parallelizing any of the PE0 schemes into an NC 
algorithm. Recently, the notion of a maximal clique separa- 
tor was explored [30]. In Sections III and IV, we introduce 
some simple characterizations of chordal graphs and k trees 
and obtain the NC algorithms for their recognition. 

III. NC ALGORITHM FOR RECOGNIZING CHORDAL GRAPHS 
We note that the characterization of chordal graphs in 

Theorem 2.1. 4) in terms of the minimal separators is a little 
stronger than necessary. We weaken this result to obtain the 
following lemma. 

Lemma 3. I :  A graph G = (V, E) is chordal if and only if 
for every nonadjacent pair of vertices U and U of V, there exists 
a uu clique separator in G. 

Proof: 
(ONLY IF): Zf G is chordal, then for every pair of 

nonadjacent vertices U and U of V there exists a minimal uu 
separator which is a clique my Theorem 2.1.4)]. 
(ZF): By contradiction. Assume that there exists a chordless 

simple cycle C of length 1 2 4 in G. Take any two nonadjacent 
verticesuanduinC.Letthecyc1eCbeu = ~ 1 ~ 2  U i u  = 
ulu2 * * uju, where i + j = 1. Furthermore, i ,  j 2 2. Any 
vertex separator for U and U should include some U, and uq,  .p 
E (2, e ,  i } ,  q E (2, * - - , j}. Otherwise, u and u would still 
be connected. But since C is a chordless cycle, U,, and ug 
are nonadjacent. This contradicts the assumption that there 
exists a clique separator for every pair of nonadjacent vertices 
in G. 0 

Now instead of looking for minimal separators in a graph 
G, it is enough to look for a clique separator. We describe a 
sequential algorithm for testing chordality based on the above 
lemma. 
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Algorithm ChordalTest [Graph: G = (V, E ) ] ;  

begin 
for every Nonadjacent unordered pair of vertices U and U of V do 

G,, := G - ADJ(u); 
G;, : = component of G,, containing U; 
Mu, : = {x:x E ADJ(u) and x is adjacent to some vertex in G;,}; 
if Mu, induces a clique in G then continue 
else 
begin 

print “G is not chordal”; 
terminate; 

end; 
rof; 

print “G is chordal”; 
end. 0 

We note here that a variant of the body of the above algorithm 
is used by Whitesides [29] as the initialization step of het 
algorithm for finding a clique separator of a graph. The 
correctness of the algorithm ChordalTest is established below. 

Lemma 3.2: In the algorithm ChordalTest, Mu, is a uu 
seperator in G. Furthermore, if Mu, has two nonadjacent 
vertices (for some U, U in G), then there is a chordless cycle in 
G having a length of at least four. 

Proof: It is clear that (G - Mu,) - {U} 2 G;,,. Any x 
in (G - Mu,) - {U} and not in G;,, is not connected to the 
vertices in G;, . So Mu, seperates U and all the vertices of G L, . 
In particular, Mu, is a uu seperator in G. Let x and y be two 
nonadjacent vertices in Mu,, which are adjacent to vertices, 
say r and s, respectively, in GL,. Let rala2a3 ups be a 
shortest chordless path in G;,.  Then it is easy to see that 
uxrala2a3 * apsyu is a chordless path of length at least four 
in G. CI 

Lemma 3.3: G = (V, E) is chordal if and only if for every 
nonadjacent pair of vertices U and U of V, Mu, (in the 
algorithm ChordalTest) induces a clique in G. 

Proof: 
(ONLY IF): Let G be chordal. Assume G is not a clique. 

Suppose Mu, does not induce a clique for some pair of 
nonadjacent vertices U and U in G. This means that there exists 
at least two nonadjacent vertices x and y in Mu,. Then by 
Lemma 3.2 there is a chordless cycle of length at least four in 
G, contradicting the assumption that G is chordal. 

0 
The following result is immediate. 
Theorem 3.4: The algorithm ChordalTest correctly tests 

0 
Now we parallelize the above sequential algorithm for 

Algorithm NCTestChordal: 

(IF): Follows from Lemma 3.1. 

whether G is chordal or not. 

testing chordality . 

begin 
if G is a clique then “G is chordal” and terminate; 

for every nonadjacent pair of vertices U, U do in parallel 
1. H := G - ADJ(u); 

F : = Component of H containing the vertex U; 
M : =  (21; 

2. 

3.  for each x E ADJ(u) and y E F do in parallel 
if { x ,  y }  E E then M : = M U { x } ;  

rof; 
if M is a clique then return 1 else return 0; 

if for each pair of nonadjacent vertices U, U,  the answer 
returned is 1 then “G is chordal” else 
“G is not chordal”; 

4. 
rof; 

end. 

The following theorem establishes the correctness of the tests in parallel the chordality of G. Furthermore, the 
algorithm has a time-complexity O(1og n) and makes use of 

Theorem 3.5: The algorithm NCTestChordal correctly O(n4 + n3 + n2m) processors. 
algorithm NCTestChordal and its complexity. 
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Proof: The proof of correctness of the parallel algorithm 
follows from the proof of its sequential version (Theorem 
3.4). To find out the number of processors required, we note 
that the number of nonadjacent pair of vertices is O((n/2)). 
For finding the connected component F, the parallel algorithm 
of Shiloach and Vizhkin [26] can be made use of. This 
algorithm takes O(1og n) time and requires O(m + n) 
processors. Furthermore, step 3 requires O(n2) processors. So 
in all, the algorithm requires O(n2(n + m )  + n4) processors 
and O(1og n) time. 0 

IV. NC ALGORITHM FOR RECOGNIZING k TREES 
The NC algorithm for recognizing k trees is similar to the 

one for recognizing chordal graphs but different in the sense 
that it makes use of minimal separators. We need the following 
preliminary results. 

Lemma 4. I :  Let G be a noncomplete chordal graph. Let x 
be a simplicial vertex in G and H = (U, F )  = G - {x}. 
Then for any nonadjacent pair of vertices U and U of H,  no 
minimal uv separator contains x. 

Proof: If H is a clique, then the lemma is vacuously true. 
Assume H i s  not a clique. Let U and U be a pair of nonadjacent 
vertices. Both U and v cannot be adjacent to x, otherwise U and 
U would themselves have to be adjacent to each other. 
Therefore, at most one of the vertices U and v is adjacent to x. 
Two cases arise. 

Case I :  Without loss of generality, let U E ADJ(x). 
Then U 6 ADJ(x). Let S be a minimal uv separator 

contained in {x} U ADJ(x) - {U}. Let C1 and C2 be the 
connected components of G - S, containing the vertices U and 
U, respectively. Then C1 fl C2 = 0. Also no vertex in C2 is 
adjacent to x, because x is a simplicial vertex. Furthermore, 
no vertex in C2 is adjacent to U. This is because if there is a 
vertex z in C2 adjacent to U, then U and U will be connected by 
a path in G - S, unless z is adjacent to x also. But we know 
that no vertex in C2 is adjacent to x. So all the vertices in C2 
are adjacent to a subset of ADJ(X) - {U}. Therefore, U and v 
can be separated by removing R = (ADJ(x) - {U}) fl 
ADJ(C2). Furthermore, it is easy to see that R is also the only 
minimal uv separator contained in ADJ(x) - {U} U {x}. If 
any minimal uv separator S is to contain X, then it should be a 
subset of ADJ(x) U {x} - {U}. But we have seen'that the 
only minimal uv separator in ADJ(x) U {x} - {U} is R 
which does not contain x. Therefore, the lemma holds. 

Case 2: Both U, U 6 ADJ(x). 
Let S be a minimal uu separator contained in {x} U 

ADJ(x). Let C1 and C2 be the connected components of G - 
S, containing the vertices U and U, respectively. Again, no 
vertex in either C1 or C, is adjacent to x. So the only minimal 
uv separator contained in ADJ(x) U {x} are ADJ(x) fl 
ADJ(CI) and ADJ(x) fl ADJ(C2) neither of which contains 
the vertex x. As in the previous case, we can see that the 
lemma holds. 0 

We give below a new characterization of k trees. 
Theorem 4.2: A graph G = (V, E )  is a k tree if and only if 

a) For every nonadjacent pair of vertices U and v of G ,  
there exists a minimal uu separator which is a k clique, 

and 

b) m = kn - k(k + 1)/2. 

(ONL Y IF): If G is a clique then it is a k tree, trivially. If G 
is not a clique, then for every pair of nonadjacent vertices U 
and U, the minim,.' separator of G is a k clique (by Theorem 
2.4 4)c). Furtherm, re, rn = kn - k(k + 1)/2 (by Theorem 
2.4 4)b). 

(IF): The condition a) alone implies that G is chordal (by 
Lemma 3.1). Therefore, conditions a) and b) together fulfill 
the conditions of Theorem 2.4 3)a) and 2.4 3)b). It is enough 
to show that G has a k clique but no (k + 2) clique. This we 
show below. 

It is easy to see that if G is a clique, it cannot be a (k + 2) 
clique. Therefore, assume that G is not a clique. Then G has a 
k clique because it will have a minimal separator. We show by 
induction on the number of vertices that G does not have a (k 
+ 2) clique. All graphs satisfying conditions a) and b) of 
Theorem 3 and having 1,  2, 3, and 4 vertices do not have (k 
+ 2) cliques. Assume that all graphs having fewer than or 
equal to (n - 1) vertices and satisfying conditions a) and b) do 
not have (k + 2) cliques. Consider a graph G on n vertices 
and satisfying conditions a) and b). Because G is chordal, 
there exists a simplicial vertex x in G.  Let H = (U, F) = G 
- {x} and W = {x} U ADJ(x). Now IUI = n - 1 and 

I Wl I n - 1 ,  otherwise G would be a clique. Now we 
consider two cases here. 

Proof: 

Case I :  H is a clique with (n - 1) vertices. 
The conditions a) and b) are satisfied by H. By the inductive 

hypothesis, H does not have a (k + 2) clique. Since G is not a 
clique, there exists at least one vertex in U not adjacent to x. 
Furthermore, all the minimal zx separators, where z 6 
ADJ(x), are nothing but ADJ(x) itself. Since G satisfies 
condition a), ADJ(x) has to be a k clique. This implies that in 
G there is at least one (k + 1) clique but no (k + 2) clique. 

Case 2: H is not a clique. 
In G ,  for every nonadjacent pair of vertices w, z E U, there 

exists a minimal separator which is a k clique. Since x cannot 
be in any such minimal wz separator, H satisfies condition a) 
(by Lemma 4.1). Consider the recursive construction of the 
graph G starting from the maximal clique W. Let y be a vertex 
to be added next in this recursive construction process. The 
vertex y is not adjacent to x but adjacent to a clique in ADJ(x). 
Furthermore, any minimal xy separator is contained in 
ADJ(x). If either (ADJ(x)I or IADJ(y)( < k, then there 
exists a minimal xy separator of size less than k in G which is 
a contradiction to our assumption. If both IADJ(x)I and 
I ADJ( y )  1 are less than k, then again a similar contradiction 
arises. Therefore, I ADJ( y )  I = I ADJ(x) I = k. Hence, H has 
m - k = k(n - 1) - k(k + 1)/2 edges. So H satisfies 
condition b) also. By the inductive hypothesis, H does not 
contain a (k + 2) clique. By the above facts, G also does not 

U 
The following sequential algorithm tests whether a graph G 

is a k tree or not. The body of this algorithm is similar to that 
of the ChordalTest algorithm. 

contain a (k + 2) clique. 

AIgorithm k-treeTest [Graph: G = (V, E)]; 



1182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 10, OCTOBER 1988 

begin 
if the equation m = kn - k(k + 1)/2 does not have a positive integer root I n for k 
then 

begin 
print “G is not a k tree”; 
terminate; 

end 
else 

begin 
let k I n be a positive integer root of the above equation; 

for every nonadjacent unordered pair of vertices U and U of V do 
G,, := G - ADJ(u); 
Giu : = component of G,, containing U; 
Mu, : = { x  : x E ADJ(u) and x is adjacent to some vertex in G;,}; 
if Mu, induces a k clique in G then continue 
else 
begin 

print “G is not a k tree”; 
terminate; 

end; 
print “G is a k tree”; 

end 
end. 0 

The correctness of the above algorithm is established below. 
Lemma 4.3: The graph G is a k tree if and only if 

subclasses of graphs in the chordal hierarchy like the split 
graphs, indifference graphs, and the threshold graphs have 

1) m = kn - k(k + 1)/2, and 
2) Mu, (in the algorithm k tree) induces a k clique for all 

nonadjacent pairs of vertices U and U of G. 

Proofi 
(IF): It is easy to see that Mu, is a minimal uu separator in 

G. Furthermore, the condition b) in Lemma 4.2 is satisfied. 
By Lemma 4.2, G is a k tree. 

(ONLY IF): G is a k tree. Then clearly rn = kn - k(k + 
1)/2 and therefore k will have a positive integer value in any 
solution to this equation. Furthennore, if G is not a clique, it 
can be easily shown that the above equation can have at most 
one positive integer root less than n for k.  Now, assume that 
for some nonadjacent pair of vertices U and U, Mu, is not k 
clique. Then because Mu, is a minimal separator, it is not a k 
tree contradicting the assumption [by Theorem 2.4 4)c)l. 0 

The proof of the following result is straightforward. 
Theorem 4.4: The algorithm k-treeTest correctly tests if G 

is a k tree or not. U 
Along the same lines as the NC algorithm for recognizing 

chordal graphs, the sequential algorithm k-treeTest can be 
parallelized into an NC algorithm. Therefore, we have the 
following theorem. 

Theorem 4.5: There exists a parallel algorithm for recog- 
nizing k trees which takes O(1og n) time and makes use of 

U O(n4 + n2m + n3)  processors. 

V. CONCLUSIONS 

We have shown that the chordal graphs and k trees have NC 
recognition algorithms. We note that the other important 

straightforward NC algorithms for recognition. Of interest 
would be to obtain NC algorithms for recognizing the directed 
path, the undirected path, and the strongly chordal graphs. In a 
wider context, more effort is needed toward developing 
parallel algorithms on various classes of perfect graphs. This 
would include both fast parallel recognition algorithms and 
algorithms for solving combinatorial optimization problems on 
these graphs. 
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