
1178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 10, OCTOBER 1988

NC Algorithms for Recognizing Chordal Graphs
and k Trees

N. CHANDRASEKHARAN AND S. SITHARAMA IYENGAR

Abstract-We present parallel algorithms for recognizing the
chordal graphs and k trees. Under the model of computation
PRAM with concurrent reading and writing allowed, these
algorithms take O(log n) time and require O(n4) processors. Our
algorithms have an improved processor-bound than an indepen-
dent result by Edenbrandt for recognizing chordal graphs in
parallel using O(n3m) processors. Furthermore, our characteriza-
tions for chordal graphs and k trees are interesting in their own
right.

Index Terms-Chordal graphs and k trees, NC algorithm,
parallel algorithm.

I. INTRODUCTION

ITH the increasing use of highly parallel computers, it w has become necessary to identify various computational
problems that can be solved fast in parallel. In particular, there
has been a considerable interest in problems which have
parallel algorithms running in time bounded by a polynomial
in the logarithm of the size of the input (i.e., in poly-log time)
and using a number of processors polynomial in the input size.
Such a class of problems is referred to as the class NC
(Pippenger [18]). Some of the reasons for this interest in the
class NC are the following.

1) The “speedup” of the NC algorithms is exponential
compared to their sequential versions. Furthermore, they
make use of a “reasonable” amount of hardware, namely, the
processors.

2) The class NC is “robust” under reasonable changes in
the underlying machine models of parallel computation.

The model of computation used here is the parallel random
access machine or PRAM in which all the processors have
access to a common memory and run synchronously (see
Vishkin [28]). Both simultaneous reading as well as writing on
common memory locations are allowed. Furthermore, in the
case of simultaneous writing, an arbitrary processor succeeds
in writing.

A class of graphs called the perfect graphs has been the
focus of extensive study of late (Golumbic [13]). Perfect
graphs are interesting from both the algorithmic and combina-
torial points of view. Important among the perfect graphs are
the chordal graphs, comparability graphs, interval graphs, k
trees, permutation graphs, cographs, etc. [13]. All these
graphs arise in various real-life applications and have polyno-

Manuscript received September 24, 1986; revised May 11, 1987.
N. Chandrasekharan is with the Department of Mathematical Sciences,

S . S . Iyengar is with the Department of Computer Science, Louisiana State

IEEE Log Number 8719408.

Clemson University, Clemson, SC 29634.

University, Baton Rouge, LA 70803.

mial-time algorithms for recognition (Corneil [6]). Recently,
NC algorithms have been given for recognizing comparability
graphs, permutation graphs, and interval graphs (Kozen et al.
[16], Helmbold and Mayr [15]). For a broader treatment on
parallel algorithms, see [31].

In this paper, we present NC algorithms for recognizing
chordal graphs and k trees. These algorithms use O(n4)
processors and take O(1og n) time on the PRAM model of
computation we have discussed earlier. We just recently came
to know of an independent result by Edenbrandt [9] who gives
an NC algorithm for recognizing chordal graphs. Although the
spirit of our recognition algorithms for the chordal graphs is
the same, there are, however, some technical differences. In
particular, Edenbrandt’s algorithm requires O(n 3m) proces-
sors and O(1og n) time. Since O(n3m) processors in the worst
case would be O(nS) processors, our algorithm has an
improved processor-bound. Furthermore, we feel that the
characterizations we have obtained for chordal graphs and k
trees are of independent interest.

II. GRAPH-THEORETIC TERMINOLOGY

A graph G = (V, E), where Vis the vertex set and E is the
edge set, is considered here as being finite, undirected,
connected, and without multiple edges or self-loops. For our
purposes, the terms subgraph and induced subgraph mean
the same as the terms clique and complete graph. Further-
more, we often use the graph for its vertex set. For most of our
presentation, we follow the standard terminology of Golumbic
[13], unless otherwise indicated.

For a pair of nonadjacent vertices U and U of a graph G =

(V, E) a uu separator is a set S C V of vertices such that U
and v are in distinct connected components of the graph
induced by V - S. A uu separator S is minimal if no proper
subset of S is a uu separator. If the uu separator is a clique,
then we call it a uu clique separator. A graph G is chordal if
every simple cycle of length greater than three has a chord. A
perfect elimination ordering (PEO) is an ordering, say, [xi,,

e - , xi,,] of the vertices of G such that ADJ(xq) n {xq+ ,, - e ,

xi,,} induces a clique, for j = 1, 2, - - e , n. Here, ADJ(x) =

{y:{x, U} E E}. Furthermore, we define, for S E V,
ADJ(S) = U x E s ADJ(x). A vertex x is said to be simplicial if
ADJ(x) induces a clique in G. Chordal graphs arise in various
applications, the most important being the solution of sparse
systems of linear equations (Rose [22], Rose et al. [24]).
Other applications of chordal graphs occur in the study of
evolutionary trees (Buneman [3]), in facility location (Chan-
drasekharan and Tamir [5]), and in relational database theory

OO18-9340/88/1OOO-1178$01 .OO O 1988 IEEE

CHANDRASEKHARAN AND NENGAR: NC ALGORITHMS FOR CHORDAL GRAPHS AND k TREES 1179

(Beeri et al. [l]). The following characterizations are well
known for chordal graphs.

Theorem 2.1: The following are equivalent.

1) G is chordal.
2) (Fulkerson and Gross [111) G has a perfect elimination

ordering.
3) G can be obtained by the following recursive construc-

tion rules:
a) Start with any clique, as the basis graph. A clique is a

chordal graph.
b) To a chordal graph H, add a new vertex and make it

adjacent to some clique subgraph of H (see Pro-
skurowski [191).

4) (Dirac [7]) Every minimal separator of G induces a

5) (Gavril [12]) G is the intersection graph of the subtrees

6) Every subgraph of G is either a clique or contains two

7) Every connected subgraph with n 2 2 vertices contains
0

The sequential algorithms for testing chordality make use of
various procedures called the PE0 schemes which generate a
PE0 if it exists. The various PE0 schemes known in the
literature are the following:

clique in G.

of a tree.

nonadjacent simplicial vertices (see Duchet [SI).

at most n - 1 cliques (see [SI).

1) ([24]) Lexicographic Breadth First Search (LBFS),
2) (Tarjan and Yannakkakis [27]) Maximum Cardinality

3) (Shier [25]) Maximal Element in Component (MEC),

4) ([25]) Maximum Cardinality neighborhood in Compp-

It is not relevant for our purposes to go into the detail of the
above schemes. But the following result establishes the
importance of the PE0 schemes in the recognition of chordal
graphs.

Theorem 2.2. [24], [25], [27]: A graph G = (V, E) is
chordal if and only if an ordering of the vertices of G,
generated by any of the PE0 schemes LBFS, MCS, MEC,
and MCC, is a PEO. Furthermore, G can be so tested for

U
The k trees, introduced by Harary and Palmer [14], are an

important subclass of chordal graphs. They have been charac-
terized by Beineke and Pippert [2], and Rose [23] subse-
quently in many interesting ways. Furthermore, the k trees
have been extensively investigated in [19]-[21] and Foata
[lo]. We give below the definition and various characteriza-
tions of k trees.

Search (MCS),

and

nent (MCC) .

chordality in O(n + m) time.

Definition 2.3: A graph is a k tree if it can be obtained by

a) Start with any k clique as the basis graph. A k clique is a
k tree.

b) To any k tree H add a new vertex and make it adjacent
to a k clique subgraph of H, to form a (k + 1) clique. 0

the following recursive construction rules.

Theorem 2.4: The following are equivalent.
1) G = (V, E) is a k tree.
2)

a) G is connected,
b) G has a k clique but no (k + 2) clique, and
c) every minimal vertex separator of G is a k clique [23].

a) G is chordal,
b) IEI = k(VI - k(k + 1)/2, and
c) G has a k clique but no (k + 2) clique [23].

a) G is connected,
b) [El = kl VI - k(k + 1)/2, and
c) every minimal vertex separator of G is a k clique [23].

5) G is chordal and the set of PEO’s generated by the PE0
scheme MCS is equal to that generated by the scheme
MCC for G [4].

6) G is chordal and the set of PEO’s generated by the
scheme MEC is equal to that generated by the scheme

3)

4)

ME1 for G [4]. 0

Note that none of the above characterizations for both the
chordal graphs and k trees seems to lead to NC algorithms for
recognition. In particular, it is not clear whether a PE0 can be
generated by parallelizing any of the PE0 schemes into an NC
algorithm. Recently, the notion of a maximal clique separa-
tor was explored [30]. In Sections III and IV, we introduce
some simple characterizations of chordal graphs and k trees
and obtain the NC algorithms for their recognition.

III. NC ALGORITHM FOR RECOGNIZING CHORDAL GRAPHS
We note that the characterization of chordal graphs in

Theorem 2.1. 4) in terms of the minimal separators is a little
stronger than necessary. We weaken this result to obtain the
following lemma.

Lemma 3. I : A graph G = (V, E) is chordal if and only if
for every nonadjacent pair of vertices U and U of V, there exists
a uu clique separator in G.

Proof:
(ONLY IF): Zf G is chordal, then for every pair of

nonadjacent vertices U and U of V there exists a minimal uu
separator which is a clique my Theorem 2.1.4)].
(ZF): By contradiction. Assume that there exists a chordless

simple cycle C of length 1 2 4 in G. Take any two nonadjacent
verticesuanduinC.Letthecyc1eCbeu = ~ 1 ~ 2 U i u =
ulu2 * * uju, where i + j = 1. Furthermore, i , j 2 2. Any
vertex separator for U and U should include some U, and uq, .p
E (2, e , i } , q E (2, * - - , j}. Otherwise, u and u would still
be connected. But since C is a chordless cycle, U,, and ug
are nonadjacent. This contradicts the assumption that there
exists a clique separator for every pair of nonadjacent vertices
in G. 0

Now instead of looking for minimal separators in a graph
G, it is enough to look for a clique separator. We describe a
sequential algorithm for testing chordality based on the above
lemma.

1180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 10, OCTOBER 1988

Algorithm ChordalTest [Graph: G = (V, E)] ;

begin
for every Nonadjacent unordered pair of vertices U and U of V do

G,, := G - ADJ(u);
G;, : = component of G,, containing U;
Mu, : = {x:x E ADJ(u) and x is adjacent to some vertex in G;,};
if Mu, induces a clique in G then continue
else
begin

print “G is not chordal”;
terminate;

end;
rof;

print “G is chordal”;
end. 0

We note here that a variant of the body of the above algorithm
is used by Whitesides [29] as the initialization step of het
algorithm for finding a clique separator of a graph. The
correctness of the algorithm ChordalTest is established below.

Lemma 3.2: In the algorithm ChordalTest, Mu, is a uu
seperator in G. Furthermore, if Mu, has two nonadjacent
vertices (for some U, U in G), then there is a chordless cycle in
G having a length of at least four.

Proof: It is clear that (G - Mu,) - {U} 2 G;,,. Any x
in (G - Mu,) - {U} and not in G;,, is not connected to the
vertices in G;, . So Mu, seperates U and all the vertices of G L, .
In particular, Mu, is a uu seperator in G. Let x and y be two
nonadjacent vertices in Mu,, which are adjacent to vertices,
say r and s, respectively, in GL,. Let rala2a3 ups be a
shortest chordless path in G;,. Then it is easy to see that
uxrala2a3 * apsyu is a chordless path of length at least four
in G. CI

Lemma 3.3: G = (V, E) is chordal if and only if for every
nonadjacent pair of vertices U and U of V, Mu, (in the
algorithm ChordalTest) induces a clique in G.

Proof:
(ONLY IF): Let G be chordal. Assume G is not a clique.

Suppose Mu, does not induce a clique for some pair of
nonadjacent vertices U and U in G. This means that there exists
at least two nonadjacent vertices x and y in Mu,. Then by
Lemma 3.2 there is a chordless cycle of length at least four in
G, contradicting the assumption that G is chordal.

0
The following result is immediate.
Theorem 3.4: The algorithm ChordalTest correctly tests

0
Now we parallelize the above sequential algorithm for

Algorithm NCTestChordal:

(IF): Follows from Lemma 3.1.

whether G is chordal or not.

testing chordality .

begin
if G is a clique then “G is chordal” and terminate;

for every nonadjacent pair of vertices U, U do in parallel
1. H := G - ADJ(u);

F : = Component of H containing the vertex U;
M : = (21;

2.

3. for each x E ADJ(u) and y E F do in parallel
if { x , y } E E then M : = M U { x } ;

rof;
if M is a clique then return 1 else return 0;

if for each pair of nonadjacent vertices U, U, the answer
returned is 1 then “G is chordal” else
“G is not chordal”;

4.
rof;

end.

The following theorem establishes the correctness of the tests in parallel the chordality of G. Furthermore, the
algorithm has a time-complexity O(1og n) and makes use of

Theorem 3.5: The algorithm NCTestChordal correctly O(n4 + n3 + n2m) processors.
algorithm NCTestChordal and its complexity.

CHANDRASEKHARAN AND WENGAR: NC ALGORITHMS FOR CHORDAL GRAPHS AND k TREES 1181

Proof: The proof of correctness of the parallel algorithm
follows from the proof of its sequential version (Theorem
3.4). To find out the number of processors required, we note
that the number of nonadjacent pair of vertices is O((n/2)).
For finding the connected component F, the parallel algorithm
of Shiloach and Vizhkin [26] can be made use of. This
algorithm takes O(1og n) time and requires O(m + n)
processors. Furthermore, step 3 requires O(n2) processors. So
in all, the algorithm requires O(n2(n + m) + n4) processors
and O(1og n) time. 0

IV. NC ALGORITHM FOR RECOGNIZING k TREES
The NC algorithm for recognizing k trees is similar to the

one for recognizing chordal graphs but different in the sense
that it makes use of minimal separators. We need the following
preliminary results.

Lemma 4. I : Let G be a noncomplete chordal graph. Let x
be a simplicial vertex in G and H = (U, F) = G - {x}.
Then for any nonadjacent pair of vertices U and U of H, no
minimal uv separator contains x.

Proof: If H is a clique, then the lemma is vacuously true.
Assume H i s not a clique. Let U and U be a pair of nonadjacent
vertices. Both U and v cannot be adjacent to x, otherwise U and
U would themselves have to be adjacent to each other.
Therefore, at most one of the vertices U and v is adjacent to x.
Two cases arise.

Case I : Without loss of generality, let U E ADJ(x).
Then U 6 ADJ(x). Let S be a minimal uv separator

contained in {x} U ADJ(x) - {U}. Let C1 and C2 be the
connected components of G - S, containing the vertices U and
U, respectively. Then C1 fl C2 = 0. Also no vertex in C2 is
adjacent to x, because x is a simplicial vertex. Furthermore,
no vertex in C2 is adjacent to U. This is because if there is a
vertex z in C2 adjacent to U, then U and U will be connected by
a path in G - S, unless z is adjacent to x also. But we know
that no vertex in C2 is adjacent to x. So all the vertices in C2
are adjacent to a subset of ADJ(X) - {U}. Therefore, U and v
can be separated by removing R = (ADJ(x) - {U}) fl
ADJ(C2). Furthermore, it is easy to see that R is also the only
minimal uv separator contained in ADJ(x) - {U} U {x}. If
any minimal uv separator S is to contain X, then it should be a
subset of ADJ(x) U {x} - {U}. But we have seen'that the
only minimal uv separator in ADJ(x) U {x} - {U} is R
which does not contain x. Therefore, the lemma holds.

Case 2: Both U, U 6 ADJ(x).
Let S be a minimal uu separator contained in {x} U

ADJ(x). Let C1 and C2 be the connected components of G -
S, containing the vertices U and U, respectively. Again, no
vertex in either C1 or C, is adjacent to x. So the only minimal
uv separator contained in ADJ(x) U {x} are ADJ(x) fl
ADJ(CI) and ADJ(x) fl ADJ(C2) neither of which contains
the vertex x. As in the previous case, we can see that the
lemma holds. 0

We give below a new characterization of k trees.
Theorem 4.2: A graph G = (V, E) is a k tree if and only if

a) For every nonadjacent pair of vertices U and v of G ,
there exists a minimal uu separator which is a k clique,

and

b) m = kn - k(k + 1)/2.

(ONL Y IF): If G is a clique then it is a k tree, trivially. If G
is not a clique, then for every pair of nonadjacent vertices U
and U, the minim,.' separator of G is a k clique (by Theorem
2.4 4)c). Furtherm, re, rn = kn - k(k + 1)/2 (by Theorem
2.4 4)b).

(IF): The condition a) alone implies that G is chordal (by
Lemma 3.1). Therefore, conditions a) and b) together fulfill
the conditions of Theorem 2.4 3)a) and 2.4 3)b). It is enough
to show that G has a k clique but no (k + 2) clique. This we
show below.

It is easy to see that if G is a clique, it cannot be a (k + 2)
clique. Therefore, assume that G is not a clique. Then G has a
k clique because it will have a minimal separator. We show by
induction on the number of vertices that G does not have a (k
+ 2) clique. All graphs satisfying conditions a) and b) of
Theorem 3 and having 1, 2, 3, and 4 vertices do not have (k
+ 2) cliques. Assume that all graphs having fewer than or
equal to (n - 1) vertices and satisfying conditions a) and b) do
not have (k + 2) cliques. Consider a graph G on n vertices
and satisfying conditions a) and b). Because G is chordal,
there exists a simplicial vertex x in G. Let H = (U, F) = G
- {x} and W = {x} U ADJ(x). Now IUI = n - 1 and

I Wl I n - 1 , otherwise G would be a clique. Now we
consider two cases here.

Proof:

Case I : H is a clique with (n - 1) vertices.
The conditions a) and b) are satisfied by H. By the inductive

hypothesis, H does not have a (k + 2) clique. Since G is not a
clique, there exists at least one vertex in U not adjacent to x.
Furthermore, all the minimal zx separators, where z 6
ADJ(x), are nothing but ADJ(x) itself. Since G satisfies
condition a), ADJ(x) has to be a k clique. This implies that in
G there is at least one (k + 1) clique but no (k + 2) clique.

Case 2: H is not a clique.
In G , for every nonadjacent pair of vertices w, z E U, there

exists a minimal separator which is a k clique. Since x cannot
be in any such minimal wz separator, H satisfies condition a)
(by Lemma 4.1). Consider the recursive construction of the
graph G starting from the maximal clique W. Let y be a vertex
to be added next in this recursive construction process. The
vertex y is not adjacent to x but adjacent to a clique in ADJ(x).
Furthermore, any minimal xy separator is contained in
ADJ(x). If either (ADJ(x)I or IADJ(y)(< k, then there
exists a minimal xy separator of size less than k in G which is
a contradiction to our assumption. If both IADJ(x)I and
I ADJ(y) 1 are less than k, then again a similar contradiction
arises. Therefore, I ADJ(y) I = I ADJ(x) I = k. Hence, H has
m - k = k(n - 1) - k(k + 1)/2 edges. So H satisfies
condition b) also. By the inductive hypothesis, H does not
contain a (k + 2) clique. By the above facts, G also does not

U
The following sequential algorithm tests whether a graph G

is a k tree or not. The body of this algorithm is similar to that
of the ChordalTest algorithm.

contain a (k + 2) clique.

AIgorithm k-treeTest [Graph: G = (V, E)];

1182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 10, OCTOBER 1988

begin
if the equation m = kn - k(k + 1)/2 does not have a positive integer root I n for k
then

begin
print “G is not a k tree”;
terminate;

end
else

begin
let k I n be a positive integer root of the above equation;

for every nonadjacent unordered pair of vertices U and U of V do
G,, := G - ADJ(u);
Giu : = component of G,, containing U;
Mu, : = { x : x E ADJ(u) and x is adjacent to some vertex in G;,};
if Mu, induces a k clique in G then continue
else
begin

print “G is not a k tree”;
terminate;

end;
print “G is a k tree”;

end
end. 0

The correctness of the above algorithm is established below.
Lemma 4.3: The graph G is a k tree if and only if

subclasses of graphs in the chordal hierarchy like the split
graphs, indifference graphs, and the threshold graphs have

1) m = kn - k(k + 1)/2, and
2) Mu, (in the algorithm k tree) induces a k clique for all

nonadjacent pairs of vertices U and U of G.

Proofi
(IF): It is easy to see that Mu, is a minimal uu separator in

G. Furthermore, the condition b) in Lemma 4.2 is satisfied.
By Lemma 4.2, G is a k tree.

(ONLY IF): G is a k tree. Then clearly rn = kn - k(k +
1)/2 and therefore k will have a positive integer value in any
solution to this equation. Furthennore, if G is not a clique, it
can be easily shown that the above equation can have at most
one positive integer root less than n for k. Now, assume that
for some nonadjacent pair of vertices U and U, Mu, is not k
clique. Then because Mu, is a minimal separator, it is not a k
tree contradicting the assumption [by Theorem 2.4 4)c)l. 0

The proof of the following result is straightforward.
Theorem 4.4: The algorithm k-treeTest correctly tests if G

is a k tree or not. U
Along the same lines as the NC algorithm for recognizing

chordal graphs, the sequential algorithm k-treeTest can be
parallelized into an NC algorithm. Therefore, we have the
following theorem.

Theorem 4.5: There exists a parallel algorithm for recog-
nizing k trees which takes O(1og n) time and makes use of

U O(n4 + n2m + n3) processors.

V. CONCLUSIONS

We have shown that the chordal graphs and k trees have NC
recognition algorithms. We note that the other important

straightforward NC algorithms for recognition. Of interest
would be to obtain NC algorithms for recognizing the directed
path, the undirected path, and the strongly chordal graphs. In a
wider context, more effort is needed toward developing
parallel algorithms on various classes of perfect graphs. This
would include both fast parallel recognition algorithms and
algorithms for solving combinatorial optimization problems on
these graphs.

ACKNOWLEDGMENT

We thank Dr. J. Gilbert and Dr. D. Kozen, the former for
bringing to our notice the work of Dr. A. Edenbrandt and the
latter for his prompt and helpful replies to our questions. We
note that recently Naor, Naor, and Schaffer [17] have
developed NC algorithms for finding a PE0 of a chordal graph
and for finding clique number, etc. We thank Dr. D. Shier and
an anonymous referee for bringing the above work to our
notice. We are thankful to Prof. Liu for handling this paper in
a timely fashion.

REFERENCES
[l] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M.

Yannakakis, “Properties of acyclic database schemes,” in Proc. 13th
Annu. ACM Symp. Theory Comput., 1981, pp. 355-362.
L. Beineke and R. Pippert, “Properties and characterizations of k-
trees,” Mathematica, vol. 18, pp. 141-151, 1971.
P. Buneman, “The recovery of trees from measures of dissimilarity,’’
in Mathematics in the Archaeological and Historical Sciences.
Edinburgh, Scotland: Edinburgh Univ., 1972, pp. 387-395.
N. Chandrasekharan, “New characterizations and algorithmic studies
on chordal graphs and k-trees,” M A . (Engg.) Thesis, School of
Automation, Indian Instit. Sci., Bangalore, India, 1985.
R. Chandrasekharan and A. Tamir, “Polynomially bounded algorithms

[2]

[3]

[4]

[5]

1183 CHANDRASEKHARAN AND IYENGAR: NC ALGORITHMS FOR CHORDAL GRAPHS AND k TREES

for locating p-centers on a tree,” Math. Programming, vol. 22, pp.
304-31.5, 1982.
D. Corneil, “Algorithms for perfect graphs,” in Proc. IEEE Int.
Symp. Circuits Syst., 1985, pp. 1187-1 190.
G . Dirac, “On rigid circuit graphs,” in Proc. Abh. Math. Sem.,
Univ. of Hamburg, vol. 25, 1961, pp. 71-76.
P. Duchet, “Classical perfect graphs,” in Topics on Perfect Graphs,
C. Berge and V. Chvatal Eds., Ann. Disc. Math., vol. 21, pp. 67-96
North-Holland, 1984.
A. Edenbrandt, “Combinatorial problems in matrix computation,”
Ph.D. dissertation, Cornell Univ., Ithaca, NY, July 1985.
D. Foata, “Enumerating k-trees,” Disc. Math., vol. 1, pp. 181-186,
1974.
D. Fulkerson and 0. Gross, “Incidence matrices and interval graphs,”
Pac. J . Math., vol. 15, pp. 835-855, 1965.
F. Gavril, “The intersection graphs of subtrees in trees are exactly the
chordal graphs,” J. Combin. Theory, B, vol. 16, pp. 47-56, 1974.
M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs.
New York: Academic, 1980.
F. Harary and E. Palmer, “On acyclic simplicial complexes,”
Mafhemaficu, vol. 15, pp. 115-122, 1968.
D. Helmbold and E. Mayr, “Perfect graphs and parallel algorithms,”
in Proc. IEEE 1986 Int. Conf. Parallel Processing, Aug. 1986, to be
published.
D. Kozen, U. Vazirani, and V. Vazirani, “NC algorithms for
comparability graphs, interval graphs, and testing for unique perfect
matching,” in Proc. 5th Conf. FST & TCS, New Delhi, India, pp.
496-S03, 206, Lecture Notes in Cornputer Science, Springer-Verlag,
198.5.
J . Naor, M. Naor, and A, Schaffer, “Fast parallel algorithm for
chordal graphs,” in Proc. Symp. Theory Comput., New York, May
1987.
N. Pippenger, “On simultaneous resource bounds,” in Proc. 20th
IEEE Symp. Foundations Comput. Sci., 1979, pp. 307-31 1.
A. Proskurowski, “Recursive graphs, recursive labelings and shortest
paths,” SIAM J. Comput., vol. IO, pp. 391-397, 1981.

~ ~, “k-trees: Representations and distances,” Tech. Rep., CIS-TR-
80-5, Univ. Oregon, OR, 1980.

~ , “Separating subgraphs in k-trees: Cables and caterpillars,”
Disc. Math., vol. 49, pp. 275-285, 1984.
D. Rose, “A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations,” in Graph Theory and
Computing. R. Read, Ed. New York: Academic, 1972, pp. 183-217.

, “On simple characterizations of k-trees,” Disc. Math., vol. 7,
pp. 317-322, 1974.
D. Rose, R. E. Tarjan, and G . Lueker, “Algorithmic aspects of vertex
elimination on graphs,” SIAM J. Comput., vol. 5 , pp. 266-283,
1976.

1251

[26]

[27]

D. Shier, “Some aspects of perfect elimination orderings in chordal
graphs,” Disc. Appl. Math., vol. 7, pp. 325-331, 1984.
Y. Shiloach and U. Vishkin, “An O(log n) parallel connectivity
algorithm,” J. Algorithms, vol. 3, pp. 57-67, 1982.
R. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
the chordality of graphs, test acyclicity of hypergraphs and selectively
reduce acyclic hypergrahs,” SIAM J. Comput., vol. 13, pp. 566-
579, 1984.

[28] U. Vishkin, “Implementation of simultaneous-memory accesses in
models that forbid it,” J. Algorithms, vol. 4, pp. 45-50, 1983.

[29] S. H. Whitesides, “An algorithm for finding clique cut-sets,” Inform.
Processing Lett., vol. 12, pp. 31-32, 1981.

[30] N. Chandrasekharan, R. Laskar, and S. S. Iyengar, “Maximal clique-
separators of chordal graphs and New separator theorems,” in Proc.
South Eastern Combinatorial Conf, , Boca Raton, FL, Feb. 1987.
A. Mortra and S. S. Iyengar, “Parallel algorithms for some computa-
tion problems,” Adv. Comput., vol. 26, pp. 95-153, 1987.

[31]

N. Chandrashekaran is presently a Ph.D. degree student in the department of
Mathematics, Clemson University, Clemson, SC. His research interests are in
parallel algorithms for graph problems.

S. Sitharama Iyengar received the Ph.D. degree in
engineering in 1974.

He is currently a Professor of Computer Science
and Supervisor of robotic research and parallel
algorithms at Louisiana State University, Baton
Rouge. He has authored (coauthored) more than 75
research papers in parallel algorithms, data struc-
tures, navigation of intelligent mobile robot, etc. He
is currently studying the application of neural
network techniques for path planning and learning
in mobile robots. His papers have appeared in the

following journals: IEEE TSE, IEEE PAMI, IEEE SMC, IEEE JOURNAL OF
ROBOTICS AND AUTOMATION, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, CACM, JCIS, Computer Networks, Journal of Robotic
Systems, BIT, Theoretical Computer Science, and several other interna-
tional journals and IEEE proceedings. He is an ACM National Lecturer for
1986-1988. His research has been funded by NASA, DOE, NAVY, Jet
Propulsion Lab. Caltech, etc.

Dr. Iyengar has been on the program committee for several major
conferences in the USA and in Europe. He is a coguest editor for a special
issue in IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He is also a
guest editor for a special issue on autonomous intelligent machines in IEEE
COMPUTER magazine.

