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Abstract—In this paper, the DTV (digital television) spectrum
sensing problem is studied, which plays a key role in the cognitive
radio. In contrast to the existing higher-order-statistics (HOS)
approach, we propose a novel robust spectrum-sensing method,
which is based on the JB (Jarqur-Bera) statistic. In our studies,
the existing detector may often not be robust when the sample
size is small. Our proposed JB detector is heuristically justified
to be superior for the simulated microphone signals as well as
the real DTV signals. Moreover, the computational complexity
analysis for our proposed new JB detector and the HOS detector
is also presented. Ultimately, the normality test and the spectral
analysis are provided to justify the advantage of our proposed
spectrum sensing method.

Index Terms—Spectrum sensing, signal detection, higher-
order-statistics (HOS), JB (Jarqur-Bera) statistic, DTV.

I. INTRODUCTION

THERE always exists the need for the communication
services at higher data rates. Given the limitation of the

natural frequency spectrum, it becomes obvious that the cur-
rent static frequency allocation schemes can not accommodate
the users’ requirement on the high data rates. As a result,
innovative techniques that can offer new ways of exploiting
the available spectrum are needed. The increasing demand for
wireless connectivity and the crowded unlicensed spectra have
prompted the regulatory agencies to be more aggressive in
coming up with new ways to use spectra more wisely [1].
Hence, cognitive radio (see [2], [3]) arises as a feasible
solution to the aforementioned spectral congestion problem
by introducing the opportunistic usage of the frequency bands
that are not heavily occupied by licensed users [4], [5]. One
of the most important features in the cognitive radio [6] is the
ability to measure, sense, learn, and be aware of the parameters
related to the radio channel characteristics. The primary users
can be defined as the users who have a higher priority or legacy
rights on the usage of a specific part of the available spectrum.
On the other hand, the secondary users, who have a lower
priority, exploit the spectrum in such a way that they do not
cause interference to the primary users. Therefore, secondary
users need to have cognitive capabilities, such as sensing the
spectrum reliably to check if it is being used by a primary
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user so as to change the radio parameters for exploiting the
unused part of the spectrum.

As a consequence, a working group named IEEE 802.22
was established to develop a standard for a cognitive radio
based PHY/MAC/air interface to target on the license-exempt
devices. The goal for these devices is to share the spectrum
which has already been allocated to the digital television
(DTV) broadcast services. The proposed system is called the
wireless regional area network (WRAN), whose coverage
area can be extended to as far as 30 miles. To implement
the cognitive radio causing no interference with the licensed
signals, users have to be able to detect the presence of the
licensed signals even with very low signal-to-noise ratios
(SNRs). The IEEE 802.22 WRAN group established a sensing
tiger team to be responsible for spectrum sensing, including
the spectrum sensing for the DTV signals modulated subject
to the ATSC digital television standard [7], [8]. In addition,
wireless microphones are the usual low-power secondary
licensed signals operating in the locally unused DTV bands.
Therefore, the main task in spectrum sensing for the IEEE
802.22 WRAN systems is to detect the existence of the DTV
signals as well as the wireless microphone signals operating
in the DTV frequency bands.

The target SNR for a good spectrum sensing sensitivity
is about -20 dB [4], [9]–[13], which means that some of
the licensed signals must be sensed at a very low SNR.
This reflects the major challenge, weak signal detection, in
spectrum sensing. In addition, fading and time dispersions of
the wireless channel and noise/interference variations will also
bring difficulties to spectrum sensing, such as signal energy
fluctuation, noise uncertainty, and so on [1], [4], [14]–[16].

To combat the spectrum sensing problem with the above-
mentioned difficulties, several methods have been proposed,
such as the matched filtering approach [1], [14], [15], the
feature detection approach [17], [18], and the energy detection
approach [14], [19]–[22]. For the matched filtering technique,
it can maximize the SNR. However, it is difficult to carry
out the signal detection without information such as pilot and
frame structure. For the feature detection method which relies
on cyclostationarity, the sufficient signal information must be
given as well. However, in practice, a cognitive radio receiver
can not know anything about the primary signal’s structure
and information. On the other hand, for the energy detection
method, although it does not require any information about the
signal to be detected, it would be prone to the false detection
since it only relies on the signal energy features [21], [22].
When the time-varying characteristics of the signal is obvious
or noise is large [14], [15], [21], this method is likely to fail
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to distinguish between the absence and the presence of the
signal. In addition, the energy detection scheme is not optimal
for detecting the correlated (colored) signals, which are often
found in practice. To overcome the shortcomings of the energy
detection approach, some methods based on the eigenvalues
associated with the covariance matrix of the received signal
were proposed in [4], [9], [23]. However, the corresponding
computational complexities are quite large. A method based on
the higher-order-statistics (HOS) was proposed and it would
be promising especially in the low SNR conditions [24]. In
this paper, we propose a novel spectrum sensing scheme which
is based on the Jarque-Bera (JB) statistic. The computational
complexity of our new method is much less than the HOS
approach while our method greatly outperforms the HOS
technique over all SNR conditions and different signal sample
sizes. Our method can perform very well even when the SNR
is very low and the signal sample size is not large based
on the Monte Carlo simulations. Our proposed new spectrum
sensing technique would have a great potential to serve as the
backbone of the future cognitive radio technology.

II. SYSTEM MODEL

Denote the continuous-time received signal by rc(t) during
the sensing stage. The underlying signal from the primary
users is denoted by sc(t) and wc(t) is the additive white
Gaussian noise (AWGN). Hence, we have

rc(t)
def= sc(t) + wc(t). (1)

Assume that we are interested in the frequency band with the
central frequency fc and the bandwidth W . We sample the
received signal at a sampling rate fs, where fs ≥ W . Let
Ts = 1

fs
be the sampling period and N be the sample size.

For notational convenience, we denote

r(n) def= rc(nTs), n = 1, . . . , N,

s(n) def= sc(nTs), n = 1, . . . , N,

w(n) def= wc(nTs), n = 1, . . . , N. (2)

According to [4], for the signal detection (spectrum sensing)
problem, there involve two hypotheses, namely H0: signal is
absent and H1: signal is present. The discrete-time received
signals under these two hypotheses are given by

H0 : r(n) = w(n), (3)

H1 : r(n) = s(n) + w(n), (4)

where r(n) denotes the received signal samples including the
effect of path loss, multipath fading and time dispersion, and
w(n) is the discrete-time AWGN with zero mean and variance
σ2. Here s(n) can be the superposition of the signals emitted
from multiple primary users. When the received signal r(n)
consists of multiple sources (from either multiple independent
sources or a single source signal traveling through multiple
paths), it is usually modeled as the correlated signal [4]. It
is assumed that signal and noise are uncorrelated with each
other. The spectrum sensing (or signal detection) problem is
therefore to determine whether the signal s(n) exists or not,
based on the received signal samples r(n) [4], [9]. In reality,
the recorded DTV channels are sampled at fs = 21.524476

MHz and then down-converted to a low central intermediate
frequency (IF) of 5.381119 MHz (one fourth of the sampling
frequency) [25]. The acquired signal samples are used to detect
if any DTV signal exists.

III. EFFICIENT SPECTRUM SENSING TECHNIQUES

The signal detection has been a fundamental but ever-
intriguing problem in telecommunications, signal processing,
etc. The Bayesian hypothesis test has served as the main-
stream theoretical framework for signal detection. However,
the Bayesian classifier can be deemed optimal only when
the complete statistic information is known for the observed
signal. It is impossible in practice. Besides, the accurate prob-
ability density function (or the complete statistic information),
which facilitates the Bayesian optimality, has to depend on a
large amount of data and it is not feasible for low-cost, low-
power, computationally-efficient hand-held (mobile) devices.
Instead of estimating the probability density function (PDF),
the computationally-efficient detection methods using the par-
tial statistics have been attracting a lot of research interest for
decades. In this section, we first present an existing spectrum
sensing technique based on the higher-order statistics. Then,
we propose a novel spectrum sensing algorithm based on the
JB-statistic, which is more robust than the former method
especially when the sample size of the received signal is quite
small.

A. Higher-Order-Statistics Spectrum-Sensing Algorithm

In this subsection, we will discuss about the higher-order-
statistics (HOS) based detection algorithm (see [24]). This
sensing technique is based on Gaussian noise statistics. The
higher-order statistics can be used to evaluate how well the
distribution of the test statistic matches a Gaussian distribu-
tion. In this method, the received signal is converted down
to the baseband and then filtered. Next, the nominal ATSC
pilot frequency is aligned to the DC and the down-converted
signal is filtered again by a narrow-band low-pass filter. The
resultant signal is transformed to the frequency domain using
the fast Fourier transform (FFT). Often, a 2,048-point FFT
is recommended, since it is also used in the OFDM modu-
lator/demodulator for the digital video broadcasting systems.
Then, the higher-order moments and cumulants (higher than
the second-order) for the real and imaginary parts of the
signal spectra are calculated. If only noise is present, then
the real and imaginary parts of the signal spectra are both
Gaussian. The corresponding higher-order cumulants are thus
all zero. Hence, in this sensing technique, a Gaussianity test is
performed using the estimates of the higher-order cumulants.
If it fails the Gaussianity test, then the hypothesis that the
ATSC pilot signal is present holds true. The HOS detection
algorithm has to use the third- to sixth-order cumulants and
central moments [24]. The estimation variances of such high-
order cumulants are usually quite large especially when the
sample size is small [26]. Hence, it is obvious that the HOS
approach cannot be robust when we do not have much received
signal data or the channel model is time-varying. It motivates
us to design a new spectrum sensing method to combat this
problem.
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Fig. 1. The spectrum sensing system diagram.

B. Jarqur-Bera (JB) Statistic Based Detection Algorithm

Our goal is to design a robust spectrum sensing method
involving estimates with less variances and leading to a
computationally efficient solution. The JB statistic based on
skewness and kurtosis is adopted here because kurtosis and
skewness, which are composed by the second, third and fourth
central moments only, could lead to more robust estimators
than the HOS scheme relying on the higher-order moments
or cumulants. Since JB statistic only depends on the second
to fourth central moments, it would result in much less esti-
mation variance than the variance of the HOS-based estimator
(see [24], [26]) using the second to sixth cumulants and central
moments altogether according to the k-statistic and h-statistic
theory. In addition, the HOS detection method (see [24])
tests the normality using the real and imaginary parts of
the complex received samples subject to the property that
all higher-order cumulants of a Gaussian PDF are zero. We
propose to adopt the JB statistic to work on the norms of
the complex signal samples, and the associated normality test
is thus subject to the Rayleigh distribution instead. It is well
known that the variance of a Gaussian process (for either its
real or imaginary part) is much larger than the variance of
the corresponding Rayleigh process (constituting the absolute
values of the complex Gaussian random data). Hence, it can
be foreseen that our proposed spectrum sensing method based
on the signal norms can have the advantage over the method
in [24]. Our proposed new spectrum sensing algorithm will be
presented subsequently in Sections III-B1- III-B3.
1) Pre-Processing: The pre-processing steps in our pro-

posed algorithm for transforming the received signal r(n)
into the frequency domain are the same as the HOS detection
method [24]. Nevertheless, in our new detection method, we
use the Jarque-Bera statistic of the signal spectrum’s absolute

values. The block diagram of our proposed new spectrum
sensing method is depicted in Figure 1.
The signal flow in Figure 1 is described as follows.

When the signal r(n) is received, first we multiply r(n) by
e−j2πfcnTs to down-convert it to the baseband, where fc is
the low central IF frequency of 5.381119 MHz. Then, this
baseband signal is sent through a digital image rejection low-
pass (LP) filter with bandwidth BWr = 8×106× 2π

fs
radians.

The image rejection filter is placed in the receiver so that
the image frequencies along with other unwanted signals are
filtered out to enhance the signal quality.
Next, the enhanced signal r2(n) is further multiplied by

e−j2πfvnTs , where fv=2.69 MHz. Then, the resulted signal
r3(n) goes through the operations consisting of a down-
sampler following a digital anti-aliasing filter whose band-
width is given by

BWa =
NFFT

Tsensing
× 2π

fs
, (5)

where NFFT is the FFT window size, and Tsensing = n
fs
is

the sensing time. The down-sampling rate fd is given by

fd = floor

(
2π

BWa

)
, (6)

where the function ”floor” is the operation to round 2π
BWa

to
the nearest integer less than or equal to 2π

BWa
. The down-

sampled signal r5(n) is sent to a serial-to-parallel port and
then the NFFT-point FFT will be taken to result in a half-
period FFT-sequence Rout(k), k = 0, 1, . . . , NFFT

2 − 1.
2) JB-Statistic Based Detection: In statistics, the Jarque-

Bera test is a goodness-of-fit measure of departure from nor-
mality, based on the sample kurtosis and the sample skewness.
The test is named after Carlos M. Jarque and Anil K. Bera.
The test statistic, JB, is defined as

JB
def=

ns

6

(
S2 +

(K − 3)2

4

)
, (7)

where ns is the number of observations (or degrees of freedom
in general); S is the sample skewness and K is the sample
kurtosis. They are defined as

S def=
μ̂3

σ̂3
=

μ̂3

(σ̂2)3/2
=

1
ns

∑ns

i=1 (xi − x̄)3(
1

ns

∑ns

i=1 (xi − x̄)2
)3/2

, (8)

K def=
μ̂4

σ̂4
=

μ̂4

(σ̂2)2
=

1
ns

∑ns

i=1 (xi − x̄)4(
1

ns

∑ns

i=1 (xi − x̄)2
)2 , (9)

where μ̂3 and μ̂4 are the estimates of the third and fourth
central moments, respectively; xi, i = 1, . . . , ns are the
observations; x̄ is the sample mean and σ̂2 is the estimate
of the second central moment or the variance. Therefore, this
JB test can be considered as a sort of portmanteau test, since
the four lowest moments about the origin are used jointly for
its calculation.
Because Rout(k), k = 0, 1, . . . , NFFT

2 − 1 are complex-
valued, if we try to directly apply JB test, we have to forsake
either real-parts or imaginary-parts and thus the complete
information is not utilized. For our proposed spectrum sens-
ing method, we do not directly use the JB statistic as the
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conventional approach thereby. Here we check the absolute
values of Rout(k), k = 0, 1, . . . , NFFT

2 − 1. Then, we invoke
Eqs. (7), (8), and (9) to calculate the JB statistic of |Rout(k)|
and compare it with the threshold rs to decide if there exists
the signal s(n). If JB > rs, we say that the signal exists;
otherwise (JB ≤ rs), we say that the signal is absent. We will
present the theoretical study about how to select the threshold
rs subsequently.
3) Threshold Analysis for Our Proposed Method: In this

subsection, we will discuss about how to select the thresh-
old rs for the proposed JB-statistic-based detection scheme
according to both theoretical and heuristical analyses. Let’s
review the Rayleigh distribution first, which is closely related
to our proposed feature |Rout(k)| under the JB test (|Rout(k)|
is Rayleigh distributed when signal is absent). The Rayleigh
distribution is composed by random complex numbers whose
real and imaginary components (x and y) are both identically
independently distributed (i.i.d.) Gaussian. The Rayleigh PDF
with respect to r =

√
x2 + y2 is given by

f (r; σr) =
r

σ2
r

exp
(−r2

2σ2
r

)
, (10)

where r ∈ [0, +∞), and σr is the mode. For the Rayleigh PDF
given by Eq. (10), the skewness SRayleigh and the kurtosis
KRayleigh are given as follows [27]:

SRayleigh =
2
√

π (π − 3)

(4 − π)
3
2

≈ 0.631, (11)

KRayleigh = −6π2 − 24π + 16

(4 − π)2
+ 3 (12)

≈ −0.245 + 3 = 2.755.

When there is no signal, the input of the pre-processor (as
presented in Section III-B1) is r(n) = w(n). Then, after the
pre-processing of the input signal, if there is no aliasing, the
output Rout(k), k = 0, 1, . . . , NFFT

2 − 1 will be a complex
Gaussian process whose real and imaginary components are
both i.i.d. Gaussian. Thus, |Rout(k)|, k = 0, 1, . . . , NFFT

2 − 1
will be Rayleigh-distributed. Substituting Eqs. (11) and (13)
into Eq. (7), we can calculate the theoretical JB statistic
value for Rayleigh distribution as 0.0344NFFT (here we set
ns = NFFT

2 ). According to the central limit theorem and the
law of large numbers, we know that when we apply different
signal-absent observations (r(n) = w(n)) for λ times (λ
is large enough), the JB statistic values in these different
experiments will approximately satisfy a Gaussian distribution
with a mean around 0.0344NFFT. That is, the distribution
of these JB statistics will be approximately symmetric with
respect to this mean. In addition, according to Eq. (7), the JB
statistic is non-negative. It means that the smallest possible JB
statistic value can only be zero, so subject to the symmetric
property we can conclude that most (over 97% of the total
population) of the JB statistic values will be smaller than twice
of the mean 0.0344NFFT. On the other hand, if there is signal,
Rout(k), k = 0, 1, . . . , NFFT

2 − 1 will not satisfy a Gaussian
distribution. Thus, the skewness and the kurtosis of |Rout(k)|,
k = 0, 1, . . . , NFFT

2 − 1 would become larger. According to
the aforementioned analysis, we set the threshold rs for our
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Fig. 2. A histogram example of the JB statistics.

JB-statistic based detector as

rs = 0.0688NFFT. (13)

For instance, when we select NFFT = 2, 048, which is the
defaulted FFT window size according to the DVB standards,
the threshold will be rs = 141. Figure 2 depicts the histogram
of the JB statistics for a complex Gaussian process over 1,000
random experiments. It can be clearly seen that all JB statistic
values in Figure 2 are below the threshold rs = 141. In
addition, the ensemble means of the calculated JB statistics
and the (false-alarm) percentages of the JB statistics larger
than rs = 141 are listed in Table I. Provably, when the FFT
window size is chosen as 2,048, the means of the JB statistics
are always close to 0.0344∗2048. Its double, rs = 141, can be
selected as the threshold, and the corresponding false alarms
are always very small. Note that this threshold selection does
not depend on the sample size N .

IV. NORMALITY AND SPECTRAL ANALYSIS

Via the thorough numerical evaluation, it is discovered that
the performances of both our proposed JB detection method
and HOS detection scheme significantly vary with respect to
the sample size. The larger the sample size, the better the
detection results. The HOS detection scheme is much more
sensitive to the sample size. When the sample size is not
sufficiently large (below 70,000), the HOS detection method
would lead to a very high false alarm rate and fail. On the
other hand, our proposed JB detection method can still lead
to satisfactory results for the sample size is around 30,000.
The reason is that when the sample size is small, Rout(k),
k = 0, 1, . . . , NFFT−1 may not constitute a Gaussian process
even in the sole presence of AWGN. To explain this interesting
phenomenon, we first employ the Gaussianity test for the
received signal involving the AWGN only.

The received signal spectral waveform as illustrated in
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TABLE I
JB STATISTIC ANALYSIS

Sample Size N
150,000 200,000 250, 000 300,000 350,000 400,000

Mean 73.5 75.6 72.5 76.3 74.2 74.3
False-Alarm Percentage (JB > 141) 1% 2% 4% 3% 2% 3%

Figure 1 is given by

Rout(k) = Re {Rout(k)} +
√−1 Im {Rout(k)}

=
NFFT−1∑

n=0

cos
(

2πkn

NFFT

)
r(n) (14)

+
√−1

NFFT−1∑
n=0

sin
(

2πkn

NFFT

)
r(n),

k = 0, 1, . . . ,
NFFT

2
− 1. (15)

Note that for the HOS detection method, we have to use
the full-period Rout(k), k = 0, 1, . . ., NFFT − 1 instead.
According to Eq. (14), we can measure the normalities sep-
arately for the real and imaginary parts of Rout(k). The
following subsections are presented to study why Rout(k),
k = 0, 1, . . . , NFFT − 1 do not satisfy the Gaussian assump-
tion.

A. Edgeworth Expansion for PDF Characterization

As previously stated, the small sample size would often
lead to the non-Gaussian characteristics of the received signals
even in the sole presence of AWGN [28]. The Edgeworth
expansion has been used to characterize the unknown PDF
based on the estimated moments and cumulants. We adopt the
Edgeworth expansion (see [29], [30]) to model the actual PDF
of the aforementioned signal Re {Rout(k)} and then evaluate
the mismatch between the actual PDF and the underlying
Gaussian model. Similar techniques can be used to study the
statistical behavior for Im {Rout(k)} as well and we omit this
redundant discussion.
For a random variable Z (Z = Re {Rout(k)} in our

application here) with E{Z}= 0 (this can always be achieved
by creating a mean-removed variable Z − E{Z}) and unit
variance, the arbitrary probability density function for Z can
be written by Edgeworth expansion as [29], [30]:

fZ(z) = ϑ(z)

{
1 +

+∞∑
k=1

Pk(z)

}
, (16)

where ϑ(z) is the zero-mean univariate Gaussian PDF, which
is given by

ϑ(z) def=
1√
2π

exp
(
−z2

2

)
, (17)

and Pk(z) is a polynomial such that

Pk(z) def=
∑
{lm}

Hk+2�(z)
k∏

m=1

1
lm!

(
χm+2

(m + 2)!

)lm

. (18)

Here the set {lm} consists of all non-negative integer solutions
to the equation l1+2l2+. . .+klk = k, and � = l1+l2+. . .+

lk. Note that χl is the lth-order cumulant of Re {Rout(k)},
which is given by

χl = (−1)l dl

dηl
log f̂Z(η)

∣∣∣∣
η=0

, (19)

where f̂Z(η) def= E
{
ejzη

}
is the characteristic function of

Re {Rout(k)} and Hl(z) is the lth-order Hermite polynomial
such that

ϑ(z)Hl(z) = (−1)l dl

dzl
ϑ(z). (20)

Later on, we will compare the actual PDF given by Eq. (16)
with the Gaussian model given by Eq. (17) for Z =
Re {Rout(k)} to test if there is significant statistical mismatch
in between.

B. Gaussianity Measure Using KGGS Test

Although the Edgeworth expansion can help us to obtain the
complete ”actual PDF”, it cannot provide a simple (scalar)
measure for the aforementioned mismatch in practice. Re-
cently, we proposed a robust Gaussianity measure, namely
Kullback-Leibler-Divergence Gaussian Generalized-Gaussian
Skewness (KGGS) test [31]. Note that in the following analy-
sis, for the JB detection method, the sample size isM = NFFT

2
while for the HOS detection method, the sample size is
M = NFFT instead. The two underlying PDF models used
in our KGGS test are specified as follows.
1) Gaussian PDF:

q(z) = qG(z) def=
1

σ
√

2π
exp

(
− (z − μ)2

2σ2

)
, (21)

where μ is the mean and σ2 is the variance of the sequence
z(1), ..., z(M);
2) Generalized Gaussian (GG) PDF:

q(z) = qGG(z; α, β) def=
β

2α Γ
(

1
β

) exp

{
−|z|

α

β
}

, (22)

where α characterizes the width of the PDF peak (or stan-
dard deviation), β is inversely proportional to the functional
decreasing rate from the peak value, and Γ( ) denotes the
Gamma function. Very often, α is referred to as the scale
parameter, while β is called the shape parameter.
Next, let’s simply introduce the KGGS test here. Suppose

that the observations z(i), i = 1, . . . , M are drawn from a
stationary random process Z whose true PDF f(z) is un-
known. We wish to find if these data fit the normal (Gaussian)
distribution. According to [31], we can use the sample average
of log (q(z(i))) to determine how well the model PDF q(z)
fits the underlying random process. In addition, according
to [31], the Gaussian PDF model is a special case of the
generalized Gaussian model with β = 2. It means that if
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we use both Gaussian and generalized Gaussian PDF models
(q1(z) and q2(z) respectively) to fit the observations with the
true normal distribution, then theoretically speaking, we get
f(z) = q1(z) = q2(z) and thus

∫ ∞
−∞ f(z) log (q1(z)) dz =∫ ∞

−∞ f(z) log (q2(z)) dz. As the sample size approaches to
infinity (M → ∞), there will appear to be very little
difference between the sample averages of log (q1(z(i))) and
log (q2(z(i))). However, for a random process Z whose actual
PDF f(z) is not Gaussian, such difference would not be
negligible. Hence we can establish a new rule based on this
difference in the two sample means of the two populations
log (q1(z(i))) and log (q2(z(i))) to determine if the true PDF
f(z) of the random process Z is the normal distribution.
The steps for our proposed new Gaussianity test are stated
as follows:
Step 1) Use the Gaussian PDF to fit the observations
z(i), i = 1, . . . , M ; estimate the sample mean μ̂ and the
sample variance σ̂2, and obtain the values of log (q1(z(i))),
for i = 1, 2, . . . , M , where q1(z) = 1/(σ̂

√
2π) exp

( − (z −
μ̂)2/(2σ̂2)

)
.

Step 2) Use the generalized Gaussian PDF to fit the obser-
vations instead and calculate the values of log (q2(z(i))), for
i = 1, 2, . . . , M , where q2(z) = qGG(z; α̂, β̂) is defined by
Eq. (22). Note that the parameters α̂, β̂ are estimated according
to [31].
Step 3) Establish the statistic Υ as follows and use the
composite rule in [31] to determine whether f(z) is Gaussian
or not:

Υ =

∣∣∣∣∣
[

1
M

M∑
i=1

log (q1(z(i)))

− 1
M

M∑
i=1

log (q2(z(i)))

]0.05
∣∣∣∣∣∣ . (23)

We propose to use the KGGS test stated above for the
robustness analysis of both our JB detection method and the
HOS detection scheme. The application of this new analysis
for spectrum sensing can be manifested in Section VI.

C. Spectral Analysis

As previously mentioned, our JB detection method depends
on |Rout(k)|, k = 0, 1, . . . , NFFT

2 − 1, but the HOS detection
method depends on Rout(k), k = 0, 1, . . . , NFFT − 1 instead.
In this subsection, we will explain the reason why our method
does not rely on Rout(k), k = 0, 1, . . . , NFFT−1 as the HOS
detection method. The frequency spectrum of the sampled
received DTV signal r(n) has a bandwidth of 6×106× 2π

fs
radi-

ans and a central frequency 5.38119×106× 2π
fs
radians accord-

ing to [25] (see details in Section VI). According to Figure 1,
after down-conversion, image rejection and frequency shifting,
the spectrum of the signal r3(n) will occupy the digital fre-
quency intervals ranging from 0 to 5.69×106× 2π

fs
= 0.5288π

radians (with a bandwidth 0.5288π radians) over [0, π], and
ranging from 2π − (6 − 5.69) × 106 × 2π

fs
= 1.9712π to 2π

radians (with a bandwidth 0.0288π) over [π, 2π). Due to the
frequency-shifting operations in Figure 1, it can be seen that
the magnitude spectrum of r3(n) is definitely not symmetric

over [−π, π]. Next, let the signal r3(n) pass the low-pass filter
with a bandwidth BWa specified by Eq. (5), and down-sample
r4(n) with a down-sampling rate fd given by Eq. (6). The
half-period FFT sequence Rout(k), k = 0, 1, . . . , NFFT

2 − 1
should correspond to the digital frequency interval [0, π] in
where |Rout(k)| would not have any null band. However, the
signal spectrum Rout(k), k = NFFT

2 , NFFT
2 +1, . . . , NFFT−1

corresponding to [π, 2π) would exhibit a null band especially
when the sample size N is smaller than the threshold number
ν (ν will be defined in Eq. (24)) which makes the low-pass
filter possess a bandwidth of 0.0288π radians (this bandwidth
is identical to the signal bandwidth within [π, 2π)). In other
words, we will have Rout(k) = 0, for some k values when
the sample size N is smaller than ν. Besides, if the null band
of Rout(k) is too broad, Rout(k), k = 0, 1, . . . , NFFT − 1
would not fit the complex Gaussian distribution even in
the sole presence of AWGN. Thus when the sample size
N is not large enough, if we use the full-period Rout(k),
k = 0, 1, . . . , NFFT − 1 for the spectrum sensing, it will lead
to a very high false alarm rate and the result is not satisfactory.
This is the very reason why the HOS detection method often
leads to a very high false alarm rate when the sample size N is
small. It is also the reason why our JB detection scheme should
rely on the half-periodRout(k), k = 0, 1, . . . , NFFT

2 −1. Based
on the previous discussion, the theoretical value for ν can be
calculated as

ν =
π

0.0288π
× NFFT. (24)

Eq. (24) facilitates the sample size N for the down-sampling
rate fd = π

0.0288π . In other words, the minimum sample size
N = ν is required for the HOS detection method to work. For
example, when the FFT window size is set as NFFT = 2048,
we need N ≥ ν ≈ 71, 000. The effects of sample size can also
be found in our previous discussions in Sections IV-A, IV-B
and in the subsequent Section VI.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity is always an important factor
to be considered in practice. Therefore, the computational
complexity studies for our JB detection method and HOS
detection method are presented in this section. For simplic-
ity, here we only consider the real-valued multiplications in
studying the complexity. Thus, the computational complexity
analysis for the two aforementioned detectors is presented
as follows. For our proposed JB statistic-based detector, we
need to take 4 × NFFT

2 multiplications to calculate the ab-
solute values of Rout(k), 0, 1, . . . , NFFT

2 − 1. Moreover, in
order to obtain S and K in Eqs. (8) and (9), we need to
compute the second, third, and fourth moments of |Rout(k)|,
0, 1, . . . , NFFT

2 − 1. Hence, we need to take 3 × NFFT
2 mul-

tiplications for achieving that. At last, we need one more
comparison operation to carry out the ultimate hypothesis test.
In total, for our JB statistic-based detection, the complexity
CJB (in terms of multiplications) is given by

CJB = 7 × NFFT

2
+ 1 = 3.5NFFT + 1. (25)

The HOS detection method in [24] depends on Rout(k),
k = 0, 1, . . . , NFFT − 1. It needs to take 10 × NFFT mul-
tiplications to calculate the second to sixth moments of both
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real and imaginary parts of Rout(k). Furthermore, it needs 10
multiplications to calculate the required cumulants, and needs
to take 3 comparison operations for the ultimate hypothesis
test. Therefore, its total computational complexity CHOS is

CHOS = 10 × NFFT + 13. (26)

Usually, we choose NFFT to be 2,048, so it is obvious
that our proposed JB-statistic based detector is much more
computationally efficient than the HOS detector. We also
depict the trends of the computational complexities versus
different NFFT for these two detectors in the next section.

VI. SIMULATION

In our simulation, we test two types of commonly-used
signals, namely DTV signal and microphone signal to bench-
mark the spectrum sensing methods. The simulation details
are stated as follows.

A. Signal Acquisition and System Set-up

Subject to the IEEE 802.22 standard, the recorded DTV
channels were sampled at 21.524476 Msamples/sec and then
down-converted to a low central IF frequency of 5.381119
MHz (a fourth of the sampling rate). The real DTV data were
acquired from [9]. On the other hand, according to [32], we
simulate the microphone signal smic(t) as follows:

smic(t) = cos
(

2π

∫ t

0

[fcm + f� wm(τ)] dτ

)
, (27)

where fcm is the same frequency as that of the DTV pilots;
f� is the frequency deviation around 100 KHz; wm(τ) is
the source signal which is randomly generated from the
uniformly-distributed number in (-1,1). In addition, the sam-
pling frequency for smic(t) is 21.524476 MHz, which is the
same as that of the captured DTV signal.
According to [33], [34], the receiver noise characteristic

consists of a typical noise power spectral density (PSD) and a
noise uncertainty. The noise uncertainty specification is nec-
essary since even though the sensing mechanism may involve
calibration based on the noise power estimation, the estimate
often exhibits some inaccuracy, which must be modeled. The
thermal noise PSD is N0 = −174 dBm/Hz. The receiver noise
level is larger than the thermal noise level. Considering the
effects of low-noise amplifier (LNA) noise figure, coupling
losses, radio frequency (RF) switch losses and other issues,
the TV industry typically specifies a composite receiver noise
figure of 11 dB. Hence the average receiver noise PSD is
N̄ = N0 + 11 = −163 dBm/Hz.
Moreover, according to the IEEE 802.22 document [25],

for the purpose of employing the captured signal to evaluate
different detection schemes, it is necessary to initially process
the captured ATSC-DTV signals. In particular, the SNR can
be precisely controlled in the same way by using this initial
process for all different spectrum sensing methods. Quoted
from [25], the specific steps for the initial process are given
as follows.
Step 1): Read an appropriate number of samples from one

of the DTV signal files.
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Fig. 3. Computational complexity measures versus NF F T for our proposed
JB detector and the HOS detector.

Step 2): Filter the signal using a passband filter with a 6
MHz bandwidth and a center frequency of 5.38119 MHz. The
filter shall be a ”brick wall” filter (i.e. it shall have a flat
frequency response with unity gain) which can allow some
rare exceptions.
Step 3): Measure the power in the received signal.
Step 4): Generate white noise sampled at 21.524476 MHz

and filter it through the same filter used in Step 2. The noise
power used is the receiver noise power.
Step 5): Scale the signal power to meet the target SNR.
Step 6): Add the filtered noise with the scaled and filtered

signal.

B. Spectrum Sensing Performance Comparison

In the following, we will present the simulation results for
comparing our JB-statistic based detector and the HOS detec-
tor. First, the wireless microphone signals according to [9],
[32] (randomly generated from computer) and the captured
DTV signals from [9] (from the real world) are generated for
the benchmark. In the simulation, we set NFFT = 2048, which
is also used in the OFDM modulator/demodulator, except that
in Figure 3, NFFT may vary. To the best of our knowledge,
the required sample size N is at least 100,000 for almost all
existing spectrum sensing techniques [1], [4], [5], [9], [24].
However, our proposed JB detection method can easily rely on
the relatively much smaller sample size around N = 30, 000
to achieve satisfactory results.
In Figure 2, we set the sample size N as 150,000 and depict

the histogram of the JB statistic values from 1000 random
experiments. The associated means and the false-alarm rates
(for the JB statistics which are larger than rs = 141) are listed
in Table I for different N values. In Figure 4, we delineate
the false detection rates resulting from the HOS detector and
our JB-statistic based detector versus the sample size N in
the sole presence of AWGN. According to Figure 4, it is
obvious that when the sample size is larger than 50,000,
both our JB-statistic based detector and the HOS detector
have very low false detection rates. As the sample size gets
smaller (< 50000), in other words, when the sensing time
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is short, the HOS detector leads to an extremely high false
detection rate. Nevertheless, our proposed JB-statistic based
detector can still work very well. In Figure 5, we depict the
detection rates for the simulated wireless microphone signals
from a single source over 1000 Monte Carlo experiments with
N = 70, 000 and N = 150, 000, respectively. In Figure 6,
we plot the detection rates for the real DTV signals from
a single source over 1000 Monte Carlo experiments with
N = 70, 000 and N = 150, 000, respectively. According to
Figures 5 and 6, for the single-source case, our JB-statistic
based detector always outperforms the HOS detector across
different signal-to-noise ratios in terms of detection rate. Next,
we will explore the multiple-source case, where the received
signal is the correlated signal. In Figure 7, we plot the
detection rates for the real DTV signals collected from two
sources over 1000 Monte Carlo experiments with N = 70, 000
and N = 150, 000, respectively. In this case, our JB-statistic
based detector leads to a much better performance than the
HOS detector, even when the sample size for the former
method is 70,000 but that for the latter technique is 150,000.
Obviously, the HOS detector does not work very well for the
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Fig. 6. Detection rate for real DTV signals versus SNR in the single-source
case.
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Fig. 7. Detection rate for real DTV signals versus SNR in the two-source
case.

correlated signals.
In Figures 8 and 9, we use the Edgeworth expansion and

the Gaussian model to characterize the PDFs for the full-
period signal sequence Z = Rout(k), k = 0, 1, . . . , NFFT −
1 and the half-period signal sequence Z = Rout(k),
k = 0, 1, . . . , NFFT

2 − 1 in the sole presence of AWGN
(r(n)=w(n)). The sample sizes in Figure 8 and Figure 9 are
N = 30000 and N = 70000, respectively. For these two sets
of data, we perform the KGGS test to check the normality.
The results of the KGGS test are given in Table II. According
to Table II, the rejection percentages are very high for the
normality assumption when the sample size N is not large
enough. It clearly shows that the raw feature of Rout(k) used
in the HOS detector is not robust when only a few dozens
of thousands of samples are acquired or when the sensing
time is short. To get more insights into this discovery, we
provide Figures 10 and 11 to show the magnitude frequency
spectra |Rout(k)|, k = 0, 1, . . . , NFFT − 1 for N = 30000
and N = 70000, respectively. It can be easily seen that
there exist null bands in the signal spectra as depicted by
Figures 10 and 11 and such null bands would easily destroy



LU et al.: A NOVEL ROBUST DETECTION ALGORITHM FOR SPECTRUM SENSING 9

TABLE II
REJECTION RATES OF KGGS NORMALITY TEST

N
20,000 30,000 40, 000 50,000 60,000 70,000 80,000

M = NFFT 100% 100% 100% 100% 100% 11% 0%

M = NFFT
2

76% 12% 8% 7% 7% 5% 0%
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Fig. 8. The actual PDF resulting from the Edgeworth expansion and the
PDF using the underlying Gaussian model for received data (N = 30, 000,
NFFT=2048).
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PDF using the underlying Gaussian model for received data (N = 70, 000,
NFFT=2048).

the normality and degrade the detection performance. Besides,
the bandwidth of such a null band increases as the sample
size decreases. Hence, the full-period feature Rout(k) adopted
in the HOS detector may not lead to robust performance.
According to Figures 8-11 and Table II, we can justify our
arguments stated in Section IV. When the sample size N is not
sufficiently large, the underlying full-period feature Rout(k),
k = 0, 1, . . . , NFFT − 1 used in the HOS detector does not
satisfy the Gaussian assumption, but the half-period feature
Rout(k), k = 0, 1, . . . , NFFT

2 − 1 would much better fit the
Gaussian hypothesis. Next we would like to investigate how
the HOS detector performs if it also uses the half-period

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2x 10
−3

2kπ/N
FFT

 (in radians) 

M
ag

ni
tu

de
 S

pe
ct

ru
m

Fig. 10. |Rout(k)| versus frequency 2kπ
NFFT

(N = 30, 000).

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8 x 10
−4

2kπ/N
FFT

 (in radians)

M
ag

ni
tu

de
 S

pe
ct

ru
m

Fig. 11. |Rout(k)| versus frequency 2kπ
NFFT

(N = 70, 000).

feature Rout(k), k = 0, 1, . . . , NFFT
2 − 1. In Figure 12, we

use the half-period feature Rout(k), k = 0, 1, . . . , NFFT
2 − 1

instead in the HOS detector and depict the corresponding
detection rates. The similar performance results to those
arising from the aforementioned HOS detector (when the full-
period feature Rout(k), k = 0, 1, . . . , NFFT − 1 is used) are
shown. However, the detection rates are lower than the results
from our proposed JB statistic based detector. To compare the
complexity measures in numerical illustration, Figure 3 depicts
the computational complexities in terms of multiplications
for the HOS detection method and our proposed detector. It
clearly shows that our method is much more efficient.
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2
− 1.

VII. CONCLUSION

In this paper, we propose a novel JB-statistic based spectrum
sensing method, which can be applied for the IEEE 802.22
systems. Our method outperforms the existing HOS detection
scheme which is based on the higher-order statistics. Accord-
ing to our Monte Carlo simulation results for the simulated
wireless microphone signals and the real DTV signals, our
proposed JB detection method not only leads to a higher
detection rate but also induces less computational complexity
than the HOS detector. Besides, our proposed JB-statistic
based detector can be very robust for the small sample size or
the short sensing time. We also provide the normality analysis
and the spectral analysis to explore the reasons why our
proposed detector has the significant advantages over the HOS
detection method especially when the sample size is small.
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