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Abstract

A broad range of current airborne gamma ray spectrometry (AGRS) applications involve environmental mapping and mineral

exploration. One common goal for such applications is the development of an algorithm for reliable on line classification of radio

elements. In this paper, we propose the concept of maximization of correlated information as the similarity measure for

classification. In order to achieve this similarity measure, we have developed an algorithm using the concept of minimization

of mutual information, which is computationally faster, and requiring less memory than the hierarchical agglomerative clustering

(HAC) method. The minimization of mutual information is achieved by maximizing the correlated information of the correlation

matrix. The correlated information is maximized by the determination of its lower bound using the technique of determinant

inequalities developed by us. We demonstrate the robustness of our results using mutual information and its superiority over that of

Ward’s method of minimum variance for the aerial survey carried out in central India.
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1. Introduction

Airborne gamma ray spectrometry (AGRS) is widely

being used for environmental mapping, geological

mapping and mineral exploration. Large areas of the

world have been covered by ground and airborne

gamma ray surveys and many national and regional

radiometric maps have been compiled and published

(IAEA, 2003). AGRS uses NaI(Tl) detectors mounted in
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small aircraft as sensors to measure gamma radiation,

emitted from naturally occurring elements, potassium

(K), uranium (U) and thorium (Th) that produce gamma

rays of sufficient energy and intensity to be measured at

airborne survey heights. The concentrations of U, Th

and K are inferred from the abundance of gamma-

emitting daughter products 214Bi (energy of g being

1.76 MeV), 208Tl (energy of g being 2.62 MeV) and 40K

(energy of g being 1.46 MeV), respectively. Different

workers have studied the concentrations among the

three elements in the same rock types and they have

reported a strong correlation in them (Kline et al., 1989;

Neuschel et al., 1971).

Among the multivariate analysis used for classifica-

tion of radioactive ores, several aggregation criteria like

distance to mean (Harris, 1989), partitioned algorithms
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like K-means (Graham and Bonham-Carter, 1993) have

been used to group the individual samples in AGRS.

Some of the statistical routines like, mean differencing

(Kovarch et al., 1994), regression analysis (Wellman,

1998) and principal component analysis (PCA) have also

been used in several AGRS measurements (Gillespie

et al., 1986; Chavez and Kwarteng, 1989). But, the

sensitivity of the clustering was not sufficient to identify

the geologically significant radioactive elements (Harris,

1989) leading to the conclusion that clustering should be

used to complement rather than replace visual inter-

pretation (IAEA, 2003). Hierarchical agglomerative

clustering (HAC) used in airborne survey (Martelet

et al., 2006), consume enormous CPU time and memory

complexity limits its practical use (Dash et al., 2007). In

this paper, we propose a new on line technique requiring

less CPU time and memory to classify and group

radioactive ores containing U, Th and K. Our technique

based on the theory of information and the principle of

entropy preservation is extremely useful in discriminat-

ing low noise level data prevalent in AGRS (Dickson,

2004). The information theoretic concept of mutual

information has been known as a criterion for feature

separation (Petridis and Perantonis, 2004). Due to its

computational complexity (Darbellay, 1999) it has

mostly been used in an approximate way for feature

selection (Battiti, 1994; Kwak and Chong-Ho, 2002). To

the best of our knowledge, we have not come across any

signal extraction technique used in AGRS using

information theory. In this paper we describe the

algorithm we have developed based on the technique

of determinant inequalities and the concept of mini-

mization of mutual information to classify and group

homogeneous zones of radioactive ores. We compare our

method of minimization of mutual information with the

Ward’s method of minimum variance and bring out the

superiority of our method.

2. Details of aerial survey

We present here the analysis of AGRS carried out

over central India covering around 3000 km. Hetero-

geneous groups of rocks are locally distributed in the

surveyed area as per geo-chemical maps and hence

sample interval was chosen to be around 1000 m. The

rocks belong to Sausar group and its members are

represented by biotite gneisses, feldspathic gneisses,

quartz biotite schist, biotite muscovite granite and

muscovite quartz schist and are subjected to meta-

morphism and granitization (Sarkar, 1972).

The gamma ray spectrometer system installed in the

aircraft comprised of twelve NaI(Tl) crystals, each of
cubical shape. The dimension of each crystal is

10.2 cm � 10.2 cm � 40.6 cm of 50 l capacity of

Na(Tl). The energy range of the total gamma count

rate window was kept from 0.41 to 2.81 MeV to

accommodate all the g energies emanating from 214Bi,
208Tl and 40K. The survey was done at a nominal height

of 122 m and the sampling time ranged from 1 to 3 s.

Since, most data are acquired digitally, the following

preprocessing have been applied to the observed count

rates (IAEA, 2003):
� s
ubtraction of cosmic, aircraft and radon backgrounds

(CFb)
� s
tripping corrections to remove effects of Compton

scattering (CFs)
� a
ttenuation corrections to remove variations from

nominal survey flying height (CFa)
� A
fter applying the above correction factors, the

corrected count rate is converted into equivalent

ground concentrations using the sensitivity constant

(STh).

For example in the case of thorium,

NThðcorrÞ ¼ NThðobsÞ � ðCFb þ CFs þ CFaÞ; and

eTh ¼ SThNThðcorrÞ

where NTh(corr) is the corrected count rate, NTh(obs) is

the observed count, CFs are the various correction

factors mentioned above and STh is the sensitivity

constant which relates the count rate to isotope abun-

dance in parts per million. The term equivalent is used

for the parent isotopes of uranium and thorium con-

centrations (eU, eTh) as they are determined indirectly

from their daughter products Bi214 and Tl208, respec-

tively, under the assumption that the daughter products

are in equilibrium with the parent isotopes. The con-

centration of potassium is determined directly from K40.

Thus in our AGRS, the four measured variables are

� total counts,
� e
Th (ppm),
� K
 (%),
� e
U (ppm).

The method to generate the correlation matrix from

the above four variables has been described in detail in

Davis (1986) and will not be repeated here. The

interelement correlation matrix for the above four

variables has been depicted in Table 1 for the three sets

of data, each set covering a distance of 1000 m.
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Table 1

Correlation matrix of the radio-elemental data

Set. Radiometic

parameters

Total eTh K eU

1. Total 1.0 0.9417 0.8761 0.7087

eTh 1.0 0.8272 0.6267

K 1.0 0.5336

eU 1.0

2. Total 1.0 0.9002 0.7356 0.6527

eTh 1.0 0.5870 0.4441

K 1.0 0.1731

eU 1.0

3. Total 1.0 0.7751 0.5412 0.7166

eTh 1.0 0.2210 0.6188

K 1.0 0.1315

eU 1.0
3. Entropy preservation in AGRS

Let us designate the radioactive concentration of the

rock to be detected as A and let C be the corresponding

gamma count rate from the NaI(Tl) detector. The

parameter to be optimized is the average mutual

information between the input vector A and the output

vector C in the presence of noise. The optimization can

be formulated as the principle of entropy preservation

under certain circumstances dependant on the type of

activation function and the noise model. For simplicity,

we consider a linear activation function C = f(A) with an

additive noise source n.

According to the information theory (Cover and

Thomas, 1991) the mutual information I between A and

C for the system is expressed as

IðA; CÞ ¼ HðAÞ þ HðCÞ � HðA;CÞ (1)

where H (A) and H (C) are the entropies of A and C,

respectively, and H (A, C) is the joint entropy.

When an airborne spectrometer flies over point

source of radiation, the recorded data do not show a

single spike, but degrades into a Gaussian curve

(Bristow, 1983). Accordingly, we consider, C having

Gaussian distribution where its entropy with a fixed

variance is maximum (Cover and Thomas, 1991).

The entropy terms in Eq. (1) can be computed as

follows (Cover and Thomas, 1991). The entropy of the

output vector C is

HðCÞ ¼
�

1

2

�
log½ð2peÞNdetðMÞ� (2)

where det (M) is the determinant of the covariance

matrix <C CT>. The joint entropy for a Gaussian
distributed noise signal with variance sn, for

N ¼ 2 is HðnÞ ¼ logð2pes2
nÞ; (3)

where we have assumed the noise variance to be the

same for both the N. The mutual information from

Eq. (1), Eq. (2) and Eq. (3) is then

IðA; CÞ ¼ log

�
detðMÞ

s2
n

�
; (4)

Thus, the mutual information between the vectors A and

C in Eq. (4) depends on the noise variance sn and det

(M). The mutual information is always positive and

cannot be negative (Cover and Thomas, 1991). Mini-

mizing mutual information with a fixed noise variance,

thus depends upon the determinant of the covariance

matrix M. Minimization of mutual information between

different components of the output vector minimizes the

redundancy and this phenomenon of redundancy reduc-

tion refers to the transformation such that the output

components are statistically independent (Barlow et al.,

1989; Deco and Brauer, 1995). When A and C are

independent, the mutual information is zero. Thus

mutual information is a measure of statistical correla-

tion between the variables A and C (Deco and Obra-

dovic, 1996). As an illustration, let us consider a simple

case of just two outputs,

M ¼ <C CT > ¼ c11 c12

c21 c22

� �

The elements of the covariance matrix can be written

as the variances of C1 and C2,

c11 ¼ s2
1 þ s2

n; c22 ¼ s2
2 þ s2

n;

c12 ¼ c21 ¼ s1s2r12

where r12 is the correlation coefficient between C1 and

C2.

In general, if r is the correlation matrix, the elements

of r are,

ri j ¼
covarianceðCi;C jÞ
fVarðCiÞVarðC jÞg1=2

:

The determinant of the covariance matrix is then

det M ¼ s4
n þ s2

nðs2
1 þ s2

2Þ þ s2
1s

2
2ð1� r2

12Þ: (5)

In terms of the correlation matrix r, Eq. (5) can be

expressed as,

det r ¼ s4
n þ 2s2

n þ ð1� r2
12Þ (6)

Let G = det r
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All the attempts in the past (Haykin, 1994) for

optimizing G, completely neglected the correlated non-

diagonal elements of r or made the gross assumption

that there is no correlation, thereby loosing correlated

information. But, for the low noise variance case

existing for uranium exploration, third term of Eq. (5) or

Eq. (6) is relatively important. An optimal trade off

between two options then minimizes the mutual

information. In the first option, output variances s2
1

and s2
2 are kept as small as possible. In the second

option, the outputs C1 and C2 are made correlated. The

value of G in the second option depends upon r12. As

mutual information is a measure of statistical correla-

tion between the variables A and C, minimizing G by the

knowledge of the bounds for the correlated elements of

r leads to maximization of the linear association or the

correlated information. The higher, the correlated

information, the more similar are the systems (Massart

et al., 1978). Hence, for classification and grouping, we

have used in this paper, high value of correlated

information as a similarity measure like similarity

measure of distances like Euclidean and Mahalonobis

(Massart and Kaufman, 1983). Further, maximization of

the correlated information leads to Ward’s criteria of

minimization of variance (Leach and Gillet, 2003;

Ward, 1963). Hence, an index of classification and

grouping radioactive sources having a low noise

variance is the minimization of the mutual information

by the estimation of upper and lower bounds for the

elements of the correlation matrix r.

4. Estimation of upper and lower bounds for
correlated elements by the technique of

determinant inequalities

In this paper, we describe the technique developed by

us (Krishna Kumar, 1990) for obtaining upper and lower

bounds for the correlated elements of the correlation

matrix thereby minimizing G without loosing correlated

information.

Consider a quantity q, which is unknown or is

difficult to estimate. A rigorous estimate of it, is

provided by the upper and lower bounds, say U and L,

respectively, such that U � q � L. These rigorous

bounds are useful in practice only if they (1) closely

bracket q and (2) can be readily computed.

Bulk of the world production of uranium is found in

quartz pebble conglomerate and paleo surface type of

deposits in equilibrium with its decay products.

Thorium is frequently associated with uranium in such

deposits (Bristow, 1983). As the principal g emissions

range between 1.46 and 2.81 MeV from all the three
elements, the unknown quantity q in our case is the

constant radioactivity due to 214Bi of uranium series,
208Tl of thorium series and 40K of potassium recorded in

the window of the counting system. This constant

activity causes correlation or bias in the measurement of

A. This constant bias appears in one or several elements

of the determinant G. Let us suppose the sign of the

determinant G can be determined. Then G can be

considered as a polynomial in q, i.e. G = G(q) and the

roots of the determinant function G(q) = 0 enable us to

estimate the permissible values of q and hence the upper

and lower bounds can be determined. Thus to determine

the bounds
(a) th
e sign of the determinant G has to be known and
(b) th
e roots of the polynomial G(q) = 0 should be

determined.
The determinant G is positive when rij = 0. In this

case, only the uncorrelated diagonal elements of r exist.

Similarly the determinant G is zero when rij is either +1

or�1. Such a determinant is called a Gram determinant

or Gramian and its positivity is expressed as an

inequality

G� 0: (7)

The upper and lower bounds are determined by solving

the polynomial equation G(q) = 0.

For the purpose of illustration, let us consider a

(3 � 3) correlation matrix with elements of r as

follows:

1 r12 r13

r21 1 r23

r31 r32 1

0
@

1
A

Then G = det r � 0 requires that

1� r2
23 � r2

12 þ 2r12r13r23 � r2
13� 0

From the above equation, it is clear that r12 must lie

between two roots of the quadratic equation, which

constitute the upper, and lower bounds of r12.

The upper bound is

r13r23 þ ½ð1� r2
13Þð1� r2

23Þ�
0:5

and the lower bound is

r13r23 � ½ð1� r2
13Þð1� r2

23Þ�
0:5

In order to process the correlation matrix of larger

order so that our technique is competitive to the PCA,

we developed an efficient generalized algorithm for
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Table 2

Upper and lower bounds for the non-diagonal element r24 of the correlation matrix of Table 1 and the value of the respective determinant, G = det r

Set. Value of rij

from Table 1.

Lower

bound of rij

Upper

bound of rij

G with rij

from Table 1.

G with upper

bound of rij.

G with lower

bound of rij.

Ward’s

method

1. r24 = 0.6267 0.4388 0.84 0.0089 8.7E-05 8.2E-05 0.0415

2. r24 = 0.4441 0.3824 0.81 0.0077 1.56E-05 7.25E-06 0.0159

3. r24 = 0.6188 0.2684 0.80 0.0294 5.52E-05 1.23E-06 0.0828

The value of G with the lower bound values in each set is compared with Ward’s method.
obtaining the bounds (Krishna Kumar, 1991). Let us

designate the determinant as
Gi: w
ith ith row and column deleted,
Gij: w
ith ith and jth row and column deleted,

(note that when G has only two rows and

columns then G12 = 1)
gii: w
ith rii = 0,
gij: w
ith rij = 0, and row j and column i deleted.
According to Eq. (7) G � 0 and hence Gi and Gij are

also Gram determinants of lower order. Thus

G� 0; Gi� 0; Gi j > 0 and we can establish the

following inequalities

ri j þ
�

gii

Gi

�
� 0;

ðgþ � ri jÞðri j � g�Þ� 0

where g� = {(�1)i+j gij
�(GiGj)

0.5}/Gij.

Thus for the uncorrelated component, the lower

bound is

rii�
�gii

Gi
(8)

while, for correlated component the upper and lower

bounds are

gþ � ri j� g�: (9)

5. Robustness of the results obtained by lower

bound values

As thorium is always associated with uranium, and

since we are interested in uraniferous region, we

focused on the correlation element r24 between U and

Th in each of the three sets for which upper and lower

bounds were obtained using Eq. (9). As per Table 1, the

three correlated elements whose bounds have to be

determined are 0.6267, 0.4441 and 0.6188 in the sets

1–3, respectively. The values of the upper and lower

bounds for these elements and the value of the
determinant with the bounds in each of the above three

cases are depicted in Table 2 along with the values

obtained by Ward’s method.

According to Hadamard’s inequality

G ¼ det r �
Y

ri j

The equality is achieved if and only if rij = 0. The

maximum value of the determinant is the product of

the diagonal elements which is unity and the minimum

value is zero, when rij is either +1 or �1. Since, the

mutual information cannot be negative, the least posi-

tive value of the determinant is the robust value that

minimizes the mutual information.

In our analysis, the least value of the determinant in

each of the three sets have been obtained with the lower

bound value and these values are very much less than

the values obtained by the Ward’s method. As these

least values signify high correlated information, we

have thus provided a unique approach where by we can

classify similar type of ore formation by the minimiza-

tion of the mutual information by the estimation of

lower bounds for the correlated elements of the

correlation matrix r.

6. Critical analysis of usefulness of mutual

information

As mutual information depends on the determinant

of the correlation matrix, the original correlation matrix,

does not yield least minimum value of mutual

information and hence the necessity to determine the

bounds for the correlated elements.

The similarity measure of classifying the rocks

according to the correlation coefficient is apparent from

the close scrutiny of the value of the correlation

coefficient of the respective bounds. The value of the

correlation coefficient of the upper bound for all the

three sets is around 0.8 and the determinant of the upper

bound values does not yield minimum value of mutual

information. Thus we cannot cluster and classify the

rocks according to the similar upper bound values of the

correlation coefficient.
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The correlation coefficient of the lower bound values

for all the three sets are different and yield different

value of least mutual information, signaling three

different radioactive ore formation. Thus, we can

classify the rocks according to the correlation coeffi-

cient of the lower bound values. The difference between

the correlation coefficient of the existing value and the

lower bound values is least in the case of set 2,

signifying that the region under set 2 is rich in uranium

as compared to regions under set 1 and set 3.

Minimizing the mutual information, not only aids in

classifying the rocks on line, but also helps in future

aerial and detailed ground surveys. Future aerial and

ground surveys can be undertaken over those areas

whose correlation coefficient lie around the lower

bound values. This will not only aid for mapping similar

zones of ore formation, but also help for exploratory

drilling and mining operations.

7. Reduction of noise in our technique

As, the gamma count rate is used to estimate the

abundances of uranium, thorium and potassium in the

ground, factors affecting the counting statistics and the

associated uncertainty are of paramount importance.

The dominant source of noise in an individual spectrum

is related to the counting uncertainty. The standard error

of measurement per unit distance on the ground is

approximately inversely proportional to the square root

of the count rate. In order to reduce the standard error

we must increase the number of counts, which means

increasing the volume of the crystal detector to the

maximum possible. But, there are practical limitations

on the size to which crystals can be grown and hence on

increasing the volume by adding more crystals. As,

adding more crystals mean adding more weight, larger

and more expensive aircraft are needed to carry them.

Thus, given the load capacity of the aircraft that is to be

used in the survey, there is clearly a limit on the total

crystal volume that can be carried. Hence, these limited

number of NaI(Tl) crystals are primarily mobile

counters. We have mentioned in Section 2, that to

minimize the mutual information, we have to obtain the

bounds for the correlated elements of the covariance

matrix and also keep the output variances as small as

possible. Hence, for a fixed noise variance, minimizing

det (M) is achieved by minimizing s2
1 and s2

2 (second

term of Eq. (5)). The technique of determinant

inequalities enables us to estimate the lower bound

for the variances of the covariance matrix using Eq. (8).

Using, this lower bound value as the guide, the counting

statistics can be improved upon, so as to minimize the
variances of the count rate and hence the mutual

information.

Apart from counting uncertainty there are many

other sources of noise in the aerial data like, high

frequency variations in the K, U and Th concentrations

in the ground, airborne radon, variable vegetation and

soil moisture, energy drift in radiation detectors,

changing the angle of the detector due to aircraft

movement. These together with the counting noise

constitute total measured noise and it is very difficult to

get a measure of the noise distribution (Dickson, 2004).

In this context, the entropy-based information theoretic

approach, is content free and does not make assump-

tions about the distribution of the noise data. As we have

modeled in Section 2, our information theoretic

approach has an additive noise and if we perform

gradient ascent on the average mutual information I (A;

C), it leads to difference between two entropy terms, i.e.

IðA; CÞ ¼ HðCÞ � HðnÞ ¼
�

1

2

�
½GL � GU�;

where the superscripts refer to two phases of our algo-

rithm, called learning (L) and unlearning (U) (Linsker,

2005). During the L phase, GL is the determinant of the

covariance matrix with input signal, input noise and

output noise and in the U phase, GU is the determinant

of the covariance matrix having only the input and

output noise. Thus, in finding the difference between

two determinants, the noise contribution is substantially

reduced.

8. Conclusions

In AGRS, one has to handle, increasingly massive

data sets collected over the span of 1000 m for on line

ore classification. The algorithm to handle such

massive data should require less CPU time and

memory. Our technique of determinant inequalities

requires less memory and is conceptually elegant and

computationally faster to classify radioactive ores in

the aerial survey by the similarity measure of

maximizing the correlated information of the correla-

tion matrix. Thus the concept of mutual information

considers element wise, the entire structure of the

correlation matrix where as PCA and other related

methods, the prime objective is only decorrelation of

the matrix. Hence, element wise processing is not

feasible by HCA, PCA or the factor analysis method.

Further our algorithm can process correlation matrices

of large dimension and hence errors due to collapsing of

these matrices do not arise.
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