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Abstract

Advances in sensor technology and computer networks have enabled distributed sensor
networks (DSNs) to evolve from small clusters of large sensors to large swarms of micro-
sensors, from fixed sensor nodes to mobile nodes, from wired communications to wireless
communications, from static network topology to dynamically changing topology. However,

these technological advances have also brought new challenges to processing large amount of
data in a bandwidth-limited, power-constraint, unstable and dynamic environment. This
paper reviews recent developments in DSNs from four aspects: network structure, data

processing paradigm, sensor fusion algorithm with emphasis on fault-tolerant algorithm
design, and optimal sensor deployment strategy. r 2001 The Franklin Institute. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Distributed sensor networks (DSNs) have recently emerged as an important
research area [1–5]. This development has been spurred by advances in sensor
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technology and computer networking. International Society of Information Fusion
(ISIF) maintains a comprehensive list to related publications [6], including books,
edited books, journals, conference/workshop/symposium proceedings, special issues
and sections. Even though it is economically feasible to implement DSNs, there are
several technical challenges that must be overcome before DSNs can be used for
today’s increasingly complex information gathering tasks. These tasks, across a wide
spectrum of both civilian and military applications, include environment monitoring,
scene reconstruction, motion tracking, motion detection, battlefield surveillance,
remote sensing, global awareness, etc. They are usually time-critical, cover a large
geographical area, and require reliable delivery of accurate information for their
completion.

Fig. 1 is a block diagram, illustrating different components in a DSN from
functionality point of view. The ultimate goal of DSNs is to make decisions or gain
knowledge based on the information fused from distributed sensor inputs. At the
lowest level, individual sensor node collects data from different sensing modalities
on-board. An initial data processing can be carried out at the local node to generate
local event detection result. These intermediate results will then be integrated/fused
at an upper processing center to derive knowledge and help making decisions.

Research issues associated with this diagram can be summarized into three
questions: where to fuse? what to fuse? and how to fuse? With the size of sensors
getting smaller and the price getting cheaper, more sensors can be developed to
achieve quality through quantity. On the other hand, sensors typically communicate
through wireless networks where the network bandwidth is much lower than for
wired communication. These issues bring new challenges to the design of DSNs:
First, data volumes being integrated are much larger; Second, the communication
bandwidth for wireless network is much lower; Third, the power resource on each
sensor is quite limited; Fourth, the environment is more unreliable, causing
unreliable network connection and increasing the likelihood of input data to be in
faulty.

Fig. 1. Block diagram of a DSN from functionality point of view.
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There have been a few review papers published since late 80s [7–11], summarizing
research in DSNs from different aspects. This paper tries to present recent
developments in DSNs from four aspects: the network structure (Section 2), the
data processing paradigm (Section 3), the fault-tolerant sensor fusion algorithm
design with an emphasis on fault-tolerance integration (Section 4), and the optimal
sensor deployment strategy (Section 5).

2. Network structure

DSN research in this aspect started in the early 80s. Wesson et al. [5] were among
the first to propose network structures that can be used to design a DSN. Later,
Iyengar et al. [1] made some important improvement to the original design.

We first define a general DSN structure and explain the terminologies used in the
structure. A general DSN (Fig. 2) consists of a set of sensor nodes, a set of processing
elements (PEs), and a communication network interconnecting the various PEs [1].
One or more sensors is associated with each PE. One sensor can report to more than
one PE. A PE and its associated sensors are referred to as a cluster. Data are
transferred from sensors to their associated PE(s), where the data integration takes
place. PEs can also coordinate with each other to achieve a better estimation of the
environment and report to higher level PEs.

2.1. Previous work

Two structures were analyzed in the initial work of Wesson et al. [5]: the anarchic
committee (AC) structure and the dynamic hierarchical cone (DHC) structure as
illustrated in Fig. 3. AC can be viewed as a fully interconnected network without
hierarchy, where each node can communicate with any other node, thus
coordination between nodes is straightforward. Although easy for communication,
AC structure is expensive to implement and also hard to extend. On the other hand,
DHC provides a hierarchical structure, also called a tree structure. It only allows
communications between nodes in adjacent layers, but not within the same layer.

Fig. 2. The architecture of a general DSN.
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Compared to AC, DHC is easier to extend, but is more vulnerable since a faulty
node can disconnect an entire subtree.

In order to overcome the drawbacks in both AC and DHC, a hybrid structure
which is called flat tree network was proposed in [2,4]. The nodes in this network are
organized as many complete binary trees, and the roots of which are completely
connected, as illustrated in Fig. 4. Even though flat tree structure improves DSN
from both hierarchical and robustness aspects, integration errors of the lower nodes
will be accumulated as the information goes up the hierarchy. One way to overcome
this problem is to interconnect nodes in the lower levels of this network. Iyengar et al.
[1] proposed to use deBruijn graph (DG) [12] to connect nodes at each level as shown
in Fig. 4. DG provides several advantages over AC, DHC, and flat tree structures,
such as simple routing schemes, better fault tolerant capabilities, better extensibility
(the diameter of the network grows only logarithmically with the number of nodes).

2.2. Ad hoc wireless sensor networks

Advances in sensor technology and wireless communication have made ad hoc
wireless sensor networks (AWSNs) a reality. Unlike traditional wired networks, the

Fig. 3. AC and DHC structures from Wesson et al. [5].

Fig. 4. Flat tree and DG network.
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connection between sensor nodes in AWSNs is dynamically changing. A short-lived
network is set up only for the communication needs of the moment [13].

Take the example of battlefield which provides daunting challenges to sensor
fusion networks. Lightweight, inexpensive, highly specialized sensors are usually
deployed with irregular patterns in a hostile environment. Each individual sensor
node may come and go, and they may also suffer intermittent connectivity due to
high error rate of wireless link, and it can be further deteriorated by environmental
hazard. Therefore, an effective sensor fusion network must be able to provide robust
communication infrastructure and survivability to cope with node failures,
connectivity failures, and individual service failures (e.g., one type of specialized
sensor node stops functioning).

Lim [14] proposed the distributed service concept for information dissemination in
self-organizing sensor networks. In a dynamic network environment, adaptive
methods need to be used to control the system. Specifically, he proposed three
fundamental services: service lookup, sensor node composition, and dynamic
adaptation.

Wang [15] presented an architecture based on smart sharing space concept, where
each sensor node and the services are represented as ‘‘resource objects’’ and
registered with a central ‘‘lookup’’ service repository, which are visible to all the
sensor nodes within the domain or range of transmission power. Information
sharing, coordination and fusion are achieved through smart management of
resources object. Robustness is achieved through automatic fail-over when failed
sensor node can no longer maintain its service.

Estrin et al. [16] designed directed diffusionFa localized algorithm to establish
flexible, efficient data delivery paths in AWSN. The basic idea is inspired by
biological systems, application simple systems proposed by Van Jacobson. The
communication primitives here is not expressed in terms of nodes generating or
requesting data, but in terms of the named data. That is, consumer of data will
initiate interests in data with certain attributes. Nodes then will diffuse the interests
towards producers via a sequence of local interactions. This process sets up gradients
in the network which channel the delivery of data. Even though the network status is
dynamic (caused by dynamic operating conditions, dynamic availability of resources,
and dynamic tasks), the impact of dynamics can be well localized.

3. Data processing paradigm

No matter how different the network structure is, the current data processing
approaches tend to use a common network computing model: the client/server
model. Client/server model has been supporting many distributed systems, such as
remote procedure calling (RPC) [17], common object request broker architecture
(CORBA) [18,19], etc. In this model, the client (individual sensor) sends data to the
server (processing element) where data processing tasks are carried out. This model,
however, has several drawbacks [20] which can be summarized as follows: First, the
client/server model usually requires many round trips over the network in order to
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complete one transaction. Each trip creates network traffic and consumes
bandwidth. In a system with many clients and/or many transactions, the total
bandwidth requirements may exceed available bandwidth, resulting in poor
performance of the system. Second, the client/server model also requires
the network connection to be alive and healthy, the entire time a transaction
is taking place. If the connection goes down, the transaction has to restart if it
can at all. Third, the design of a client/server-based system requires precise
consideration of the network traffic, the number of clients and servers, transaction
volumes, etc. If the estimates are inaccurate, the performance of the system will
suffer. Unfortunately, once implemented, it is hard to make any modification to the
system.

3.1. Mobile-agent-based DSN

Mobile agent paradigm was proposed in [21] to respond to the above challenges.
The corresponding DSN is referred to as mobile-agent-based DSN (MADSN).
MADSN adopts a new computation paradigm: data stay at the local site, while the
integration process (code) is moved to the data sites. By transmitting the
computation engine instead of data, MADSN offers the following important
benefits:

* Network bandwidth requirement is reduced. Instead of passing large amounts of
raw data over the network through several round trips, only the agent with small
size is sent, This is especially important for real-time applications and where the
communication is through low-bandwidth wireless connections.

* Better network scalability. The performance of the network is not affected when
the number of sensor is increased. Agent architectures that support adaptive
network load balancing could do much of a redesign automatically [20].

* Extensibility. Mobile agents can be programmed to carry task-adaptive fusion
processes which extends the capability of the system.

* Stability. Mobile agents can be sent when the network connection is alive and
return results when the connection is re-established. Therefore, the performance
of MADSN is not much affected by the reliability of the network.

Generally speaking, mobile agent is a special kind of software which can execute
autonomously. Once dispatched, it can migrate from node to node performing data
processing autonomously, while software can typically only execute when being
called upon by other routines, Franklin and Graesser provided a formal definition of
agent [22]. Lange listed seven good reasons to use mobile agents [23], including
reducing network load, overcoming network latency, robust and fault-tolerant
performance, etc. Although the role of mobile agents in distributed computing is still
being debated mainly because of the security concern [24,25], several applications
have shown clear evidence of benefiting from the use of mobile agents. For example,
mobile agents are used in networked electronic trading [26], where they are
dispatched by the buyer to the various suppliers to negotiate orders and deliveries,
and then return to the buyer with their best deals for approval. Instead of having the

H. Qi et al. / Journal of the Franklin Institute 338 (2001) 655–668660



buyer contact the suppliers, the mobile agents behave like representatives, interacting
with other representatives on the buyer’s behalf, and alert the buyer when something
happens in the network that is important to the buyer. Another successful example
of using mobile agents is distributed information retrieval and information
dissemination [27–30]. Agents are dispatched to heterogeneous and geographically
distributed data bases to retrieve information and return the query results to the end-
users. Mobile agents are also used to realize network awareness [31] and global
awareness [32]. Network-robust applications are of great interest in military
situations today. Mobile agents are used to be aware of and reactive to the
continuously changing network conditions to guarantee successful performance of
the application tasks.

Fig. 5 provides a comparison between DSN and MADSN from both feature and
architecture points of view.

Fig. 5. Comparison between DSN and MADSN: (a) feature, (b) architecture.
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4. Sensor fusion algorithms

Information/decision fusion problems are centuries old, dating back to the works
of Condorcet on democracy models in 1786 and Laplace on composite methods in
1818. In engineering and systems, early works in this area are due to von Neumann,
who showed that a reliable system can be built using unreliable components by
employing simple majority fusers.

Over the past decade, there has been a dramatic increase in the application areas in
which information/decision fusion methods have been employed, and sensor fusion
is one of the most active application areas. As larger amount of sensors are deployed
in harsher environment, it is important that sensor fusion techniques are robust and
fault-tolerant so that they can handle uncertainty and faulty sensor readouts. Here,
the redundancy in the sensor readouts are used to provide error tolerance in fusion.
The review in this section focuses on the development of fault-tolerant fusion
algorithms. Four simple functions were developed representing four milestones: the
M function from Marzullo [33], the S function from Schmid and Schossmaier [34],
the multi-resolution analysis (MRA) of the O function from Prasad et al. [35], and
the N function from Cho et al. [36].

All the functions assume to process the readouts from abstract sensors. An
abstract sensor is defined as a sensor that reads a physical parameter and gives out an
abstract interval estimate which is a bounded and connected subset of the real line.
Abstract sensors can be classified into correct sensors and faulty sensors. A correct
sensor is an abstract sensor whose interval estimate contains the actual value of the
parameter being measured. Otherwise, it is a faulty sensor. A faulty sensor is tamely
faulty if it overlaps with a correct sensor, and is wildly faulty if it does not overlap
with any correct sensor.

Fig. 6 shows the original readout from four sensors I1, I2, I3, I4, and the fusion
results using different functions. I2 is deliberately vibrated to I 02 to compare the
robustness of the four functions. Let n be the number of sensor readouts, f be the
number of faulty sensors, in this case, n=4 and f=1.

M I1; I2; y; In½ �ð Þ is defined to be the smallest interval that contains all the
intersections of n�f intervals. It is guaranteed to contain the true value provided the
number of faulty sensors is at most f. However, M function exhibits an unstable
behavior in the sense that a slight difference in the input may produce a quite
different output. This behavior was formalized as violating Lipschitz condition with
respect to a certain metric on intervals [37].

S function is able to return a closed interval [a,b], where a is the ( f+1)th left end
point of the intervals and b is the (n�f )th right end point of the intervals. S function
is proved to satisfy Lipschitz condition but generates a larger output interval. In
another word, S function sacrifices accuracy to satisfy Lipschitz condition.

The O function is also called the overlap function. It returns OðxÞ gives the number
of intervals overlapping at x. Multi-resolution analysis provides a hierarchical
framework for interpreting the overlap function. Based on the prior knowledge that
tamely faulty sensors cluster around correct sensors and create high and wide peaks
in the profile of OðxÞ; and that wildly faulty sensors do not overlap with correct
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sensors, and therefore contribute to smaller and narrower peaks, O function results
in an integration interval with the highest peak and the widest spread at a certain
resolution. The O function is also robust, satisfying Lipschitz condition, which
ensures that minor changes in the input intervals cause only minor changes in the
integrated result. However, it also generates wider intervals than the M function.

The N function improves the O function to only generate the interval with the
overlap function ranges [n�f, n]. It also satisfies Lipschitz condition. But the biggest
advantage of this function is that it is able to reduce the width of the output interval
in most cases and produce a narrower output interval when the number of sensors
involved is large, which is the case for distributed sensor network in general.

5. Sensor deployment

Until now, most work in DSNs has concentrated exclusively on efficient sensor
communication [16,38] and sensor fusion [39,40] for a given sensor field architecture.
However, as sensors are used in greater numbers for field operation, efficient
deployment strategies become increasingly important. Indeed, it is fair to state that
the extensive research in this area has not yet led to a firm grasp of sensor
deployment strategies for target location. This lack of understanding is not
altogether surprising because the sensor deployment combines the hitherto
unexplained interaction of target location with optimal placement of sensors.

Fig. 6. Comparison of robustness of different functions to small vibrations in the sensor readout.
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5.1. Optimal sensor placement

In a typical scenario, battlefield commanders or surveillance authorities have
several different types of sensors available which can be appropriately placed in the
sensor field. These sensors differ from each other in their monitoring range, detection
capabilities, and cost. Clearly, sensors that can accurately detect targets at longer
distances have higher cost. However, the use of these expensive, long-range sensors
may be prohibitive in terms of total deployment cost. On the other hand, if only
small-range sensors are used, effective surveillance can only be achieved with a large
number of these sensors. Therefore, optimal sensor deployment strategies are
necessary to minimize cost and yet achieve mandated levels of surveillance accuracy.
Fig. 7 shows a sensor field in which grid points (circles) are at distances of 100m and
two sensors are shown with different costs and range of coverage.

The sensor placement problem for target location is closely related to the alarm
placement problem described in [41]. The latter refers to the problem of placing
‘‘alarms’’ on the nodes of a graph G such that a single fault in the system
(corresponding to a single faulty node in G) can be diagnosed. The alarms are
therefore analogous to sensors in a sensor field. It was shown in [41] that the alarm
placement problem is NP-complete for arbitrary graphs. However, Chakrabarty et al.
[42] shows that for restricted topologies, e.g. a set of grid points in a sensor field, a
coding theory framework can be used to efficiently determine sensor placement.

In [42], the sensor field is represented as a grid (two- or three-dimensional) of
points (coordinates), and sensors are selectively placed on a subset of these grid
points. An integer linear programming (ILP) model is developed for minimizing the
cost of sensor deployment under the constraint of complete coverage of the sensor
field. For two-dimensional sensor fields with a given number ( p=8) of grid points in
each dimension using two types of sensors (a type-A sensor with cost $150 and range
100m, and a type-B sensor with cost $200 and range 200m), complete coverage for
using 20 sensors (sensor density=0.31) can be obtained. This involves using four
sensor fields with 16 grid points each, and is shown in Fig. 8.

Fig. 7. An example of a two-dimensional sensor field.
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5.2. Sensor placement in target location

Another associated problem in sensor networks is that of target location. If the
sensor field is represented as a grid (two- or three-dimensional) of points
(coordinates), target location refers to the problem of pin-pointing a target at a
grid point at any point in time. For enhanced coverage, a large number of sensors are
typically deployed in the sensor field, and if the coverage areas of multiple sensors
overlap, they may all report a target in their respective zones. The precise location of
the target must then be determined by examining the location of these sensors. In
many cases, it is even impossible to precisely locate the target (within the granularity
of a single grid point). Alternatively, target location can be simplified considerably if
the sensors are placed in such a way that every grid point in the sensor field is
covered by a unique subset of sensors. In this way, the set of sensors reporting a
target at time t uniquely identify the grid location for the target at time t. The
trajectory of a moving target can also be easily determined in this fashion from time
series data. Chakrabarty et al. [42] also provided coding-theoretic bounds on the
number of sensors and presented methods for determining their placement in the
sensor field.

For a two-dimensional sensor field with p=13, we need a total of 65 sensors for
169 grid points (sensor density=0.38), which is slightly greater than the lower bound
of 57 predicted, as shown in Fig. 9.

Even though Chakrabarty et al. [42] assumes that all sensors in the sensor field are
fixed, extensions to mobile sensors are straightforward and can easily be
incorporated. The detection range of mobile sensors is greatly enhancedFthis can
be incorporated into the ILP framework by modeling the fact that a mobile sensor
can cover a large number of grid points. Mobile sensors are often desirable since they

Fig. 8. Sensor placement for p=8 using a divide-and-conquer approach.
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can patrol a wide area, and they can be re-positioned for better surveillance. Mobile
sensor can also be concealed when vulnerable. Therefore, mobility enhances sensor
performance and survivability. An advantage of the ILP framework is that in
addition to modeling the advantages of mobile sensors, it can also model the fact
that mobile sensors are more expensive than fixed sensors. It therefore facilitates
trade offs between cost, performance, and survivability.

6. Summary

This paper briefly discusses recent developments in the study of distributed sensor
networks (DSNs). Advances in sensor technology and wireless communication have
brought new challenges to this field. We reviewed innovative approaches from four
aspects: the network structure design for traditional DSNs and for wireless ad hoc
sensor networks (WASNs), the comparison between two data processing para-
digmFclient/server model and mobile-agent-based DSNs, the sensor fusion
algorithm with a performance evaluation among four fault-tolerant integral
integration functions, and the sensor placement strategy with an application
example on target location.
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