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Increase of size and bandwidth of computer network posed a research challenge to evalu-
ate proposed TCP/IP protocol and corresponding queuing policies in this scenario. Simula-
tion provides an easier and cheaper method to evaluate TCP proposals and queuing
disciplines as compared to experiment with real hardware. In this paper, problem associ-
ated with scalability of current simulation method for high-speed network case is dis-
cussed. Hence, we present a scalable time-adaptive numerical simulation driven by loss
events to represent dynamics of high-speed networks using fluid-based models. The new
method uses a loss event to dynamically adjust the size of a time step for a numerical sol-
ver which solves a system of differential equations representing dynamics of protocols and
nodes’ behaviors. A numerical analysis of the proposed protocol is discussed. A simple sim-
ulation of high-speed TCP variants is presented using our method. The simulation results
and analysis show that the time-adaptive method reduces computational time while
achieving the same accuracy compared to that of a fixed step-size method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recently, size and bandwidth of computer networks has
seen tremendous growth. Introduction of opto-electronic
technology enabled high-speed links for the network. With
this growth, there has been a demand for fair and efficient
protocol to exploit these improvements in high-speed
computer networks, such as NLR (National Lambda Rail)
[1], LONI (Louisiana Optical Networks Initiative) [2], etc.
Some protocol solutions have been proposed to satisfy
the high-speed requirement by researchers namely Fast
TCP [3], HSTCP [4], S-TCP [5], BIC-TCP [6], HAMILTON-
TCP [7] on high speed networks. Development of these
high-speed protocols posed a challenge to evaluate these
protocols in a variety of environments. Network simulation
is well accepted and widely used and a much simpler way
. All rights reserved.
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of performance evaluation of different protocols. Also, it is
well known that packet-based simulators like NS2 [8] and
Opnet [9] cannot be used in the case of large simulations
[10] because of its inherent bottlenecks in terms of mes-
sage overhead and cpu execution time. Among the main
research direction in the simulation of TCP/IP networks,
we would quote parallel simulation projects, such as SSF-
net [11] and emulation projects such as NistNet [12]. The
requirement of cpu-time and memory increases with the
increase of bandwidth as well as the size of the network.
As we show, NS2 simulator is inadequate in terms of com-
putational complexity and resources and thus we need
new simulators to be modeled in a different way to deal
with these problems.

Fluid simulation (through approximation of fluid
dynamics) came up with an alternative way for the simu-
lation of TCP/IP networks [13]. The fluid level simulation
is based on a path wise description of the dynamics of
the interaction between flows and it takes into account
discrete event phenomena that are of central importance
for drop-tail queues at routers and links, such as
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congestion epochs, losses, synchronization of sources, etc.
It also allows us to analyze congestion window behavior
and queue dynamics. Although it satisfies the simulation
of large number of flows with low bandwidth, the current
method is still far behind the high-speed networks which
has fewer number of flows. For the AQM (Active Queue
Management) policies, the packet delay corresponding to
each packet is very much dependent on the bottleneck
queue attached to that link. For example, a single packet
in the case of 1 Mbps bandwidth has a queue delay of
8 ms irrespective of the queuing management policies. As
the bandwidth increases to 100 Mbps, this queuing delay
is decreased to 0.08 ms. When dealing with this queuing
delay for each packet, we have to decrease the time step
for the evaluation of protocol behavior. For example to
record the packet delay and the corresponding packet drop
for a short period of time in TCP, we have to decrease the
time step which in turn increases the execution time of
the entire simulation. In the previous effort, researchers
have tried to use the topology to improve the simulation
time. In [13], only congested queues have been simulated
with the help of network topology information. However,
the presented optimization works for the large number of
flows and not scalable to large bandwidths. In the case of
high-speed networks (of the order of Gbps), an ideal sce-
nario includes fewer number of high-speed flows. To find
out the queue behavior in such a scenario, we need to
exploit the system behavior along with the topology. It is
identified that the highs peed network with optical fiber
has very low random loss rates of the order of 10�7 [14].
In the current work, we present a loss-event driven fluid
simulation method which can scale to very high
bandwidths.

This paper is organized as follows: We give a brief over-
view of related work in this area in Section 2. In Section 3,
we discuss the motivation and challenges in this area. In
the same section, we discuss a simple system model and
idea behind this work and introduces a general framework.
Section 4 give the performance results and the validity of
the proposed fluid simulator. A numerical analysis is also
presented in the same section. In Section 5, we compare
different high-speed transport protocols for some basic
configurations using fluid simulation. Section 6 presents
the conclusion and the possible future research direction
in this area.
2. Related works

The aim of the fluid model is to estimate the congestion
window behavior obtained by each individual flow under
the competition rules imposed by TCP. These rules can be
imposed from the sole knowledge of the route, the RTT of
each flow, the characteristics of each router, and the link
characteristics (buffer size, link capacity, scheduling, etc.)
in the network. Another advantage of fluid-based approach
is that the congestion control is explained as a distributed
algorithm toward solving a global optimization of alloca-
tion of resources satisfying a certain fairness criterion.
The cost functions are chosen such that a set of fairness cri-
terion is maintained [15,16].
Misra et al. [17] developed a methodology to model the
TCP AIMD algorithm and obtained the expected transient
behavior of networks with Active Queue Management rou-
ters supporting TCP flows. They used jump process driven
Stochastic Differential Equations (SDEs) to model the inter-
action of a set of TCP flows and Active Queue Management
routers in a network setting. The derived SDEs are trans-
formed into a set of Ordinary Differential Equations
(ODEs), which can be easily solved numerically. Their for-
mulation enables to spot a possible problem with the
RED averaging mechanism related to the TCP AIMD algo-
rithm. The formulation presented in this work is quite sim-
ple and helpful in formulating the model for other TCP
variants and also to analyze the other AQM mechanisms.

The further extension of this work is done by Liu et al.
[13]. In their paper, the solution techniques have been pre-
sented to reduce the simulation time by simulating and
solving only the queuing equations for potential congested
links. Therefore, the computation time has greatly reduced.
Although the solution methodology scales well to a large
number of flows, no attempt has been made for reducing
the computation time for the high-speed network case.
They exploited the topology information but no stress
has been given to the behavior of the system (loss or pro-
tocol behavior) for the reduction of the execution time of
computation/simulation which is explored in the present
work.

In [18], Baccelli and Hong proposed a simplified repre-
sentation of interaction of TCP flows via coupled evolution
equations for simulation of large IP networks at flow level.
The basis of this approach is the joint evolution of the con-
gestion window size of long-lived (FTP type) flows con-
trolled by TCP and sharing a single drop-tail router in the
network. The modeling is done in terms of sending rate
of the source, giving the instantaneous throughput fluctu-
ations at any point of time. The important aspect of syn-
chronization rate has been explored effectively giving
more realistic simulation results as compared to previous
packet-level simulators. The results obtained by this flow
level simulator take into account key packet-level phe-
nomena such as the reaction delay, the scheduling and
the buffer overflows, via estimated synchronization rate.

In [19], time-driven fluid simulation is proposed to sim-
ulate high-speed networks. Here, the network elements
are modeled as fluid servers where, the traffic sources
can be arbitrary, including a discrete event and fluid
source. Furthermore, usefulness of the fluid simulation
with packet simulator has been explored in [19] where a
hybrid method is used. Fluid models are used to represent
aggregations of flows for which less details are required
and packet-level models are used to represent the individ-
ual flows for which more details are needed.
3. A scalable method for high-speed network
simulation

3.1. Problem definition and motivation

Nowadays, there have been several research initiatives
which develop and deploy high-speed networks over



Fig. 1. Scalability as a function of network bandwidth: packet-based
simulation result from NS2 simulator and model-based simulation result
from a fluid level simulator using a numerical method, such as Euler
method.

1 For the convenience of calculation, we assume that the size of packet is
10,000 bits.
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major research institutions. These networks, such as NLR
(National Lambda Rail) [1], LONI (Louisiana Optical Net-
works Initiative) [2], etc. have bandwidths greater than
10 Gbps. By the virtue of DWDM (Dense Wavelength Divi-
sion Multiplexing) technology [21] at link layer, a pair of
optical fiber can transmit 30–40 simultaneous light waves.
Therefore, the observed transmission bandwidth is
10 Gbps so that we can achieve up to 400 Gbps of band-
width at each physical link. To catch up with those large
bandwidths at the physical layer, many researchers have
developed protocols at higher layers, such as transport
and network layers.

To develop those protocols, it is necessary to simulate
the behavior of networks in order to evaluate the perfor-
mance before implementing and deploying networks. Until
now, development of small or mid-scale networks of which
bandwidth is less than 1 Gbps has been supported by a
packet-based simulation which emulates detailed behav-
iors of packets or queuing theory. However, as the scale
of networks increases, the execution time of the packet-
based simulation methods increases exponentially due to
large number of packets to process. To overcome the scala-
bility problem, we need to develop a new model-based
simulation framework which takes less amount of simula-
tion time and uses parallel computation. For the model-
based simulation, we can use an approach based on fluid
dynamics which represents a behavior of an individual
flow in networks.

Fig. 1 shows the execution time between the two simu-
lation methods as a function of network bandwidth. The
packet-based simulation experiences an exponential in-
crease in its execution time as its bandwidth expands more
than 1 Gbps. However, in a fluid-based simulator, for band-
widths less than 10 Gbps, the execution time is still
reasonable.

Therefore, in this paper, we develop a fluid-based simu-
lation method which predicts the behavior of transport
and routing protocols over high-speed networks within
less amount of execution time.

3.2. Challenge

As shown in Fig. 1, the execution time of fluid-based
simulation is reasonably below that of packet-based
simulation. However, its execution time is still more than
several hours. Furthermore, the execution time will
increase as more number of flows are getting involved in
simulation. Therefore, it is necessary to develop a new
fluid-based simulator which is scalable to the size of net-
works as well as network bandwidth.

In general, the fluid-based simulation method solves a
set of Ordinary Differential Equations (ODE) which
represent the dynamic behaviors of flows in networks
using numerical methods, such as Euler method and
Runge–Kutta method [20]. When the numerical methods
solve a set of ODE, they use a time-step-size, h, which is
a step-size of a solution for Eq. (1)

dyðtÞ
dt
¼ f ðt; yðtÞÞ: ð1Þ

To obtain a numerical estimate ykþ1 of the Euler method,
we use following equation:

ykþ1 ¼ yk þ h � f ðt; ynÞ: ð2Þ

The numerical solver for a set of ODE is a time-stepped
fluid-based network simulator. The accuracy of a solution
is determined by the time step-size, h, and the network
bandwidth because higher bandwidth creates more finer
events in terms of time, such as packet departures and
arrivals at nodes. For example, to represent the behavior
of flows going through a link below 100 Mbps which
roughly transmits 104 packets/s,1 10�4 s of time-step-size
is a minimum time step to catch interesting events, such
as packet arrival and departure, with no loss of information
in the numerical sense. However, in case of 10 Gbps band-
width networks, the step-size should be 10�6 s to solve
equations without any loss. Therefore, simulation of
high-speed networks requires a shorter time-step-size as
the bandwidth of high-speed networks increases.

Clearly, for a given link capacity say Cl, the queue ser-
vice time for each packet tst is given as below

tst ¼
1
Cl
: ð3Þ

As the numerical simulations have a shorter time-step-
size, the total number of time steps increases. Since the
computational time of the fluid-based simulation is pro-
portional to the number of time steps, the execution time
of the fluid-based simulation for high-speed networks
(e.g., more than 10 Gbps bandwidth) is more than hun-
dreds of thousand seconds (see Fig. 1).

To reduce computational time for the fluid-based simu-
lation, we present a time-adaptive method which adjusts
time-step-size based on the dynamics of flows so that it
can reduce the total time steps while achieving similar le-
vel of error.

For example, the Euler method has accumulated errors,
such as ekþ1 ¼ ykþ1 � yðtkþ1Þ and ek ¼ yk � yðtkÞ, can be rep-
resented as

ekþ1 ¼ ek þ hkðf ðtk; ykÞ � f ðtk; yðtkÞÞÞ � O h2
k

� �
; ð4Þ
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where ykþ1 is an estimate and yðtkÞ is an exact solution
ðtkþ1 ¼ tk þ hÞ [20].

Therefore, the accumulated error is dependent on prop-
agational error ek and the time-step-size hk at each time
step k. This paper will propose a new algorithm which
changes the step-size hk based on the error sensitivity
while maintaining similar level of error.

For the time-adaptive Euler Method, the time-step-size
h is not constant. If we take t ¼ tk and the step-size
hk ¼ Dtk, we obtain from the assumption y0 ¼ f ðtk; yðtkÞÞ

yðtkþ1Þ ¼ yðtkÞ þ hkf ðtk; yðtkÞÞ þ O h2
k

� �
: ð5Þ

Then the global errors ekþ1 ¼ ykþ1 � yðtkþ1Þ and
ek ¼ yk � yðtkÞ is obtained by

ekþ1 ¼ ek þ hkðf ðtk; ykÞ � f ðtk; yðtkÞÞÞ � O h2
k

� �
: ð6Þ

Therefore, the global error ekþ1 ¼ ykþ1 � yðtkþ1Þ depends hk

and all previous errors ei ði ¼ 0; . . . ; kÞ. Therefore the error
of kth step with time-step-size hk ðk ¼ 0;1; . . .Þ affects
ekþ1. However, in our model, the effect of local error from
larger time-step-size is relatively less than that of adaptive
time. We will compare the error between constant time-
step Euler methods and time-adaptive Euler methods.

Ideally, the higher order ODE solvers, such as Runge–
Kutta method, might increase the order of convergence.
For the convenience of calculation, this paper will use the
Euler method as a basic method. However, the proposed
time-adaptive method is still applicable to any higher or-
der ODE solver.

However, the higher order methods might not be ap-
plied directly because our original network models are
based on their discrete behaviors. For higher order meth-
ods, we have tested several alternatives to find the best
approximation for the intermediate data needed for the
methods. We have continued to find optimal approach to
implement higher order methods.

3.3. Fluid model

In this section, we introduce a system model2 where we
present the fluid model and the basic idea of the algorithm
used for high-speed networks with few number of flows.
The network is modeled as a directed graph G ¼ ðV ; EÞwhere
V denotes the set of nodes and E is set of links connecting
those nodes. Each link in E is served at a rate of Cl bps. Each
link is associated with an AQM policy which is characterized
by a packet drop probability plðtÞ. All the links are associated
with a propagation delay for which the traffic departing
from the queue associated with l arrives at the next queue
after the propagation delay associate with that link. Model-
ing of Advance Queue Management policy is done in such a
way that a packet drop takes place whenever the queue size
exceeds the drop threshold with probability 1 (drop-tail
behavior in our case). All the flows experience the delay
which can be given by the summation of the propagation
2 The basis of current work is the fluid Simulation framework given in
[13], which accounts for shaping of the flow as they traverse through
different links in the network.
and the link delay from the source to the destination associ-
ated with their paths.

Without loss of generality, some of the frequently used
notations in their generic forms are listed here for easy
reference:

� Fi = A set of ordered queues traversed by the ith flow in
forward manner.

� Ri = A set of ordered queues traversed by the ith flow in
backward manner (for the acknowledgment from
destination).

� WiðtÞ = Congestion window for ith flow at time t.
� RiðtÞ = Round trip time for ith flow at time t.
� Mi = Maximum congestion window limit for ith flow.
� kiðtÞ = Loss indication rate for ith flow at time t.
� qlðtÞ = Queue size associated with lth link at time t.
� plðtÞ = Packet drop probability at lth queue at time t.
� Cl = Service capacity/bandwidth for lth link.
� al = Propagation delay associated with lth link.
� qmax

l = Maximum queue size associated with lth link.
� nl = Denotes number of flows traversing lth link.
� Ai

lðtÞ = Arrival rate of ith flow at lth link at time t.

Basic equations in the form of linear and ordinary dif-
ferential equations governing the flow level behavior of
the network are summarized as below:

Window size:

dWiðtÞ
dt

¼ 1ðWiðtÞ < MiÞ
RiðtÞ

�WiðtÞ
2

kiðtÞ; ð7Þ

where 1ðWiðtÞ < MiÞ is indicator function, which has bin-
ary output. If the argument is True its value is ‘1’ and ‘0’
otherwise. It is associated with the window function to
limit the congestion window size from going beyond the
maximum allowed value.

Queue size:

dqlðtÞ
dt

¼ �1ðqlðtÞ > 0ÞCl þ
Xnl

i¼1

Ai
lðtÞ: ð8Þ

Similarly queue size is restricted by the indicator function
ðqlðtÞ > 0Þ and can have only positive value.

Round trip time:

RiðtÞ ¼
X

l2FiURi

al þ
qlðtÞ

Cl
: ð9Þ

Loss indication rate:

kiðtÞ ¼
X
l2Fi

Ai
lðtÞplðtÞ: ð10Þ

Packet drop probability (for drop-tail queue):

plðtÞ ¼
0; qlðtÞ < qmax

l ;

1; qlðtÞ > qmax
l :

�
ð11Þ

The above equations can be used to represent the entire
system as feedback system, where the loss event is used
as a feedback mechanism and consecutively the AIMD
adapts the congestion window to avoid the loss event by
decreasing its size.
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3.4. Main idea

The model introduced in the last subsection is used to
give network statistics for the network equipped with
drop-tail queue and TCP AIMD congestion window algo-
rithm at the transport layer.

Figs. 2 and 3 show congestion window behavior and
loss indication rate, kiðtÞ as a function of time. Our algo-
rithm is based on the fact that the congestion window va-
lue changes with loss indication rate. As we observe from
Fig. 2, the additive increment continues till the queue over-
flows and a loss event occurs as indicated by loss indicator
function k as shown in Fig. 3. The queue overflow causes
packet loss at that queue which causes multiplicative de-
crease by a factor of k=2 (loss arrival rate) as the packet ar-
rival rate is very high during that time. This can be easily
understood by Eqs. (10) and (7). We observe that before
the loss event, the window increases linearly and hence a
linear solution is preferred, whereas at the time of loss
event the congestion window follows a non-linear behav-
ior. In the case of high-speed network, the loss event lasts
for a very small time as compared to linear increase time,
which is normal for a high bandwidth and large delay
(Eq. (9)) network. Congestion window takes fairly long
time (the increment part of Eq. (7)) to reach to the peak va-
lue where it overshoots causing a loss event on the queue
as compared to the time while loss event lasts. When loss
event happens, the window value decreases by a factor of
Fig. 2. Congestion window behavior at high-s
W
2 k (multiplicative decrease part in Eq. (7)). The queue is
cleared immediately after the loss event with the service
rate Cl as in Eq. (8) and remains empty until the window
reaches the peak value again. In order to effectively record
this fast decrease and recovery of congestion window from
the loss event, we must have microscopic behavior of the
network. Since this process lasts for a very short time, a
smaller time step is preferred as compared to the time
where there is no loss event and solution is more predict-
able. The usual method uses constant time step value and
as discussed in Section 2, this constant value should be low
enough to observe the network behavior for the high-
speed network. However, small time step increases the
overall time for simulation. For that reason, we propose a
higher time step value for probing phase and smaller time
step to effectively catch the loss event related characteris-
tics in the network.

Based on the above discussion, we propose two time
steps for network simulation based on loss events in the
networks.

3.5. Framework

In this section, the pseudo-code of the algorithm is ex-
plained in Fig. 5 and the corresponding flow chart of the
algorithm has been introduced in Fig. 4.

In the above Fig. 5, we have described the algorithm.
First the value of dtmin is calculated by using FindDtMin()
peed optical network and 70 ms delay.



Fig. 3. Loss indication rate at high-speed optical network, 10 Gbps and
70 ms delay.

Fig. 4. Flow chart showing loss signal flow and decision making for step
length adjustment.
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function which finds the minimum time step for simula-
tion, as described later in this section. dtmax is also set as
an input parameter. Further the decision as to which one
out of two values should be used is made based on loss
information. Since TCP is based on feedback mechanism,
the source window gets the loss signal after some time
which is determined by the queuing and propagation delay
in its path. In our algorithm, this is determined beforehand
from the signal received directly from the queue in the
form of loss rate indicator variable k. Whenever the k value
of any queue associated to any flow is nonzero, the algo-
rithm switches the time step to minimum and records
the window behavior for that short duration of time in
which the loss event occurs. Also, before reaching to the
source of that flow, the use of congestion signal for adjust-
ing the time step is justified to minimize the possible error
as less as possible. Adapting the time step to a suitable va-
lue as soon as possible helps tracking the network behavior
accurately. Through this work, We find that the congestion
signal for each flow is suitable variable for switching the
time steps. We present various results which we have de-
rived using our method and also compared with the regu-
lar fluid model solver simulation (FS) method without
adapting time step length in our next section.

As described above, dtmin defines the minimum step
length and its correct estimation is necessary. Since main
aim of the network to see the fastest moving packets and
record the interesting events, setting the minimum step
length depends on highest link of possible bottlenecks. Fol-
lowing formula can be used to calculate minimum time
step. A link Ci is congested if it satisfies following
condition:

Ci <
X
l2E

Tðl; iÞCl þ
X
k2H

Mknk

pk
; ð12Þ

and dtmin is given by

min
1
Cl

; l 2 B
� �

; ð13Þ

where B is the set of bottleneck links which satisfy Eq. (12)
and T is topology matrix, where Tði; jÞ ¼ 1 if there exists at
least one flow traversing queue j immediately after it tra-
verses queue i. HðiÞ is the set of TCP flows which have qi

as the first queue and pk is the total propagation delay
for flow k. Furthermore, the data flow from various level
in the network and decision making for the step length
adjustment is shown in Fig. 4.
4. Performance evaluation

All simulations were carried out on a workstation which
has dual Xeon-3 GHz processors, 2 GB RAM on PC 2700



Fig. 5. Adaptive time-step fluid simulation algorithm.

118 S. Kumar et al. / Computer Networks 54 (2010) 112–132
board. To present our results, we used a dumb-bell topol-
ogy as shown in Fig. 6 to simulate a bottleneck link shared
by two flows. Every link in this topology is equipped with a
drop-tail queue with a maximum queue size of 500 pack-
ets. The packet size is kept fixed at 1000 B. The delay is
50 ms for bottleneck link and 10 ms for edge links.
4.1. Accuracy validation

Since our method is based on the existing fluid model
solver (FS), we compare our time-adaptive fluid solver
(AFS) with the normal fluid solver (FS) which does not have
a time-adaptation mechanism. While solving using AFS, we
start with the maximum value of time step which we set as
Fig. 6. Topology used for the simulation showing bottleneck link and two
flows.
0.001 and suitably vary the minimum value keeping the
minimum value for normal fluid simulation the same. In
Fig. 7, the comparison of congestion window behavior be-
tween AFS and FS has been shown for 5 Gbps case. We ob-
served that AFS and FS match good. Corresponding queue
size behavior is presented in Fig. 8 which shows a good
accuracy in spite of a very little mismatch.

We show how our accuracy depends on the change of
step-size. In Fig. 9, it is shown that smaller the step length
smaller the error. For the case of 10�3 we have higher error
as compared to smaller step lengths.
4.2. Comparison

Fig. 10 shows the execution time comparison between
the three simulation methods: NS2, FS and AFS. The NS2
simulation was not able to complete for the entire
20,000 s due to a limitation in the number of packets sent
and hence we had to scale it. For these simulators to reach
a congestion window limit, the simulations should be car-
ried out for a longer time in the high-speed case. Since we
ran the simulation for the bandwidth ranging from
100 Mbps to 10 Gbps with the network parameters that
we have used, the 10 Gbps case shows its first loss event
at around 17,000 s. Hence to have a fair comparison be-
tween these methods, the simulation should be carried
out for 20,000 s. To accommodate all the values in the
graph, a log scale has been used. The variation shows that
FS achieves quite a good improvement over the packet
simulator NS2. The execution time of NS2 increases expo-
nentially as the bandwidth increases and overshoots in the



Fig. 7. Comparison of congestion window using AFS and fluid solver (FS) for 5 Gbps link.

Fig. 8. Comparison of bottleneck queue using AFS and fluid solver (FS) 5 Gbps link.
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case of 10 Gbps. In the case of traditional fluid simulator
(FS) method, execution time increases because of smaller
step length for the higher bandwidth case. As compared
to the NS2 and FS method, our method achieves good
improvements. Further, our simplified method uses fixed
minimum and maximum step length and hence we ob-
serve a slight decrease in the execution time. This is be-
cause of lesser number of loss events for higher
bandwidth in a given duration of time [22].

Fig. 10 shows the improvement through our method
varies from 5 to 80 times as the bandwidth increases from
500 Mbps to 10 Gbps leaving NS2 far behind. In fluid mod-
el-based simulation, a cluster of closely-spaced packets is
modeled as a fluid chunk at a specific time point. A fluid
model-based simulator then keeps track of fluid chunks
and their rate changes at each network component on
the communication path from the source to the destina-
tion. As a large number of packets are abstracted as a single
fluid chunk, the computational overhead is expected to be
lessened. For microscopic analysis, lower time step means
more accurate microscopic observation hence a desired
time step would be the one which can capture microscopic
behavior. In our case, one can easily observe TCP algorithm
has two parts, increase of congestion window and decrease
of congestion window. In protocol analysis one is more
interested in the transitions between these two parts. If
the algorithm is working either of two parts but not on
the verge of transition, the behavior is easy to model and
predict. The average behavior in these two parts can be
modeled by putting more chunks or packets, i.e., decrease



Fig. 9. Comparison of errors for different step length with respect to step
length 10�6.
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of time step so that transition period is reached quickly.
Hence, the execution time ignoring the coding overhead
of FS method executing with a step length of TFS is
Oð1=tFSÞ and for AFS method execution time is

O
tnl=Tmax

AFS þ tl=Tmin
AFS

tex

 !
; ð14Þ

where tnl; T
max
AFS ; tl; T

min
AFS and tex are execution time for no loss

period, maximum time step, average time spend in loss
period, corresponding time step length and total execution
time for AFS method introduced in the paper respectively.
Congestion time in high-speed network is a lot lesser than
the no congestion time. Hence, the time improvement
achieved in AFS method is very much dependent on the
Fig. 10. Comparison of execution time for NS2, FS and
loss rate in the network which is very small in high-speed
scenario.

In Fig. 11, we have shown the memory utilization for
different methods. As we can see, the memory utilization
is higher in the case of NS2 and still increases for FS too.
The increment in non-swapped memory used by NS2
should be accounted for its inherent working mechanism.
Since our system works on the delayed feedback mecha-
nism, we have to store some variables to use it in later
stage. In the case of TCP source using congestion informa-
tion which reaches to it after one RTT, we observe increase
in memory because the step-size is decreased, which
forces more number of data to be stored. Whereas, in the
case of AFS method, most of the time simulation is carried
out with maximum step length, hence there is no signifi-
cant increase in the utilization of non-swapped memory,
hence results in better performance. However, for the com-
plete characteristics of the network, the delayed feedback
model is the best model to see the queue behavior and cor-
responding TCP algorithm behavior. The overhead incurred
in this scenario is related to the data-structure maintained
in the model to use it after some delay. In our case, we de-
fine it as average overhead incurred during the real net-
work simulation time. Clearly, in the feedback system,
the loss information arrives at the sender after one RTT
(round trip time for worst case in which loss happens on
sender’s own queue). The message overhead is related to
scaling of RTT w.r.t. time step. Hence, the loss information
has to be saved in the system for 1 RTT. Therefore, by
ignoring coding overhead, he loss information has to be
saved for RTT=time� step time steps. Clearly, one can ex-
pect the message overhead for FS method is of the order
of ðRTT=TFSÞ where T is the time-step-size of FS method.
Whereas for AFS it is

O
tnlRTT=Tmax

AFS þ tlRTT=Tmin
AFS

tex

 !
: ð15Þ
AFS methods with the variation of bandwidth.



Fig. 11. Comparison of non-swap memory utilization for NS2, FS and AFS with the variation of bandwidth.

Fig. 12. Execution time variation of AFS method with bandwidth.
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Average time spent in the congestion period is a lot lesser
than the minimum time step Tmin

AFS . Hence, we can observe
that average message overhead of adaptive time step sim-
ulation (AFS) method is directly related to time step and
RTT of the network.
4.3. Scalability

In Fig. 12, we have shown the variation of execution
time till the bandwidth of 50 Gbps. As bandwidth in-
creases, the AFS method introduced in this paper shows
good results. The increment of the time corresponds to var-
iation of different minimum step length. As we go higher,
the minimum time step needed to simulate decreases
and hence the adaptive decrease part takes more number
of steps giving a slightly increment in execution time.
Therefore, the method introduced in this paper is scalable
to bandwidth of modern high-speed networks.
4.4. Effect of loss

The bandwidth is 10 Gbps and other input parameters
are same as discussed above. As shown in Fig. 13, the exe-
cution times variation of AFS and FS approach have been



Fig. 13. Effect of random loss on AFS and FS execution time.
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compared with for different random packet loss probabil-
ity. While execution time of FS method remains almost
constant at a higher value, the AFS execution time for
AFS method varies. Initially, when the value of random
packet loss probability is low, the queue loss is dominating
factor and has the major number of loss events (which is
still less) giving the low value of execution time. As we in-
crease the random packet loss probability, it predomi-
nantly accounts for all the packet losses in the network
and the queue loss becomes negligible accounting for the
increased execution time. Since the more number of packet
loss makes AFS execution longer in minimum time step re-
gion, it is also worth mentioning that as the packet loss in-
creases the AFS execution time also increases. Hence, a
good improvement is achieved in high-speed and low-loss
scenario (which is predominantly the high-speed scenario
in consideration) over the simple fluid-based approach.
Table 1
Listing increment and decrement parameter of high-speed TCP variants.

TCP variant a

TCP-Reno 1
STCP 0:01w
HSTCP 2 w0:8b

2�b

CUBIC TCP Minðtargetw �w; SmaxRÞ, where targetw ¼ or

K ¼ ðb:prevMaxw=cÞ
1
3

H-TCP
1þ 10ðDi � DthÞ þ Di�Dth

2

� �2

FAST TCP Minðw; cð2baseRÞ � avgRTTÞ w
RTTþ a
5. A simple flow level simulation of high-speed network
transfer control protocol

In this section, performance of different high-speed TCP
variants is presented for a simple configuration. We use
our AFS algorithm method for the evaluation. Our method-
ologies involve mainly AIMD algorithm for TCP as we pre-
sented in previous sections. However, the proposed
framework is valid for any TCP variants for which we can
develop a time continuous model. This section is focused
on the behavior of different TCP variants. First, we present
fluid models of the different high-speed TCP variants by
giving model equations for each and then we evaluate their
performances for some basic configurations.

5.1. Background and methodology

TCP congestion control is made of probing phase and
decreasing phase. The probing phase of a TCP consists of
an exponential increase phase (i.e., the slow start phase)
and a linear increase phase (congestion avoidance phase).
The probing phase stops when congestion occurs in the
network and at this point TCP starts decrease phase. Al-
most all the TCP variants have to go through these phases.
We can generalize the linear increase and decrease of win-
dow by representing them with ordinary differential equa-
tions of the form:

dWiðtÞ
dt

¼ aðWiðtÞ < MiÞ
RiðtÞ

�WiðtÞbkiðtÞ; ð16Þ

where a and b are defined as increment and decrement fac-
tors, respectively. The differential equations govern the
flow level behavior of the network. Main focus of this sec-
tion is on evaluation of congestion control algorithms,
therefore slow start, ECN mechanism, etc., are not taken
into account. We give the functions for these parameters
for different TCP variants in the tabular form (Table 1).

To evaluate these protocols, two scenarios are created:
(A) Single-flow scenario is focused on how different TCP
congestion control algorithms behave with respect to
drop-tail queuing provisioning. (B) Two-flow scenario is
where two TCP flows share the same bottleneck link. We
observe convergence properties for intra-protocol and
TCP friendliness and fairness is left for further evaluation,
where high-speed TCP variants compete with a conven-
tional TCP. Traditionally, router buffers are provisioned
according to the delay-bandwidth product (BDP) rule:
b

0.5
0.125

ð0:1� 0:5Þ logðwÞ�logðwlowÞ
logðwhighÞ�logðwlowÞ

+0.5

igin point þ cðDth � KÞ3 0.2

1� Rmin
Rmax

0.5
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namely, one chooses the buffer size as q ¼ BXRTT, where B
is the rate of the link served by the router, and RTT is the
typical round trip time (RTT) experienced by connections
utilizing the buffer. This amount of buffering allows 100%
link utilization. However, last few years, buffer sizing of
router attracted lots of attention. Having small buffers is
beneficial in terms of amount of memory, required physi-
cal space, energy consumption, and price of the router. In
our studies, the main advantage of having small buffers
is the reduction in queuing delays and jitter. Hence we
set all the buffer sizes as 500 packets. The end to end delay
is set to 60 ms, i.e., 120 ms round trip time, when there is
no queue delay.

5.2. Single-flow scenario

The goal is to analyze how different TCP congestion
control algorithms behave with respect to drop-tail queu-
ing discipline. We perform a simple set of simulations
using a single source and single receiver with an average
bottleneck buffer size of 500 packets.

5.2.1. Drop-tail queue
Drop tail is a simple queue management algorithm used

by Internet routers to decide when to drop packets. With
tail drop, when the queue is filled to its maximum capacity,
the newly arriving packets are dropped until the queue has
enough room to accept incoming traffic. Once a queue has
been filled, the router begins discarding all additional dat-
agrams, thus dropping the tail of the sequence of data-
grams. Drop tail is an interesting queuing discipline
where all the packets are dropped once queue limit is
reached and in high-speed network. This behavior can be
Fig. 14. Congestion win
severe because the protocol is operating at a maximum
sending rate causing burstiness which eventually led to
multiple losses. In this section, we observe the behavior
the different TCP variants to show the queue occupancy
for a drop-tail queue with a buffer size of 500 packets.
We also observe time taken by a particular flow to reach
the bottleneck limit.

HSTCP: High-speed response function behaves as an
aggregate of N TCP connection. The response function
gives a straight line on a log–log scale. In Figs. 14 and
15, we show HSTCP window evolution and queuing
occupancy. We observe that, HSTCP takes 370 s to reach
the bottleneck link. At that point, a sending rate is very
high and it leads to multiple packet losses. The queue is
oscillating with the same time period. Interestingly,
high speed TCP congestion control algorithm working
at a very high sending rate overflows queues for a very
short period of time. This aggressiveness is the price
paid by high-speed TCP variants for their increased sca-
lability. After the congestion occurs, the window
increase is slow initially; and as time passes, it gets
steeper. For this time period, the average window size
is 53,400 which is approximately 1/3 of the peak win-
dow size.
CUBIC: CUBIC TCP uses a cubic function whose shape is
similar to BIC TCP. This TCP comes into the picture car-
rying all the features of BIC TCP but friendlier than BIC
TCP. Figs. 16 and 17 show CUBIC window behavior and
queue occupancy respectively. In the case of CUBIC, the
window grows very fast; but as it gets closer to Wmax

(the previous congestion window just before conges-
tion), it slows down its growth. At Wmax, its increment
dow for HSTCP.



Fig. 15. Queue for HSTCP.

Fig. 16. Congestion window for the CUBIC TCP.
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becomes zero. Since we considered ideal queue behav-
ior with no traffic abnormality, the behavior past Wmax

is not visible. The congestion window oscillates with a
period of 44 s. As we can see, irrespective of queue size
behavior, it paces down the sending rate when close to
Wmax and hence sending packets nearly at the same rate
of bottleneck link. At this point queue don’t get empty
for 3 s. The increment in congestion window continues
for 3 s passing the bottleneck service rate and hence
causing congestion. At this point, congestion window
drops and rises fast. The average congestion window
for the oscillation time period is 126,500 giving 83% link
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utilization where as average queue size is 17 packets.
Another interesting observation is that queue is busier
than that of HSTCP. However, drop-tail queuing disci-
pline does not decrease link utilization much.
STCP: STCP uses multiple increase and multiple
decrease methodology for congestion control. In Figs.
Fig. 17. Queue for CUB

Fig. 18. Congestion windo
18 and 19, window and queue occupancy behavior is
shown respectively. As we can see when the congestion
window is small the increase parameter employs slow
window increment and when high it becomes very
aggressive. This aggressiveness behavior although pro-
vides scalability, it suffers through heavy packet losses.
IC TCP.

w for STCP.



Fig. 19. Queue for STCP.

Fig. 20. Congestion window for HTCP.
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In figure, we observe that window size oscillates with a
time period of 140 s. Average window size during this
time period is 12,829 which is less than 10% of peak
bottleneck link. At this peak value, drop-tail router
drops all the packets and STCP congestion window
drops drastically. However, the queue momentarily gets
full and after the congestion period is over, it empties
instantly attributing to high link service rate. STCP per-
forms very poorly in the case of drop-tail queuing
discipline.
HTCP: HTCP is suggested as a modification to conven-
tional TCP. Additive increase factor is a quadratic func-
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tion of time since last congestion and decrease factor is
ratio of minimum RTT observed and maximum RTT
observed. In Figs. 20 and 21, we show congestion win-
dow behavior and queue occupancy respectively. One
quick observation tells us that even HTCP suffers
through burstiness behavior causing multiple losses.
Fig. 21. Queue for H

Fig. 22. Congestion windo
The congestion window oscillates with a time period
of 47 s. After HTCP recovers from congestion the addi-
tive increase function attributes to slow increase in
the beginning and as time increases since the last con-
gestion it aggressively utilizes the link bandwidth.
Although this aggressiveness enables protocol to reach
TCP.

w for FAST.
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the next congestion quickly, drop-tail router causes a
lots of loss that it drops drastically. Average congestion
window value in this case is 44,000 which is 30% of bot-
tleneck link.
FAST: FAST TCP is an equation based protocol and has
been introduced to control the stability properties of
dynamic congestion window behavior. In Figs. 22 and
23, we show congestion window and queue occupancy
behavior of FAST TCP respectively. In figure, we observe
even FAST TCP suffers through multiple losses and on
Fig. 23. Queue for

Fig. 24. Congestion window for TCP-Reno
congestion, congestion window decreases dramatically.
a (= Number data packets that can be kept in bottleneck
queue) decides this aggressiveness behavior. In this
case, we set alpha parameter in excess because FAST
does not have any method to know this parameter. If
the value of this parameter is large, it can degrade over-
all throughput. This is an obvious assumption however,
it is not true for small buffer queues. Queue size slowly
increases and after congestion empties by service rate
of bottleneck link. FAST TCP oscillates with a time
FAST.

intra-protocol convergence.
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Fig. 25. Congestion window for HSTCP intra-protocol convergence.

Fig. 26. Congestion window for CUBIC TCP intra-protocol convergence.
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period of 6.5 s. Since FAST TCP tries to reach the maxi-
mum sending rate as fast as it can,3 if the update period
of the congestion window is decreased, this behavior
would be more aggressive because the update has to
be done more frequently. Average congestion window
is 27,000, which is less than 20% of link utilization. As
we can see most part of the oscillating period of FAST
TCP, it has smaller window and becomes aggressive
when around congestion.
The update period is set to 1 s, which gives the average rate over 1 s
rval instead of RTT.
5.3. Two-flow scenario

5.3.1. Convergence
We show figures for convergence properties for differ-

ent high-speed TCP variants.
TCP-Reno has slow convergence which is seen in Fig. 24.

Convergence is achieved when the sum of two flows ex-
ceeds the bottleneck link capacity. This slow convergence
is also attributed to the time when the other flow starts,
we can expect fast convergence when one flow is close to
the bottleneck link capacity and other is just starting. The
convergence is achieved because of drastic decrease in
congestion window because of high losses.
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Fig. 25 shows HS-TCP cwnd time history of flows with
the same round-trip time following startup of a second
flow. It can be seen that the flows do converge to fairness,
but the convergence time can be long. This effect can be-
come more pronounced as the path propagation delay is
increased (to be explored later). Recall that the AIMD in-
crease parameters are functions of cwnd in HS-TCP. The
slow convergence appears to originate in the asymmetry
that exists in HS-TCP between the AIMD parameters of
newly started flows (with small cwnd) and existing flows
(with large cwnd).

CUBIC TCP converges a lot faster (Fig. 26) than HS-TCP.
CUBIC TCP employs a cubic function which is concave in
Fig. 27. Congestion window for STC

Fig. 28. Congestion window for HTC
nature. Therefore, after a window reduction, the window
grows very fast and as it gets closer to link capacity, it
slows down its growth. At that point, the other flow tries
to find the upper bound of maximum growth. At the upper
bound of link capacity, the old flow’s increment rate be-
comes zero. After that, the congestion window grows
slowly and accelerates its growth as it moves away from
bottleneck link capacity giving more chance to the other
flow to catch up and achieve a fair share.

In Fig. 27, we show a typical example of measured con-
gestion window for scalable-TCP. Generally, the congestion
windows either do not converge to fairness or converge
very slowly (not reaching fairness within the 10-min dura-
P intra-protocol convergence.

P intra-protocol convergence.



Fig. 29. Congestion window for FAST TCP intra-protocol convergence.
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tion of these tests). However, high-speed network differs
from slow or traditional networks in the sense that, it
can undergo multiple losses. At flow level the multiple
losses causes drastic reduction of congestion. Sometimes
it results into slow start. Hence, because of high losses, it
is expected that STCP flows can converge aggressively as
seen in our work.

H-TCP flows show rapid convergence (Fig. 28). Increase
function of H-TCP is a function of the time since last conges-
tion, hence older flow has not experienced congestion and
having faster increase function than the newer flows. This
paradigm causes faster flows to drop more when the new
flows join and this causes congestion events. After the con-
gestion event, both exhibit the same increment function (as
time) since last congestion is same for both. Therefore, with
the same increment and decrement parameters H-TCP
shows the same convergence properties in terms of number
of congestion epochs. In the case of H-TCP, congestion
epochs occur quicker than two TCP flows working together,
faster convergence is expected than that of TCP.

In Fig. 29, we show as new flow joins, FAST TCP con-
verges to the new equilibrium rate rapidly and stably. Win-
dow converges exponentially to the equilibrium at a
different rate that depends on queuing delay. Both the
flows try to keep the maximum number of packets in the
queue which depends on variable alpha which is a config-
urable parameter. We can expect the change of conver-
gence behavior as we change this parameter.

6. Conclusions

We recognize that fluid-based simulation is an effective
method for simulation of high-speed networks. Our contri-
bution of this work is to provide a scalable fluid-based sim-
ulation method. Although the fluid-based simulation
method has a significant reduction in terms of computa-
tional time, it still suffers a scalability problem for the net-
works with bandwidth greater than 10 Gbps. Since the
fluid-based simulation method uses a constant time step
to numerically solve the system of differential equations,
it needs to decrease the size of time step in case of a larger
bandwidth. The decrease of time step produces more num-
ber of time steps, which induce more amount of computa-
tional cost.

We have developed the time-adaptive method for the
numerical solver for a system of differential equations to
reduce the computational cost. The proposed method ad-
justs the time-step-size for the numerical solver in order
to reduce the computational cost while maintaining the
accuracy of simulation results. The time-adaptive method
uses a larger time step for the part of linear increase and
a smaller time step for the part of multiplicative decrease
in the event of packet loss. Since the event of packet loss
is synchronized with the event of multiplicative decrease,
we can adjust the time step based on the event of packet
loss and determination of time step is based on congested
link in the network.

Comparisons between the time-adaptive method and
the constant time step method show that the proposed
method significantly reduces the computational cost while
maintaining the level of accuracy compared to the constant
time step method.

While the TCP variants studied are all successful at
improving the link utilization in a relatively static environ-
ment with long-lived flows, in our tests many of the vari-
ants exhibit poor responsiveness to changing network
conditions. We observe that scalable-TCP and HS-TCP can
suffer from extremely slow convergence times following
the startup of a new flow. It is important that we evaluate
the high-speed TCPs in various other different environ-
ment. Therefore, more studies have to be done to evaluate
these protocols for use in high-speed networks. Simulation
study of high-speed network transfer protocol is another
goal of our future work.
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