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Abstract— Standard embeded sensor nework models empha-
size energy efficiency and distributed decision-making by con-
sidering untethered and unattended sensors. To this we add two
constraints - the possibility of sensor failure and the fact that each
sensor must tradeoff its own resource consumption with overall
network objectives. In this paper, we develop an analytical model
of data-centric information routing in sensor networks under all
the above constraints. Unlike existing techniques, we use game
theory to model intelligent sensors thereby making our approach
sensor-centric. Sensors behave as rational players in an N-player
routing game, where they tradeoff individual communication and
other costs with network wide benefits. The outcome of the sensor
behavior is a sequence of communication link establishments,
resulting in routing paths from reporting to querying sensors.
We show that the optimal routing architecture is the Nash
equilibrium of the N-player routing game and that computing
the optimal paths (which maximizes payoffs of the individual
sensors) is NP -Hard with and without data-aggregation. We
develop a game-theoretic metric called path weakness to measure
the qualitative performance of different routing mechanisms.
This sensor-centric concept which is based on the contribution
of individual sensors to the overall routing objective is used to
define the Quality of Routing (QoR) paths. Simulation results are
used to compare the QoR of different routing paths derived using
various energy-constrained routing algorithms.

I. INTRODUCTION

Embedded Sensor Networks are distributed systems for
sensing and in situ processing of spatially and temporally
dense data from resource-limited and harsh environments such
as seismic zones, ecological contamination sites or battle-
fields [1]. Sensors execute tasks by routing and cooperatively
processing sensed information. Information routing in sensor
networks is primarily data-centric in nature. Interest queries
originating from sink nodes are disseminated over the net-
work resulting in responses from those sensors whose sensed
information satisfy the query attributes. The technique of data
aggregation is used to solve the problems of data implosion
and overlap [7].

Sensors in embedded sensor networks operate under a set of
unique and fundamental constraints which make collaborative
information routing challenging.

1) Sensors are untethered.
2) Sensors are unattended.
These two constraints imply that nodes must utilize their

unreplenishable and limited energy resources efficiently. For
example, too many sensors being active at the same time
will lead to increased energy consumption and competition

for communication resources. Additionally, nodes must make
decisions independently without recourse to a central authority
because of the energy needed for global communication and
latency of centralized processing. Thus ensuring the effective
use of collected sensor data will require the development
of scalable, self-organizing, and energy-efficient solutions for
data dissemination through aggregation.

Designing a sensor network that only takes into account
the first two constraints will not always lead to optimal
architectures. There are many applications where sensors are
deployed in hazardous and hostile environments in which they
can fail to operate or be destroyed with certain probabilities.
Wireless sensor networks are also extremely vulnerable to
data loss under denial of service (DoS) attacks [10]. In these
cases the task of routing a query response from observing
sensors to querying nodes should not be compromised by the
inhospitability of the environment. Consider sensor networks
for monitoring environmentally toxic situations, or seismic
sensor networks in earthquake or rubble zones or even sensors
in military battlegrounds under enemy threat. For such net-
works to carry out their tasks meaningfully, sensors must route
strategic and time-critical information via the most reliable
paths available. Hence in this paper, we introduce an additional
constraint.

3. Sensor si can fail with probability qi.

When a sensor node loses its energy (or is destroyed), it is
unlikely to be replaced. The information utility of the sensor
network (in terms of data collecting and processing ability)
decreases as nodes die out. Thus, implicit in the operation of an
embedded sensor network is a fourth constraint: To maximize
network utilization and information viability, sensors must co-
operate to achieve network wide objectives while maximizing
their individual lifetimes1. We label this paradigm for broad
sensor network operation as sensor-centric.

While there are many popular routing algorithms for sensor
networks for minimizing energy consumption, (MECN [8]
and diffusion routing [5], for example), in this paper, we
analyze sensor-centric routing, i.e, routing within the bounds
of all the four constraints mentioned above. The choices for
untethered, unattended and unreliable sensors when seen from

1Our assumption is that the longer individual sensors survive, the better it
is for the sensor network.
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this perspective are a natural fit for a game-theoretic frame-
work. Sensors are modeled as rational/intelligent agents that
cooperate to find optimal network architectures that maximize
their payoffs i.e., benefits to the network of this sensor’s action
minus individual costs (as opposed to aggregate path costs),
in a network game.

The central feature of our sensor-centric paradigm is that
sensors are rational and driven by self-interest. Ideally sensors
should route over the most reliable paths while minimiz-
ing their own power/energy consumption rather than some
aggregate energy criterion. This model of reliable energy-
constrained routing has three benefits2: First, it is in the
interests of long-term network operability that nodes survive
even at the expense of somewhat longer (but not excessively
so!) paths. The network will be better served when a critical
sensor can survive longer by transmitting via a cheaper link
rather than a much costlier one for a small gain in reliability
or delay. Second, it takes the cost distributions of individual
sensors into account while choosing good paths. The advan-
tages of modeling rational, self-interested sensors can be seen
easily from the following example. Given a path involving
three sensors with absolute communication costs in the low,
medium and high ranges respectively, choosing a reliable path
subject to minimzing overall costs might lead to the first two
nodes having to select their highest cost links as the third
node is dominant in the overall cost. This would run counter
to the long-term operability goal of the network. Third, it
incorporates the extreme case when sensors only have limited
and local network state information (about neighbors and link
costs, for example). In this case, when information is received,
a node should choose to route to the cheapest neighbor in the
absence of further state information.

In data-centric routing [7], data aggregation or data fusion
is used to reduce the problems of data implosion and overlap.
Here, the sensor network can be perceived as a reverse multi-
cast tree with information aggregated or fused at intersecting
nodes and routed to the sink node at the root. In [9], the
authors describe data-centric routing algorithms for sensor
networks that take energy constraints and quality of service
considerations into account. In this paper, we formalize this
concept by developing a new analytical model of information
routing in sensor networks. Unlike existing techniques, we
use game theory to model intelligent sensors thereby making
our approach sensor-centric. This sensor-centric paradigm can
be applied in parallel to the data-centric information flow
model. We consider a model of additive data aggregation at
intersecting nodes, based on information value quantification.
We show that the optimal routing tree is the Nash equilibrium
[3] of the N-player routing game and that computing the

2Note that while we model reliable energy-constrained routing in this paper,
our model can be extended to other network optimization criteria such as
latency also. For example, we can let qi be the probability that a given delay
bound is exceeded at sensor si and assume a message is lost if the delay bound
is exceeded at any node. This is analogous to the sensor failure probability
qi in the reliability model. More complicated models that take into account
correlated and cumulative delay violation probabilities over a series of sensors
can be derived, which we do not consider in this paper.

optimal paths/tree (which maximizes payoffs of the individual
sensors) is NP -Hard with and without data-aggregation.

This leads us to consider two important questions. First,
are there easily computable routing algorithms which produce
approximately optimal routing paths? Secondly, in a sensor-
centric network what is an approximately optimal routing
path? There is as yet no formal framework for quantifying
and comparing the merits of different routing algorithms in
terms of the Quality of Routing (QoR) paths obtained. We
use the term QoR path from the game-theoretic or individual
sensor’s perspective rather than the well known Quality of
Service (QoS) based path (shortest path, for example) which
is an end-to-end concept. Given the increasing prevalence of
networks with ‘smart’ components, it is necessary to evaluate
the performance gain of individual components within the
overall objective. Traditional measures such as quality of
service do not suffice in capturing this concept. Therefore
we require new techniques for computing the QoR of routing
paths, i.e. ranking them. At a more specific level, given that
the optimal path is a vector of payoffs of individual nodes,
how do we characterize approximately optimal paths?

In this paper, we derive a game-theoretic path performance
metric labeled path weakness. We use this to evaluate standard
routing techniques based on aggregate payoffs as well as the
suboptimality of any routing path from the point of view of
individual sensor payoffs. We address the following issues:
How well do standard distributed routing algorithms perform
when compared to the optimal analytical solution. Can we
quantify the tradeoff of saving network state transmission
overheads in a particular routing algorithm with the quality
of routing paths (i.e., their weakness) obtained? Are there
distributions of costs, probabilities and values under which
some routes are‘less weaker’ than others.

We summarize the contributions of this paper below:
• A game-theoretic model of routing in sensor networks

is developed. Rational, intelligent sensors select routing
paths by evaluating the trade-offs between reliability and
the costs of communication.

• A sensor-centric paradigm for evaluating the quality
of routing trees for data-aggregated routing in sensor
networks, is proposed. This QoR concept captures the
participation suboptimality of a node on the given tree,
i.e., how much would a node gain by deviating from the
current tree to an optimal one. A routing heuristic based
on a team version of the routing game called Team-RQR
is presented.

• Analytical results on the complexity of computing paths
with bounded weakness are derived along with some
sufficient conditions on costs and probabilities for well
known routing algorithms such as most reliable path and
least cost neighbor to be congruent to the optimal sensor-
centric route.

• Simulation results comparing the QoR of paths obtained
using some well known routing algorithms and identi-
fying ranges of costs and probabilities in which they
perform favorably are shown.
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The paper is organized as follows: Section 2 describes our
game-theoretic model set-up. Section 3 contains analytical as
well as complexity results on path congruence and optimal
path computability. Section 4 explains the Quality of Routing
paradigm and some theoretical QoR complexity results. Sim-
ulation results comparing the QoR of different algorithms are
also presented in Section4. Finally, Section 5 concludes the
paper.

II. THE MODEL

We model data-centric routing with data-aggregation in
sensor networks. In data-centric routing, interest queries are
disseminated through the network to assign sensing tasks
to sensor nodes. Attribute based naming is used to resolve
these queries by using the attributes of the phenomenon
to trigger responses from appropriate sensor nodes. Further,
data aggregation at intersecting nodes can be used to reduce
implosion and overlap problems in the network. With data-
agregation, the sensor network can be perceived as a reverse
multicast tree with information fused at intersecting nodes and
routed to the sink node at the root.

Let S = {s1, . . . , sn} denote the set of sensors, modeled as
players in a routing game to be defined below, with generic
members i and j. For ordered pairs (i, j) ∈ S × S, the
shorthand notation ij is used. Sensor si has information (data)
of value vi which it wishes to send to the sink node sq = sn,
where vi ∈ �+ represents an abstract quantification of the
value of the event sensed at node si, 1 ≤ i ≤ n. Also,
vi = 0 for nodes whose sensed information does not satisfy
the specified attributes of the query. Information is routed to sq

through an optimally chosen set S′ ⊆ S of intermediate nodes
by forming neighbor communication links. Link formation
occurs by a process of simultaneous reasoning at each node
leading to a path from each si with nonzero value vi to sq. For
untethered sensor networks, communication energy costs are
a significant constraint. We account for this by modeling link
formation as costly. Each node incurs a cost cij > 0 for each
link link ij it establishes. This link cost is an abstraction of
message transmission costs in terms of required transmission
power or available on-field sensor battery life.

Our routing model is rigorous enough to account for cases
when some sensors can choose to participate or not participate
in this routing process. By incorporating a participation cost
to each sensor, we can analytically model situations where a
certain proportion of sensors switch themselves off (perhaps
based on neighborhood density as proposed in [2]) to conserve
energy3. Further, our model selects routing path based on
the ‘importance’ of the query being reported. For example,
urgent messages must be treated differently and routed over
more reliable paths even at higher costs. These two features
of our model allow sensors to rationally decide (by computing

3In this paper we do not consider the protocol required to implement
this participation mechanism, perhaps through exchange of ‘permission to
transmit’ messages. Our objective is to consider routing implications of this
abstraction of individual sensor self-interest.

individual payoffs) whether or not to participate in routing data
of a given significance.

We assume that node si can fail with a probability (1−pi) ∈
[0, 1). We make no assumptions about correlations in these
probabilities while formulating our abstract model, since the
model primarily requires the values of path reliability, which
we assume can be obtained4. For ease of calculation in our
simulations (Section 4), we do assume independent failure
probabilities. Also, for simplicity, we assume that the sink
node sq never fails.

Thus the graph G = (S,E, P,C) represents an instance of
a data-centric sensor network in which data of value vi is to
be optimally routed from node si to node sq, with S the set
of sensors interconnected by edge set E, P (si) = pi the node
success probabilities and C(si, sj) = cij , the cost of links in
E. We denote a path from any node sa to sb in G by the node
sequence (sa, s2, . . . , sb).

In this context, we define the following problem called
Reliable Query Reporting (RQR): Given that data trans-
mission in the network is costly and nodes are not fully
reliable, how can we induce the formation of a maximally
reliable data aggregation tree from reporting sensors (sources)
to the querying (sink) node, where every sensor is ‘smart’ and
motivated by self-interest, i.e., it can trade-off individual costs
with network wide benefits. This optimal data agregation tree
will naturally be distinct from standard multicast trees such as
the Steiner tree or shortest path trees which minimize overall
network costs and therefore cannot represent the outcome of
self-interested sensors. The solution to this problem lies in
designing a routing game with payoff functions such that its
Nash equilibrium corresponds to the optimally reliable data
aggregation tree. We now describe the different components
of this strategic game.

Strategies. Each node’s strategy is a vector li =
(li1, . . . , lii−1, lii+1, . . . , lin) and lij ∈ {0, 1} for each j ∈
S\{i}. The value lij = 1 means that nodes i and j have a
link initiated by i whereas lij = 0 means that sensor i does
not send information to j. The set of all pure strategies of
player i is denoted by Li. We focus only on pure strategies in
this paper. Given that node i has the option of forming or not
forming a link with each of the remaining n − 1 nodes, the
number of strategies available to node i is |Li| = 2n−1. The
strategy space of all nodes is given by L = L1 × · · · × Ln.
Notice that there is a one-to-one correspondence between the
set of all directed networks with n vertices or nodes and the
set of strategies L. In order to keep the analysis tractable,
in this model we assume that each node can only establish
one link. Note that while diffusion routing based algorithms
start off with nodes sending query responses to the sink over
multiple paths [5], eventually a single route is established
once interest gradients are determined. Our objective in this
paper is to compare and evaluate these final routing paths

4While we assume static failure probabilities in developing our model, a
dynamic extension would view the network in terms of failure probability
snapshots in successive operational periods.
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from the game-theoretic optimality point of view and hence
our restriction is valid. Further, routing loops are avoided
by ensuring that strategies resulting in a node linking to
its ancestors yield a payoff of zero and are thus inefficient.
Under these assumptions each strategy profile l = (l1, . . . , ln)
becomes a reverse tree T , rooted at the sink sq. We now
proceed to model the payoffs in this game.

A standard noncooperative game assumes that players
are selfish and are only interested in maximizing their own
benefits. This poses a modeling challenge as we wish to
design a decentralized information network that can behave
in a collaborative manner to achieve a joint goal while taking
individual operation costs into account. Since the communal
goal in this instance is reliable data transmission, the benefits
to a player must be a function of path reliability but costs of
communication need to be individual link costs.

Payoffs. Consider a strategy profile l = (li, l−i) resulting in
a tree T rooted at sq, where l−i denotes the strategy chosen
by all the other players except player i. Since every sensor that
receives data has an incentive in its reaching sq, the benefit to
any sensor si on T must be a function of the path reliability
from si onwards. Since the network is unreliable, the benefit
to player si should also be a function of the expected value
of information at si. Hence we can write the payoff at si as:

Πi(l) =
{

gi(v1, . . . , vn−1)Ri − cij if si ∈ T
0 otherwise

where Ri denotes the path reliability from si onwards to sq

and gi the expectation function, is explained below.

s5

sq

s1

s2 s3
s4

s6

Fig. 1. Payoffs with data aggregation.

Consider the data-aggregation tree shown in Fig. 1. Let Vi =
gi(v1, . . . , vn−1) denote the expected value of the data at node
i and F (i) the set of its parents. Then Vi = vi+

∑
j∈F (i) pjVj ,

i.e., si gets information from its parents only if they survive
with the given probabilities. The expected benefit to sensor
si is given by ViRi, i.e., i’s benefits depend on the survival
probability of players from i onwards. Hence the payoff to si

is Πi = RiVi − cij . For example, the payoff to sensor s5 in
the figure is Π5 = R5(v5 + p1v1 + p2v2) − c56.

Definition 1: A strategy li is said to be a best response of
player i to l−i if

0 ≤ Πi(li, l−i) ≥ Πi(l′i, l−i) for all l′i ∈ Li.

Let BRi(l−i) denote the set of player i’s best response to
l−i. A strategy profile l = (l1, . . . , ln) is said to be an optimal
RQR tree T if li ∈ BRi(l−i) for each i, i.e., sensors are
playing a Nash equilibrium. In other words, the payoff to a
node on the optimal tree is the highest possible, given optimal
behavior by all other nodes. A node may get higher payoffs by
selecting a different neighbor on another tree, however it can
only do so at the cost of suboptimal behavior by (i.e reduced
payoffs to) some other node(s). Also, although each sensor
can form only one link, multiple equilibrium trees can exist.

Note that the process of choosing the optimal strategy
requires each node to determine the optimal tree (in the
remaining graph) formed by each of its possible succesors
on receiving its data. The node then selects as next neighbor
the node, the optimal tree through which it gets the highest
payoff. Since all nodes in the graph have to perform these
calculations, finding the optimal RQR tree is computationally
intensive as will be shown formally in the next section. Further,
given the additive nature of data aggregation, note that many
of the results that hold for multiple sources are also true when
considering a single source, routing to the sink. Hence we
present our results mainly in terms of single source-sink paths
and when necessary the result is stated in terms of trees.

III. RESULTS

This section contains results on two aspects of the RQR
problem. We first analyze the complexity of computing the
optimally reliable (or equilibrium) data aggregation tree in a
given sensor network. This is followed by some analytical
results that establish congruence between the equilibrium RQR
path and other well known path metrics such as the most
reliable path, energy conserving paths etc.

A. Complexity Results

We begin with the following general result.
Theorem 1: Given an arbitrary sensor network G with

sensor success probabilities P , communication costs C, and
data of value vi ≥ 0 to be routed from each sensor si to the
sink sq, computing the optimaly reliable data aggregation tree
T (the RQR tree) is NP -Hard.

Proof: Given any solution T ′ to the RQR problem,
verifying the optimality of the successor for each node in T ′

requires exhaustively checking payoffs via all possible trees to
sq. Thus RQR does not belong to NP . That the RQR problem
is NP -Hard follows by reduction, using the following lemma
which considers the special case of finding an optimal path,
given a single source. (Note that this is equivalent to finding
routing trees without data-aggregation.)

Lemma 1: Let P be the optimal RQR path for routing data
of value vr from a single reporting sensor sr to the sink node
sq in a sensor network G where vi = 0 ∀i �= r. Computing
P is NP -Hard.

Proof: Reduction from Hamiltonian Path. See [6] for
details.
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Note that the RQR path and tree problems remain NP -
Hard for the special case when nodes have equal success
probabilities. The case when all edges have the same cost is
much simpler, however, as will be shown below.

B. Analytical Results

Given the complexity of finding the equilibrium RQR path,
we next identify conditions under which this path coincides
with other commonly used routing paths. In particular, we look
at the most reliable path [MRP] which can be computed using
well known techniques such as Djikstra’s shortest path. We
also look at cheapest neighbor paths [CNP], obtained when
nodes with limited network state or diffusion gradient/route
quality information, select next-neighbors using only localized
criteria such as communication costs.

Let G be an arbitrary sensor network with a single source
node having data of value vr. Then the following results
hold. Note that the results describe only sufficient conditions
for congruence with the optimal path. Also for brevity, most
results are stated without proofs details of which can be found
in [6].

Observation 1: Given pi ∈ (0, 1] and cij = c for all
ij, then the most reliable path always coincides with the
equilibrium path. For uniform pi, the equilibrium path is also
the path with least overall cost.

Before proceeding further, we now introduce some notation.
For any node si, let ci = {cij}, cmax

i = max{cij} and cmin
i =

min{cij}. Also cmax = max
i

{ci
max} and cmin = min

i
{ci

min}.

We use P l
i to denote a path of length l from si to sq.

Proposition 1: Given G and P (si) = p ∈ (0, 1], for all i,
the most reliable path from sr to sq will also be the optimal
path if

cmax
i − cmin

i < vrp
m(1 − p)

for all si on the most reliable path Pm
r .

Note that the above result identifies sufficient constraints on
costs for the most reliable path to also be optimal. The result
shows that while the MRP can be costlier than other paths, to
be optimal it cannot be ‘too’ much more expensive. From the
above result, it also follows that when cmax−cmin < pm(1−
p) the MRP coincides with the optimal, thereby providing a
global bound on costs.

We define the cheapest neighbor path [CNP] from sr to sq

as the simple path obtained by each node choosing its succes-
sor via its cheapest link (assuming such a path exists). In a
sense, this path reflects the route obtained when each node has
only limited network state information (about neighbor costs
and probabilities) and in the absence of gradient information
or route quality feedback, should merely minimize its local
communication costs. The following proposition identifies
when CNP will coincide with optimal path.

Proposition 2: Given G and P (si) = p ∈ (0, 1), for all i,
the optimal path is at least as reliable as the cheapest neighbor
path. Furthermore, the CNP will be optimally reliable if

min{ck\cmin
k } − cmin

k > vrp
l(1 − pt−l)

where l is the length of the shortest path from sr to sq and

t is the length of the CNP.

The above proposition illustrates that the CNP does not have
to be the most reliable in order to be optimal, it only needs
to be sufficiently close. For networks in which some paths
(edges) are overwhelmingly cheap compared to others, routing
along CNPs may be reasonable. However, in networks where
communication costs to neighbors are similar, routing based
on local cost gradients is likely to be less reliable.

IV. QUALITY OF ROUTING

We divide this section into two subsections. In the first
of these we present our route evaluation metric and some
theoretical results for it. The second half provides experimental
results about the quality of routes obtained different routing
algorithms based on our metric. Throughout this section, we
assume that there is a single source and destination pair. Thus
results are presented in terms of paths instead of trees.

A. Evaluation Metric

In an ideal sensor-centric network, optimal RQR paths are
computed by individually rational sensors who maximize their
own payoffs. On the other hand traditional routing algorithms
optimize using a single (end-to-end) distinguishing attribute
such as total cost or overall latency5. From a sensor-centric
perspective these approaches are inadequate and sub-optimal
since they use a single network wide criterion. How then do
we compare different suboptimal paths? For example, one path
may yield high payoffs for sensor i with low payoffs for sensor
j, while the exact opposite situation may prevail on another
path. Clearly in a framework where rational, independent
sensors maximize their own payoff subject to the overall
network objective, we need a new metric for evaluating the
quality of different paths from an individual sensor’s point
of view. We introduce a metric called path weakness which
captures the suboptimality of a node on the given path, i.e.,
how much a node would have gained by deviating from the
current path to an optimal one. We believe this provides a new
sensor-centric paradigm for evaluating the quality of routing
in sensor networks.

We formally define our Quality of Routing metric as fol-
lows: Let P be any given path from the source sensor sr to
the sink node sq. Consider any node si on P with ancestors
{sr, . . . , si−1. Let P̂iq be the optimal RQR path for routing
information of value Vi = vr

∏i
t=r pt (i.e., the expected value)

to sq from si in the subgraph G\{sr, . . . , si−1}, assuming
such a path exists. Thus P̂iq represents the best that node
si can do, given the links already established by nodes
sr, . . . , si−1 and assuming optimal behavior from nodes si

onward, downstream. Define ∆i(P) = Πi(P̂iq)−Πi(P) as the
payoff deviation for si under the given strategy profile (path)

5See [9] however, for an elegant model in which the authors develop
data-centric routing algorithms for sensor networks that take both energy
constraints and Quality of Service considerations into account. However the
model contrasts from ours in not being sensor-centric
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P . A negative deviation represents the fact that si is benefiting
more from this path (perhaps at the expense of some other
sensor). Conversely, a positive deviation indicates si could
have done better. We set ∆i(P) = vr whenever Πi(P) is
negative. This positive deviation from the optimal payoff is
intended to represent the fact that si is participating in a path
which is giving it negative payoffs i.e, the communication
cost on the edge out of si in P outweighs the benefits to
si of participating in this route. Also note that it is possible
that no optimal path from si exists, even if its payoff on
P is positive. For example, all of si’s neighbors might have
very high communication costs and cannot participate in any
optimal path, making si in a sense isolated. In such cases, we
set ∆i(P) = −Πi(P).

∆(P) = max
i

∆i(P) represents the payoff deviation at the

node which is ‘worst-off’ in P . What can be said about this
parameter for optimal and sub-optimal paths?

Observation 2: 0 < ∆(P ′) ≤ vr for all non-optimal paths
P ′.

However observe that ∆i(P ′)–the weakness of individual
nodes on sub-optimal paths can take both positive and negative
values. On the other hand, ∆(P) = 0 if and only if P is the
Nash equilibrium path of the game. Thus from a global point
of view, ∆(P) identifies the maximum degree to which a node
on the path can gain by deviating. This allows us to rank the
‘vulnerability’ of different paths, which embodies the idea that
a path is only as good as its weakest node. We label this QoR
measure path weakness.

Note that the weakness metric can be similarly defined
for data-aggregation trees. Given a sensor on any tree T , its
weakness can be calculated as its payoff deviation from the
optimal tree that would have been obtained, given the expected
value at that sensor along with the distribution of values in the
remaining nodes in the graph. As mentioned before, we focus
on single-source single-destination paths in the rest of this
paper.

We now compute bounds for finding paths with low path
weakness. We will show that there exist networks not contain-
ing paths of bounded weakness. Our proof relies on construct-
ing a specific example of a network whose best suboptimal
paths satisfy certain weakness characteristics. This network is
constructed below.

1c

1c

sq

p
1

p
1

p
2

p
3

c2 c2

1c
1c 1c

S 1

sa sb

Fig. 2. Network for illustrating path weakness.

Consider an arbitrary sensor network G = (S,E) as shown
in Fig. 2 with the following parameters: The vertex set S is the
union of vertex set S1 with nodes sa, sb and sq. G′ = (S1, E1)
is an arbitrary network, where |S1 = {sr = s1, . . . , sn}| = n.
The edge set E for S is the union of disjoint edge sets E1,
E2 and E3, where E2 = {(sa, si)}

⋃
{(sb, si)},∀si ∈ S1, and

E3 = (sa, sq)
⋃

(sb, sq). There are two types of edge costs
in C–edges in E3 cost c2 with all other edges costing c1.
The node success probabilities are P (si) = p1, ∀si ∈ S1,
P (sa) = p2 and P (sb) = p3. vr is the value of information to
be routed from sr to sq. These parameters are related to each
other as follows:

p3 < pn−2
1 (1)

p3 < p2 (2)

p1p2(1 − p1p3)vr < c2 − c1 (3)

c1 < c2 < pn
1p2p3vr (4)

We now look at the strategy choices for nodes in G on any
path from sr to sq, when receiving vr. Condition (4) ensures
that all edges in the network are feasible since all payoffs
are greater than zero. Also, sq is reachable only through sa

and sb and all edges from any node in S1 have identical
costs. Thus if sa (sb) is the parent of any node in S1, this
node will immediately prefer to link to sb (sa) to maximize
its payoff. Coupled with condition (3), this implies that if
node sa is visited before sb in any path, sa prefers to link to
any available node in S1 instead of linking to sq, regardless
of the number of nodes visited in S1 prior to sa. A similar
situation holds true for sb if it is visited before sa.

Now consider paths Pik = (s1, . . . , sk, si, sq)}, where i =
a, b is the penultimate node for k = 1, 2, . . . , n and similarly
Pk = (s1, . . . , sk, sa, sk+1, sb, sq), k = 1, . . . , n−1, assuming
they exist. The observations above can be used to calculate the
path weakness of Pak as follows. First,

∆a(Pak) =

{
vrp

k
1p2(p1p3 − 1) + (c2 − c1), 1 ≤ k ≤ n − 1,

0 k = n
(5)

Also, for each node sj , 1 ≤ j ≤ k,

∆j(Pak) =






vrp
k
1p2(pn−k

1 − 1), 1 ≤ k ≤ n − 1,
if Pan exists

vrp
j
1p2(p1p3 − pk−j

1 ), 1 ≤ k ≤ n − 1,
otherwise

0, k = n
(6)

To understand (5–6), first note that Pak cannot be the
equilibrium RQR path whenever k < n. The optimal choice
for sa is always to link to any available node in S1. Condition
(1) implies that nodes in S1 would prefer to link to nodes in
S1 and sa and avoid visiting sb en route to sq, if possible.
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Hence, the optimal payoff for sj is via Pan if it exists, and
via the path (s1, . . . , sj , sa, sj+1, sb, sq), otherwise.

It can be seen that ∆j(Pak) ≤ 0, for all j and k. Thus
∆(Pak), the path weakness of Pak, is given by ∆a(Pak).
Similarly, ∆(Pbk) can be obtained by interchanging p2 and
p3 in (5).

Now consider paths of type Pk, 1 ≤ k ≤ n − 1.
∆a(Pk) = ∆k+1(Pk) = ∆b(Pk) = 0, since these three
nodes are choosing their neighbors optimally. Therefore the
path weakness of Pk is given by

∆(Pk) = ∆1(Pk) =






vrp
k+1
1 p2(pn−k−1

1 − p3),
if Pan exists

vrp
2
1p2p3(1 − pk−2

1 ),
otherwise

(7)

Similarly, it can be shown that all paths in which sb is
visited before sa or in which multiple nodes in S1 are visited
in between sa and sb, are weaker than the above paths.

The following lemma can be used to compute a lower bound
on the path weakness of suboptimal paths.

Lemma 2: For any ε ∈ (0, vr

3 ] in the network G, there exists
a path Q and probabilities p1, p2, p3, such that either Q is the
optimal RQR path or 0 < vr

3 − ∆(Q) < ε and there is no
other suboptimal path weaker than Q.

Proof: Consider all paths P\Pan in G.

min
P\Pan

{∆(P)} = min
k

{
Pak,Pbk,Pk

}

where Pak, Pbk and Pk are as defined before.
Using (2), ∆(Pbk) > ∆(Pak), and hence Pbk is always

weaker than Pak. Additionally from (5), and (7), it can be
seen that

min
P\Pan

{∆(P)} = min
{
Pa1,P1

}
(8)

To obtain the result in the lemma, we set Q to be the path
P1 and solve to obtain the corresponding p values as below.

pn−2
1 > p3 > max

(
1

p1(1 + pn−2
1 )

,
1 + pn−1

1

p1(2 + pn−2
1 )

)
(9)

The first term in the maximum is obtained using condi-
tions (3) and (4) simultaneously for the network G. Solving
for situations when Pa1 exceeds P1 and then using (3) gives
the second term. Thus a network G with the above probability
values will have the property that

min
P\Pan

{∆(P)} = ∆(P1) =






vrp
2
1p2(pn−2

1 − p3),
if Pan exists

0 otherwise
(10)

Identifying the upper bound of ∆(P1), subject to the
constraints in (9) yields the desired bounded weakness result.

Since G′ is an arbitrary subgraph of G, the above lemma
implies the existence of infinitely many graphs without any
suboptimal paths of weakness bounded by (vr

3 − ε). Stated
another way, path weakness better than vr

3 is difficult to
achieve, as shown in the next result.

Theorem 2: There exists no polynomial time algorithm to
compute approximately optimal RQR paths of weakness less
than (vr

3 − ε) unless P = NP .
The proof follows from Lemma 2. Details can be found in

[6].

B. Experimental Results

In this section, we simulate the performance of different
routing algorithms to answer the following question: What are
the quality of paths compared to that of the optimal RQR
path? This allows us to identify the different ranges of node
reliabilities and edge costs in which a particular algorithm
performs better than the others.

The setup for our experiements is as follows: In every
iteration a random graph with 20 nodes and edge density
of 30% is generated. The source and destination pair are
randomly chosen and the value of data at the source node is
normalized to one. For each run, we choose a node survival
probability, which is identical for all nodes. Communication
costs over each edge are drawn randomly from a given
parameter range in every iteration. For each set of node
success probabilities and edge costs, we have presented
results for 15 different source and destination pairs (we
have verified that this is a representative sample). In each
simulation run, for a particular source and destination pair,
routing paths are generated by several algorithms and the
corresponding path weakness (QoR) is calculated. The
data have been used to construct graphs which are presented
at the end of the paper. We have used the following algorithms:

1. Most Reliable Path (MRP): This produces the most
reliable path from source to the sink. Since, in our setup, each
node has the same success probability the MRP is always
the shortest path as evaluated by Djikstraa’s standard shortest
path algorithm.

2. Overall Cheapest Path (MCP): This algorithm is also
Dijkstraa’s shortest path algorithm, with the weight of each
edge being the communication cost.

3. Cheapest Next Node Path (CNP): This provides a
path where each node chooses its cheapest available edge
leading to the sink node.

4. Team RQR Path (TRQR): This path is obtained by
considering a ‘team’ version of the RQR game in which all
nodes on the path share the payoff of the worst-off node on it.
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Rather than selecting a neighbor to maximize their individual
payoffs as in the original game, nodes in the team-RQR
model compromise by maximizing their least possible payoff.
Formally, let Pc represent the most reliable path from sr to
sq that does not traverse any link exceeding cost c. Then P ,
the equilibrium path of the team-RQR game is given by

P = arg max
ci∈C

{
vrR(Pci

) − ci

}
(11)

for each distinct edge cost ci in C. An intuitive technique
for computing the optimal team-RQR path is to repeatedly
determine the most reliable path in the graph that is obtained
by successively removing edges of decreasing distinct cost.
In the worst case m most reliable path calculations are made,
where m is the number of distinct edge costs in the network.

5. Genetic Algorithm Path (GA): Here, we use a genetic
algorithm for solving the optimal RQR problem based on
the GA for the bicriteria shortest path problem provided in
[4]. A path has been encoded according to the priority-based
method. In this procedure, a set of n random numbers (n
being the total number of sensor nodes) is generated so that
the i-th random number is the priority of the i-th node. A
path is sequentially constructed led by the highest priority
feasible nodes i.e., nodes which do not lead to a dead end or
a cycle. The genetic operators used here are position-based
crossover and swap mutation. A next generation is chosen by
tournament method. We stop if the difference between the
fitness values of the best paths of two adjacent generations is
equal to zero.

The first three algorithms are standard routing algorithms.
The fourth algorithm is our heuristic derived from a game
theoretic point of view. Genetic algorithm is a standard
technique applied to problems which are NP-complete or
NP-hard. We have used it here to check if there is any range
of node success probabilities and costs where it does well.

Interpretation of Results:
Our simulation results are illustrated in Fig. 3 and Fig.

4. In the first five graphs, nodes are assigned very high
success probabilities. Edge costs are low and chosen from a
distribution such that every path is feasible (all node payoffs
are positive). In case I and II, we keep the node success
probability fixed at 0.99 and vary the maximum edge cost
from 0-0.05 and 0-0.01 respectively.

In case I, the path weakness ranges from 0 to 0.6. MCP and
TRQR have average weaknesses 0.08 and 0.05 respectively in
spite of their of their considerable deviations. Since the cost
range and hence the cost differences among various edges are
not significantly large, all the above three algorithms that try
to reduce the overall cost in different ways behave reasonably
well. However, the range of path weakness of MRP (0-0.4)
suggests that the cost range is so high that a path which relies
solely on maximizing reliability (MRP) cannot perform well.
The maximum edge cost is then reduced to 0.01 in case II.
Consequently, the overall range of path weakness reduces to

0-0.14. Significant improvement takes place in the behaviour
of MRP and TRQR as they coincide with the optimal path
for more than 90% of the source and destination pairs. The
fact that MRP always coincides with the optimal path indicates
that the very high node success probability and very small cost
range together have reduced the length of the optimal path. The
diminished variation within different edge costs allows MCP
and CNP to perform well. Since the behaviour pattern and the
range of path weakness of CNP do not vary significantly from
case I to case II, we can conclude that performance of CNP is
invariant over a large cost range when reliability is kept very
high.

For Cases III, IV and V, we make the maximum edge
cost a decreasing function of the node success probability.
Then, we slowly increase node success probability to observe
the impact. In case III, where the node success probability
is 0.992 and the cost range is 0-0.227, the range of path
weakness is quite high (0-0.35). When we raise the value
of the success probability, the optimal paths can have longer
lengths without sacrificing too much reliability. Therefore
CNP, which tends to have a longer length, has lower path
weakness now (average weakness being 0.035 approximately).
The TRQR heuristic, which tradesoff both the overall path
reliability and the overall cost performs as well as CNP
producing an average path weakness of 0.32. As expected
MCP’s weakness does not differ too much from that of CNP
or TRQR. The above mentioned feature of the optimal path
can also explain MRP’s unstable pattern and the high range of
path weakness in spite of very high node success probabilities.
In case IV, the success probability is increased to 0.998 and
the cost range is reduced to 0-0.058. This accounts not only
for the relatively small range of path weakness (0-0.1) but
also for the good performance of MCP, CNP and TRQR.
The congruence of TRQR and MCP is well explained by the
significantly large difference between the success probability
and the maximum edge cost. In case VI, we explore the
consequences of restricting the likely optimal path length using
one low node success probability (0.5) and maximum edge
cost (1/2)4. MRP, the shortest path, always coincides with
the optimal path even though the success probability is quite
low. So do TRQR and MCP. However, since the CNP usually
has longer path lengths, its QoR is quite weak, in most cases.

When we compare the first 5 graphs, we observe that
the increment in the node success probabilities together with
the decrement in the maximum edge costs gradually leads
to improvements in the behaviour of all five algorithms. In
general, MRP will be a good heuristic for obtaining good QoR
paths only when path reliabilities are low. The behaviours of
TRQR and MCP are quite stable (with a little variation in the
weakness ranges) in all the ranges of our experiment and on
average, provide better QoR. CNP provides good QoR when
the success probability increases and the maximum edge cost
decreases accordingly.
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(b) Case II
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(c) Case III
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(d) Case IV

Fig. 3. Simulation results
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Fig. 4. Simulation results

V. CONCLUSION

In this paper we formulate a sensor-centric model of in-
telligent sensors using game theory. The problem of routing
data in such a network is studied under the assumption that
sensors are rational and act to maximize their own payoffs in
the routing game. Further, nodes in our model are susceptible
to failure and each node has to incur costs in routing data.
To evaluate the contribution of individual nodes in the routing
tree, we develop a metric called path weakness. This individual
sensor-oriented evaluation criteria provides a new paradigm
for examining paths which we call Quality of Routing. While
the optimal routing problem turns out to be computationally
hard, our experimental results show that standard path routing
mechanisms like MRP and MCP find reasonably good paths.
Our game-theoretically oriented algorithm - Team RQR also
performs well. For future work we plan to consider extensions
using distributed games and dynamic data routing.
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