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Abstract: In this work, we model the sensor networks as an unsupervised learning and clustering 
process. We classify nodes according to its static distribution to form known class densities (CCPD). 
These densities are chosen from specific cross-layer features which maximizes lifetime of power-
aware routing algorithms. To circumvent computational complexities of a power-ware communication 
STACK we introduce path-loss models at the nodes only for high density deployments. We study the 
cluster heads and formulate the data handling capacity for an expected deployment and use localized 
probability models to fuse the data with its side information before transmission. So each cluster head 
has a unique Pmax [10] but not all cluster heads have the same measured value. If the cluster size in n, 
from the cluster then the first order entropy of data aggregation is  
 

 . 
 
In a lossless mode if there are no faults in the sensor network then we can show that the highest 

probability given by Pmax is ambiguous if its frequency is  otherwise it can be determined by a 
local function. We further show that the event detection at the cluster heads can be modelled with a 
pattern  and , the number of bits can be a correlated pattern of 2 bits and for a tight lower bound 
we use 3-bit Huffman codes which have entropy of 
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 . 
 
These local algorithms are further studied to optimize on power, fault detection and to maximize on 
the distributed routing algorithm used at the higher layers. From these bounds in large network, it is 
observed that the power dissipation is network size invariant. The performance of the routing 
algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed 
that if the network size is kept constant and the density of the nodes is kept closer then the local 
pathloss model effects the performance of the routing algorithms. We also obtain the maximum 
intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., 
the lifetime of sensor network. Copyright © 2009 IFSA. 
 
Keywords: Power-aware routing, Sensor network lifetime, MAC layer, Distributed algorithms, 
Bayesian classifier, Slepian & Wolf theorem, Real-time sensing and simulation, Huffman coding, 
Entropy 
 
 
 
1. Introduction 
 
It has been recognized that energy savings can be obtained by pushing computation within the network 
in the form of localized and distributed algorithms. A common optimizations used by distributed 
power-aware algorithms is to select cluster heads or transmitting nodes which allows source, 
destination pairs to forward data in a multi-hop route. Analytically convenient assumption for the node 
distribution as shown in Fig. 1, in large wireless networks is homogeneous (or stationary), where the 
number of nodes in a certain area of density which minimizes communications costs by using a 
distributed criteria (such as time scheduling, spacial distribution or total power available in the 
network) and the numbers of nodes in two disjoint areas are independent random variables. For sensor 
networks, this assumption is usually justified by claiming that sensor nodes may be dropped from 
aircraft in large numbers. As sensor networks uses self-organizing topology management and the 
distributed algorithms uses cross-layer energy management optimizations(such as Sleep scheduling, 
MAC duty cycle, netcoding), the nodes as they are deployed in a one dimensional lattice from source 
to sink can be easily represented in two dimensions Bayesian classifier. The class conditional 
probability densities (CCPD) for  are determined by a priori number of neighbors. This 
classifier deterministically finds the next source, destination pairs during each iterations of the 
distributed algorithm due to known probability for successful transmission. To know the error of the 
classifier (Lifetime) P(error|x), we like to optimize number of classes  which 
maximizes lifetime of the sensor network without faults. If the class conditional densities are not 
known a priori in unattended Bayesian learning then the success of transmission by a sensor node 
can be modeled as a Maximum-Likelihood estimate, as the power-aware resource ϴ is known it can 
find nodes which are in the transmitting range. From the comparison of the Bayesian Classifier and the 
best effort Maximum-Likelihood classifier for using the ideal transmitters, which shows that if  the 
number of nodes increases then the Bayesian Classifier and the Maximum-Likelihood classifier has the 
same success probability of transmission. We derive the distributional properties of the interference 
and provide upper and lower bounds for its CCPD. We show that distributed Bayesian Classifier 
performs better when the transmitter-receiver ratio is 80 %-20 % the success probability is greater than 
that of a best effort local algorithm's performance. We consider the probability of successful 
transmission in an interference limited channel when fading is modeled as Rayleigh and using CSMA 
and B-MAC. Power losses due to overhearing, interference and fixed radio range induced by MAC 
clustering makes lifetime of routing algorithms perform poorly for the same number of nodes, power 
and data throughput. 
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Fig. 1. Computational and Protocol aspects of WSN simulator. 
 
 
2. Related Work 
 
2.1. Distributed Algorithms 
 
There exists a significant body of literature for cross-layer networks performance using distributed 
nodes. This is the framework for MIT’s µ - AMPS project [12], which focus on innovative energy 
optimized solutions at all levels of the system hierarchy, from the physical layer and communication 
protocols up to the application layer and efficient DSP design for micro sensors nodes. Sensor 
networks contain too much data for an end-user to process. Therefore, automated methods of 
combining or aggregating the data into small set of meaningful information is required [11]. In 
addition to helping avoid information overload, data aggregation, also known as data fusion, can 
combine several unreliable data measurements to produce a more accurate signal by enhancing the 
common signal and reducing the uncorrelated noise. Here we will categories some of the work done in 
energy-aware models with respect to reusability (cluster-head) and develop a data fusion framework 
which allows to avoid unreliable data in any arbitrary size network. Simulations show that LEACH can 
achieve as much as a factor of 8 reductions in energy dissipation compared with conventional routing 
protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, 
doubling the useful system lifetime for the networks we simulated. Thus, communication between the 
sensor nodes and the base station is expensive, and there are no “high-energy” nodes through which 
communication can proceed. 
 
 
2.2. Information Processing 
 
Rate distortion theory gives theoretical bounds for how much compression can be achieved using lossy 
compression methods. Many of the existing audio, speech, image, and video compression techniques 
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have transforms, quantization, and bit-rate allocation procedures that capitalize on the general shape of 
rate–distortion functions. Rate distortion theory was created by Claude Shannon in his foundational 
work on information theory. In rate–distortion theory, the rate is usually understood as the number of 
bits per data sample to be stored or transmitted. The notion of distortion is a subject of on-going 
discussion. In the most simple case (which is actually used in most cases), the distortion is defined as 
the variance of the difference between input and output signal (i.e., the mean squared error of the 
difference). 
 
 
3. Main Contributions and Organization of the Journal Paper 
 
The journal paper is organized as follows: in Section 4.1-4.7 deals with system model and assumptions 
which are used in simulation setup and analysis. Section 5.1 deals with algorithmic aspect of 
distributed selection of cluster head algorithms. Section 6.1 uses simulation for network layer analysis 
with fixed energy resources for a large sensor networks. Section 7.1 deals with protocol overheads and 
radio interference model for MAC losses using 802.11/CSMA/BMAC. Section 8.1-8.2 describes 
aggregation for clustering algorithms using TTL and actual success count for single-hop protocols and 
multi-hop protocols. It uses the Bit-error ratio (BER) to estimate the capture rate at the receivers and 
uses fault-tolerant algorithms to design an error resilient codebook. Section 9.1 estimates how sleep 
scheduling and TDMA based active timeout based MAC helps to increase the lifetime of the sensor 
network. 
 
4. System Model and Assumptions 
 
In this section we introduce the system model and derive some required results for the cross-layer 
power analysis. The metrics used in simulation are shown in Fig. 4. 
 
 
4.1. System Model and Notation 
 
The design of interoperable sensors for the new wireless standards is a task for VLSI hardware and 
software (firmware) domains. Resource constrained prototypes are hard to deploy and debug so we use 
a cross-layer simulator due to its unique deployment needs. Such as unreliable wireless channels, 
remote sensing and non-replenishable energy resource and wastage of energy due to idle and collisions 
in the underlying protocol. As the sensor application goals is to use a large amount of sensors and use 
collaborative processing for local tasks. This type of distributed processing not only saves precious 
sensor's energy but makes is more reliable than using a few nodes and also creates a secure network. 
Simulator gives a controlled environment to deploy large amounts of nodes and measure faults due to 
resource bottlenecks at each cross functional layer of the application. 
 
Simulation is performed at each abstraction layer such as energy management, network discovery or 
point to point communication. The same concepts can be extended to an emulator with common 
programming methods which once tested can be deployed into hardware running co-resident real-time 
OS with real drivers and IO's connected. Common goal is to find a micro-OS which interfaces with 
RS-232, Bluetooth, USB, GPRS or SDIO. This allows transparency to communicate with the external 
world and allows an easy testing platform with networked PC's. The communication to the PC or a 
laptop is through a central coordinator node which typically has enough resources and helps manage 
the sensor network and works as a gateway node between sensing and IP based networks. The 
coordinator stores all the global parameters which it needs to maintain the network and at the same 
time manages a data stream with a given communication rate. In contrast to other simulators which 
give a lot of standard statistics this method allows debugging the resource constraints for custom 
sensing applications and easily ports into real mote hardware and test their reliability in one common 
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framework. 
 
The architecture combines the upper network layers which solely deal with distributed optimization 
with the frequent connectivity needs required by the lower layers to achieve balanced performance in 
terms of energy savings for sensing and routing activity. Since the hardware layers are non-
programmable, it is best to use the specification for low cost, low memory and low data rate 
requirements. The Network-Embedded Test-Bed infrastructure for management and operation of the 
Test-Bed gives information of the overall running tasks and also supplies management data of the state 
of the sensors such as expected events, drifting of the clocks, and low resource state indicators. The 
research presents implementation of different power-aware algorithms and their effects on routing and 
complexity of implementation. 
 
It uses a JENNET/IEEE802.15.4 ZigBee development platform to validate the memory requirements 
and target needs used during abstracted simulation. The flexibility in setup allows the target platform 
to choose according to the needs such as network management, routing or real-time sensing 
functionality of the OS. This research summary discusses work in progress regarding opportunities and 
challenges related to cross-level simulation and optimization based on realistic scalable reliability. The 
cross level approach is shown in Fig. 2, where the baseline architecture is shown in Fig. 2(a) and the 
respective timing, resource, computation complexity and energy model is shown in Fig. 2(b). 
 
What are the reliabilities which are built-in to the system for such a test-bed? A real-time system 
responds in a (timely) predictable way to all individual unpredictable external stimuli arrivals. It is 
important to note that the average performance is not the issue. 
 
 
  Network 
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Fig. 2. (a) Cross Layer resource allocation and optimizer, (b) WSN simulator. 
 
 
4.2. Power-aware Complexity 
 
The lifetime of sensor networks is typically factored into the resources it is deployed with, as by design 
it is unattended (i.e. no replacement of batteries) it coexists for many months to some years. The 
numbers of sensor nodes are typically run into hundreds to thousands in a large environmental 
monitoring application. As the number of nodes in such applications are enormous than typical 
networks it uses a clustering algorithms in which typically 20 %-30 % [8] of the nodes aggregate the 
data of the remaining 70 %-80 % [8] of the connected nodes. These cluster heads are data 
concentrators which can be modeled as a device CODEC, compressor/decompressor. The sensors 
which are attached to the nodes typically sense temperature, humidity and light. It is true, however, 
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that the sensor measurements in the operation region are spatially correlated (since many 
environmental phenomena are) they tend to be very similar. In a CODEC a probability model is used 
which gives the highest probability to the most frequently occurred values reported by the sensors 
within the same cluster. This allows transmitting peak values with least amount of bits as the 
underlying compression algorithm assigns least number of bit for frequently occurring values. This 
probability distribution is send with the data values to the central coordinator. So each cluster head has 
a unique PMax [10] but not all cluster heads have the same measured value. As in recent development 
of VLSI and MEMS technologies have made it possible to package self-powered sensors and wireless 
radio components which together is capable of collecting and processing new sensor data for a period 
of many months to few years without replacing the internal batteries. The miniaturized sensors are 
sensitive to the available effective range to the energy consumed per bit. The instantaneous drain on 
the internal batteries is evident and the study shows that 
 
 

 
(4.1)

 
 

 
(4.2)

 
  , (4.3)
 
where  is the distance to transmit between sensors  to sensor , from this we get the Power rule 
based on the distance  of nearest sensor to the farthest away sensor, substituting in the above 
equation (4.1) and summing up the total energy required for all transmissions within one meter, two 
meters, three meters, four meters and extending up to  meters to a progressive sequence in 
equation (4.5) (as shown in Fig. 3(a). 
 
 

 
(a) 

 
(b) 

 
Fig. 3. (a) Shows fixed energy overhead with distance in transmission,  (b) Plot of the theoretical expected 

lifetime using Power Law [16], being used to demonstrate ranking of popularity. To the right is the long tail,  
to the left are the few that dominate (also known as the 80-20 rule). 

 
 

To sum up the total energy consumption we can write it in the form of Power Law [16]: 
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  (4.4)
 
Substituting d-distance for x and k number of bits transmitted we equate as. 
 
  (4.5)
 
Taking Log both sides, 
 
  (4.6)
 
Notice that the expression in equation (4.6) has the form of a linear relationship with slope , and 
scaling the argument induces a linear shift of the function, and leaves both the form and slope  
unchanged. Plotting to the log scale as shown in Fig. 3(b) we get a long tail showing a few nodes 
dominate the transmission power compared to the majority, similar to the Wikipedia reference  
80-20 rule of Power Law [10]. 
 
 
4.3. Scale Invariance Property in Clustering for Energy Dissipation in RF Based Applications 
 
As novel sensor applications are deployed to provide reliable data over the life-time [10] of the sensor 
network, with current routing algorithms [7] which are dependent to communicate with a central 
coordinator the instantaneous drain on the sensors are very demanding. As shown in the previous 
equation (4.6) in logarithmic scale for point to point transmission, we can extend this by clustering  
nodes in the same range as shown in equation (4.8). 
 
  (4.7)
 
  (4.8)
 
From the equation (4.8) we can infer that the property is scale invariant even with clustering  nodes 
in a given radius . This is validated from the simulation results [8] obtained latter in the result 
section, which show optimal results (minimum loading per node) [8] when clustering is  20 % as 
expected in theory (80-20 rule) from Fig 3(b). It is true, however, that the sensor measurements in the 
operation region are spatially correlated, to be efficient in a large sensor network partitioning the 
network into special clusters in done periodically and data needs to be aggregated locally by fusing all 
sensor reading at the cluster head. This data is periodically routed to a central coordinator which is a 
collaborative effort of all the active nodes in the sensor network. 
 
 
4.4. Fault Rate 
 
Large deployment of sensor network that use an efficient distributed algorithm to select cluster heads 
every round, due to rotating of cluster heads the network lifetime [10] is extended without faults. The 
fault rate of such an algorithm can be defined as the residual percentage (rei) [4] of good sensor when 
the network incurs faults due to resource drain. This is typically referred to as the sensor networks 
residual energy; if the fault rate is higher the cluster head selection algorithm is less optimal. The two 
dimensional simulation model is expressed for distributed and passive cluster based routing. In the 
paper the fault rate is measured for both the cases for algorithm complexity, multi-hop dependency, 
MAC layer losses and Bit error rates. The expected fault rate with respect to Bayesian normalized 
probability is shown in Fig. 5. 
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We will say that we are trying to find the optimal distributed threshold to select cluster heads , out of 
all possible routing algorithms, that maximizes the probability of , Cluster head selection with least 
percentage of good remaining sensors. Number of faults given the original measurement M: 
 
 

 
(4.9)

 
By Bayes theorem this is equivalent to 
 

  (4.10) 
 
 
4.5. Bayesian Classifier 
 
Sensor networks are deployed in a dense configuration due to its limited radio range and fixed non 
renewable energy resources due to computational/networking characteristics of sensor networks. To 
collaboratively use the limited resources distributed algorithms, select a single node which transmits 
serially using its UART pre-processed sensed data information using many local resources. As the cost 
of radio transmission is much more than local sensing, the sensor network uses two different 
topologies to address the energy cost at the cross-layer stack. The network layers uses the upper layers 
assuming MAC layer abstraction to optimally pick cluster heads by using a fixed probability density 
function (pdf) of a network resource at the node, such as, remaining battery energy. This type of pdf is 
power-aware as it uses a collaborative function to minimize over use of network resources thus 
avoiding pre-mature node failures. 
 
 

 
 

Fig. 4. Measurement metrics for node failures. 
 
 
The MAC layer uses a k-neighborhood distance algorithm to find other nodes within its own limited 
range and uses a multi-hop schedule to the specific data transmitting node. This scheduling allows 
multi-hop nodes to use sleep cycles and lower their energy consumption while idling. These multi-hop 
algorithms use low-power listening and use a preamble to wake up nodes, sleep cycles when the 
transmitter is completely off and traffic based preamble to synchronize nodes to receive the data 
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payload. 
 
If ϴ1, ϴ2, ϴ3 are the data values of a parameter such as residual energy, observed values by the 
sensors, as large scale sensor deployment are a dense deployment as the reading are correlated only an 
average ϴ1 needs to be transmitted. As the clustering is based on the network layer which optimizes on 
radio range and not the sensing region it always is approximated and corrected using some training 
samples using less number of bits to be transmitted, this is the fundamental design based on power-
aware data model. 
 
 

  
 

(a) 
 

(b) 

 
 

(c) 

 
Fig. 5. (a) Persistence clustering when CH probabilities are known a priori (b) Passive clustering when CH 

probabilities are unknown (c) Error Bounds of persistence & passive clustering 
Estimation of CH selection error and MAC layer routing using Bayesian distributed rule. 

 
 
4.6. Lifetime Calculation 
 
To understand this the layer III MAC duty cycle we use a micro kernel real-time clock which allows to 
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measure different states of the MAC. It can be conveniently divided into Tx, Rx, Idle times for a given 
nodes lifetime. The duty-cycling can be defines as 
 
 

 
(4.11)

 
 

 
(4.12)

 
 

 
(4.13)

 
 

 
(4.14) 

  (4.15)
 
Substituting this amortized dissipation value for a standard battery of 2000 mAh into the lifetime 
equation with 0.01 % duty cycle a 100 ms preamble MAC. 
 
 
4.7. Compression Rate 
 
It is well known that the Huffman algorithm [19] and definition from table 1 finds a code minimizing 
average redundancy; this is so well known that the problem itself is often referred to as the “Huffman 
problem.” The Huffman algorithm is a greedy algorithm built on the observation that the two least 
likely items will have the same length and can thus be considered siblings in the coding tree. A 
reduction can thus be made in which the two items of weights and  can be considered as one 
with combined weight , and the codeword of the combined item determines all but the last 
bit of each of the items combined, which are differentiated by this last bit. This reduction continues 
until there is one item left, and, assigning this item the null string, a code is defined for all input items. 
In the corresponding optimal code tree, the  leaf corresponds to the codeword of the  input item, 
and thus has weight , whereas the weight of parent nodes are determined by the combined weight 
of the corresponding merged item. Van Leeuwen gave an implementation of the Huffman algorithm 
that can be accomplished in linear time given sorted probabilities [20]. Shannon [21] had previously 
shown that an optimal must satisfy. 
 
 

 
(4.16)

 
or equivalently, 
 
  (4.17)
 
Less well known is that simple changes to the Huffman algorithm solve several related coding 
problems which optimize for different objectives, shown to satisfy redundancy bounds of the form 
 
  (4.18)
 
  (4.19)
 
for some entropy measure , cost measure , and redundancy measure . These bounds are the first 
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of their kind for nontraditional Huffman codes, bounds which are functions of both entropy and , 
as in the traditional case [22]–[26]. However, they are not the first improved bounds for such codes; 
more sophisticated bounds on the optimal solution for one of these problems were given by Slepian & 
Wolf for correlated sources. 
 
 

Table 1. Summary of Notations for Analysis of Huffman Coding. 
 

Symbols Definitions 
 Normal entropy 
 Correlated/Minimized entropy based on pmf 

mass function 
 Correlated redundancy measure 
 Transmission cost measure in bits 

 Optimal Huffman code length 
 Huffman tree using pdf distribution 

 
 
4.7.1. Slepian & Wolf Theorem 
 
The Slepian-Wolf rate [13] region for two arbitrarily correlated sources  and  is bounded by the 
following inequalities, this theorem can be adapted using equation (4.20) 
 
 

 
(4.20)

 
If the correlated sources are differing by a few bits, the possible number of codewords can be 
represented as , where m= no. faulty bits [5]. In our case  as the parameters are distributed 
whilst collected locally at the cluster head. 
 
 
4.7.2. Distributed Source Coding with Side Information 
 
In sensors networks several measured values are sensed in a distributed manner and these are 
aggregated according to the users query. The goal of all the encoder is analogous to the previous 
section where it uses cosets. Table 2 illustrates the bin formation to reduce the overall bits needed for 
transmission. Considering the case of distributed sensing application, the encoder is further designed 
with a machine learnable redundancy range which is specific to each and every application. This 
mutually redundant measured range is correlated with sensors which are in the same wireless range 
and connected to a parent. This information, also called side information is shared with the decoder. 
Owing to side information, even lesser number of bits is needed to represent the changing values 
coming from each cluster heads transmitting to the joint decoder. Encoder and decoder have access to 
the side information Y. which is correlated to X and can be represented by the equation (4.20). 
According to the Slepian-Wolf Theorem [13], established in 1971, that the number of bits needed by 
using the theorem is lesser, than the total entropy for both the two arbitrarily correlated sources 

. 
 
 

Table 2. Bit reduction in terms of correlated sources. 
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4.7.3. Probability Mass Function 
 
In probability theory, a probability mass function (abbreviated pmf) is a function that gives the 
probability that a discrete random variable is exactly equal to some value(which occurs in a given 
static region of high density or a two dimensional model such as planar graphs). A pmf differs from a 
probability density function (abbreviated pdf) in that the values of a pdf, defined only for continuous 
random variables, are not probabilities as such. Instead, the integral of a pdf over a range of possible 
values (a, b] gives the probability of the random variable falling within that range. As an example, if 
every node has its residual value as rei index [4] then if a given node needs to optimally do a 
communication task. Then it needs to find only the total energy it needs from its neighbors rei index’s 
which adds up to a total cost of 1. This is typically a local cumulative algorithm as it terminates in 

 operation. 
 
 
4.7.4. Probability Density Function 
 
In probability theory, a probability density function (abbreviated pdf), or density, of a random variable 
is a function which describes the density of probability at each point in the sample space (mostly 
drawn with an overall global distribution). The probability of a random variable falling within a given 
set is given by the integral of its density over the set. As an example, if every node has its residual 
value as rei index then if a given algorithm needs to find active cluster heads then it looks for highest 
or better rei index from all the available active nodes to assign cluster heads. This is typically a 
distributed global cumulative scale algorithm as it terminates in  operations. 
 
 
5. Cross-Layer Error Analysis - Algorithms 
 
5.1. Estimate of the Active CH Value for Known Densities 
 
The simulated routing algorithms such LEACH-S [12], LEACH-E [8] and CRF [8] as described in the 
above table 2 use the knowledge that the nodes which are sensing are correlated and have known 
densities such as cluster size and radio range. The underlying model uses different ways to select the 
cluster heads to minimize the error rate by using a pdf. When the sensor faults happen due to fixed 
energy resources at the cluster head the total energy unused at the end of its lifetime is the residual rate 
[6], the routing algorithms tries to minimize this error criterion. As this model uses the network layer 
and the only dependant variable is the fixed lifetime model [10]. The complexity of the algorithm can 
be defined by using the standard implementation of the LEACH distributed algorithm and its power-
aware variations. 
 
  (5.1)
 
  (5.2)
 
  (5.3)
 
Complexity of the routing algorithms for LEACH is shown in equation (5.1), LEACH-E equation (5.2) 
and CRF equation (5.3). In the next section we will use only the lower layer such as power-ware MAC 
and estimate the multi-hop routing errors. In this case the model is not dependant on the fixed energy 
resources and only dependant on k-nearest neighbor rule (or having sufficient nodes distributed in a 
Poisson distribution) it uses to find its multi-hop nodes as shown in Fig. 6(b). As the node probability 
are not known a priori the error rates are much higher than the persistence clustering. 
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(a) 

 
(b) 

 
Fig. 6. (a) LEACH single-hop nodes, (b) Passive clustering algorithms with multi-hop nodes. 

 
 
6. Simulation 
 
6.1. Results from the Network Layer 
 
Simulation models large number of nodes and calculates the lifetime when sensor faults are more 
likely to happen, the Table 3 shows number of cluster heads and the fault rate for distributed clustering 
and passive clustering [3]. Simulation results confirm as shown in Fig. 7, the fault rate is network size 
invariant and converges to the optimal values derived in theorem 1 and 2 [3]. 
 
 

Table 3. Summary of notations for analysis of Bayesian classifier. 
 

Symbols Definitions 
N Total number of deployed nodes 
N Number of nodes in the cluster 
µ Density of the class 

PMAX Bayesian class rule 
Rx, Ry Entropy of correlated sources 
R, r Radio range 
P K-neighborhood fault probability 
P* Bayesian probability 
Ω Bayesian classes 
S Data source node 
D Destination node 
ϴ Nodes residual densities 

CH Cluster head 
P(ωi||x) Conditional probability 
P(x||ωi) Class conditional probability 
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Fig. 7. Show energy dissipation node loading (with link layer abstraction). 
 
 
7. Lifetime Cross-Layer Error Analysis - Routing Protocols 
 
7.1. Results from the MAC Layer 
 
When node densities are not known in advance due to asynchronous operation and unscheduled sleep 
schedules polling and other characteristics of sensor due to its dependence in fixed resources. The 
problem due to this is for data transmitting nodes needs to find a near neighbor in a deterministic way 
by which it can build a passive cluster to multi-hop its data. This uses minimal clustering overhead as 
it does not use the upper layers during communication synchronization. The behavior of the k-Nearest-
Neighbor rule [3] will be directed by in our simulation a two-dimensional node distribution of 

 where node density has one or less neighbors. The unconditional average probability of error 
occurring will be found over all nodes positioned at coordinates specified by : 
 
 

 
(7.1)

 
The convergence of the nearest neighbor for distributed clustering and passive clustering are derived, 
the distributed clustering case is 
 
  (7.2)
 
For passive clustering is given by 
 
  (7.3)
 
As shown in simulations [6] where lower bound for LEACH-S when it becomes faulty and the 
remaining residual energy using the cross-layer simulator is  which is the fault rate. In 
the case of passive clustering when node density  or using the k-neighborhood rule [3] the 
node densities are unknown in this case due to high likely-hood of faults. The protocol simulation 
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results [3] that the upper bound has error rate of  which converges to the proof derived 
in theorem 3 and theorem 4 [3] and the upper bound. 
 
 

 
 

Fig. 8. Shows the lifetime of the overall sensor network increases when routing algorithm  
uses sleep scheduling by 2 xs. 

 
 

This work used the existing simulation models that are network-based, and specified the Qos 
framework for data reliability needed for sensor networks. The fusion of energy harvesting 
applications with power-aware MAC was studied in terms of deployment of low-level protocols for 
802.11, CSMA, and B-MAC. Furthermore, if the data is routed using multi-hop algorithms and is 
MAC-centric, then the distributed sleep scheduling [2] is observed to reduce the percentage of energy 
lost during overhearing and collision as shown in Fig. 8. The performance of routing algorithms with 
MAC losses has a long tail which is similarly observed in Power Law. Lastly, the asymptotic lower 
and upper bound for data-link reliability has been theoretically predicted using Bayes probability. 
Simulation results show that the probability of data-link reliability is greater for clustering algorithms 
due to conditioning at the cluster head in CSMA which helps sensor network protocols and more 
energy efficient when using B-MAC. A FARM which uses a low-duty cycling MAC and renewable 
energy harvesting built-in part of the routing protocol performs well in a dense sensor network 
configuration and has the added advantage of longer lifetime with Qos close to regular sensor network 
algorithms. 
 
 
8. Cross-Layer Data-Link Error Analysis - MAC Aggregation Protocols 
 
8.1. Results from the MAC Layer Using a Propagation Model 
 
In the previous case MAC abstraction is used which does not take into account the propagation losses 
and protocol retries at the MAC level. To simulate the wireless channel we use GlomoSIM [17] bit 
error ratio (BER) simulator and implement the routing algorithms for multi-hop cases. The routing 
algorithm implemented is SPEED which is a geographic routing algorithm which uses two 
dimensional coordinate spaces to calculate the path from the node coordinates. Many runs into the 
protocol simulation suggest that the radio characterization for CSMA Fig. 9(a) and B-MAC is 
comparable, Fig. 9(b) when the node densities are known. 
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(a) 

 
(b) 

 
Fig. 9. MAC performance comparison: (a) CSMA-MAC, (b) B-MAC. 

 
 
The radio characterization for CSMA [1] is prone to faults when compared to B-MAC, when using in 
multi-hop modes where the node densities are unknown. The protocol performance results show that 
the data packets received during useful lifetime is  times better Fig. 10(b) in B-MAC when 
compared to CSMA and error rates are  higher than the theoretical Bayesian limit [4] of 

 as derived in theorem 3 and theorem 4 [4]. 
 
 

 
 

 
(a) 

 
(b) 

 
Fig. 10. Data aggregation SPEED /Diffusion/LEACH: 

(a) Local data aggregation, (b) Multi-hop protocols to sink. 
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8.2. Bit Error Ratio (BER) 
 
The BER is dependent on the packet size and the frequency of the radio. As these increases with 
distance and multi-hop routing algorithms with no Qos support, we try to address this in terms of the 
actual payloads which are typically sensed values. As the BER rate is constant for a given channel we 
try to reduce the data error rate by further reducing numbers of bits needed to transmit by finding 
values which differ by only 1-bit. This is accomplished by using a , pmf with a geometrical cluster 
for a fixed radio range. This technique further sorts on lower values to minimize any potential error 
which can trigger a false high alarm. 
 
 
8.3. Addressing High Bit Error Ratio (BER) and Noisy Channels 
 
8.3.1. Frequency Dependency 
 
For short distances, 
 
 

 
(8.1)

 
 

 
(8.2)

 
• Pt is the transmitted signal power 
• Pr is the received signal power 
• Gt , Gr are the antenna gains of the transmitter and the receiver respectively. 
• L is the system loss, and λ is the wavelength. 
 
For longer distances using, Two-ray ground reflection model 
 
 

 
(8.3)

 
ht and hr - heights of transmit and receive antennas respectively and  is the distance. The above 
equation (8.3) shows a faster power loss than for Free Space Model as distance increases. The other 
observation is it is independent of frequency for longer distances, so a higher such ad 2.4 GHz 
compared to 900 MHz will be able to reduce the BER. 
 
Thus, a distribution has a min-entropy of at least b bits if no possible state has a probability greater 
than 2-b. Here we use a 3-bit prefix code, this code will be. 
 
 
8.3.2. Resilient Error Correction by Code Design 
 
An application for this decaying exponential variant was given in [21]; in this application, a 
communication channel has a window of opportunity with a total duration (in bits) distributed 
geometrically with parameter a, Fig. 1,11. The probability of successful transmission is given 
probability mass function and 0 < a < 1, find a code minimizing 
 
 

 
(8.4)
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  (8.5)
 
 

 
 

Fig. 11. Wireless channel simulation for a given geometrical area from transmitter  to a receiver . 
 
 
In 2004, Drmota and Szpankowski [27] proposed a problem which, instead of minimizing average 
redundancy,  
 
 

 
 
minimizes maximum pointwise redundancy 
 
  , (8.6)
 
This was later noted to be solvable via a variation of Huffman coding [28] derived from that in [29], 
one for which 
 
  (8.7)
 
A few observations can be used to find a series of improved lower and upper bounds on optimum 
maximum pointwise redundancy based on 
 

i. In a Huffman-like tree for a maximum pointwise redundancy code, the weight of the root 
determines the maximum pointwise redundancy, . 

ii. The total probability of any subtree is no greater than the weight of the subtree. This can be 
inductively observed. 

iii. In the Huffman-like coding, items are merged by non decreasing weight. This can be observed by 
noting that any new merged item has weight greater than either of its merged items. In fact, any 
new merged item has weight at least twice as great as either of the merged items, due to equation 
(8.7). 

 
A fourth observation is in the form of the following lemma: 
 
Lemma 1: Given a probability mass function p for items, if , then a 
minimum maximum pointwise redundancy code can be represented by a complete tree, that is, a tree 
such that 
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 and  for all . 

 
Proof: A code with minimum maximum pointwise redundancy is always obtained when using a 
Huffman style algorithm combining the items with the smallest weights,  and , yielding a new 
item of weight , and this process being repeated on the new set of weights, the tree 
thus being constructed up from the leaves to the root. Since a tree always satisfies that  
 

. 
 
Consider the tree formed by the application of this algorithm. Since the first (and thus least weighted) 
combined item is of weight  as shown in Fig. 12, clearly no combined item need be merged 
with another item until the point at which item 1 is merged or thereafter. The algorithm can, in this 
case, be seen as pairing off items in the order of a queue sorted from least weighted to most weighted 
and placing the paired-off items in the rear of the queue. Because items are processed with increasing 
weight, this processing occurs in queue order, and thus, at any given point, every item is processed 
about the same number of times as any other; the difference can only be one. This is true when the 
algorithm terminates and codeword length is equal to the number of times an item is (by itself or as 
part of a combined item) processed. Thus  for , and the complete code 
tree is optimal. We can now present the improved redundancy bounds in Fig. 13(a, b) and Fig. 14. 
 
 
 

 
 

Fig. 12. Weights on the encoded bits transmitted for sensed data. 
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(a) 
 

(b) 
 

Fig. 13. (a) Shows when MSB is not correlated  (b) Shows LSB are different by one bit after using minimal 
entropy. Designing codewords with , using lower bound entropy. 

 
 

 
 

Fig. 14. Sensor data fault-redundancy. 
 
 

9. Cross-Layer Lifetime Analysis - MAC Integration 
 
9.1. Lifetime Modeling 
 
To calculate node duty cycle and lifetime, we develop an arrangement of virtual clusters which streams 
data to the base station. Table 4 lists the primitive operations performed by MAC states which are 
extended for power-aware for normal traffic. The virtual clustering protocol implement a minimal 
version of LEACH which allows select cluster heads periodically and rotate them in a distributed way. 
Data aggregation is done from all the nodes part of the virtual clusters during the current time slot. We 
simulate a low data date application which samples every 10 seconds and passed the data to a base 
station. The MAC integration uses CSMA/BMAC/TDMA for testing the sample application with 
periodic traffic. As CSMA does not have any power saving scheme it does not perform well, on the 
other hand B-MAC has low power listening (LPL) which allows cutting down on idle listening. Here 
we introduce a basic protocol which is specific to TDMA based frame. 
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A node will keep listening and potentially transmitting as long as it is in active period. An active 
period ends when no activation event has occurred for a time TA. An activation event is: 
• The firing of a periodic timer 
• End-of transmission of a node’s own data packed or acknowledgement 
 
A node will sleep if it is not in an active period. Consequently, TA determines the minimal amount of 
idle listening per frame. Due to better synchronization of the TDMA frame based MAC, the idle 
listening is cut down when TA period is reached. Results from simulation of 100 nodes with virtual 
clustering shows that TDMA-TA based power optimization using B-MAC at the MAC layer does  
times better as shown in Fig. 15(b) to enhance the lifetime of the sensor network. 
 
 

Table 4. Summary of notations for analysis of MAC performance. 
 

Symbols Definitions 
Csleep Sleep Current 
Tx Transmit energy consumed during its lifetime 
Rx Receive energy consumed during its lifetime 
Idle Idle energy consumed during its lifetime 

TDMAno-duty-cycle When using virtual clustering of nodes n, the node is awake 
for the complete time-slot. 

TDMATA When using virtual clustering of nodes n, the node is put to 
sleep immediately after the protocol completes for the 
current time-slot. 

Cbatt Capacity of battery 
V Voltage 

Lpreamble Preamble Length (bytes) 
Lpacket Packet Length (bytes) 

ti Radio Sampling Interval (s) 
n Neighborhood Size (node ) 
r Sample Rate (packet/s) 
tl Expected Lifetime (s) 

 
 

 
(a) (b) 

 
Fig. 15. MAC performance in lifetime seconds: (a) CSMA, B-MAC with LPL and CSMA-TDMA Frame (b) 

CSMA-TA Frame, B-MAC-TDMA-TA Frame. 
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