
J. Parallel Distrib. Comput. 64 (2004) 853–865

ARTICLE IN PRESS
*Correspond

and Computer

Clemson, SC 2

E-mail addr

iyengar@bit.csc

0743-7315/$ - se

doi:10.1016/j.jp
Aspect-oriented design of sensor networks

R.R. Brooks,a,* Mengxia Zhu,b Jacob Lamb,a and S.S. Iyengarb

aDistributed Systems Department, Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College, PA 16804-0030, USA
bDepartment of Computer Science, Coates Hall, Louisiana State University, Baton Rouge, LA, USA

Received 20 June 2003; revised 7 December 2003
Abstract

The rapid technology development in wireless communication and embedded micro-sensing devices has made the distributed

sensor networks (DSN) an area of national importance. Wireless sensor networks are an important military technology with civil

and scientific applications. More importantly, the design and analysis of sensor networks can be quite complicated, since each node

must simultaneously interact with many other nodes to achieve multiple goals. In this paper, we show how this problem can be made

tractable by designing separate protocols for each aspect of a node’s behavior. We model this discrete event system by Petri Nets and

then formulate three aspect hierarchies: sensing, communications, and command. Within each aspect hierarchy, a node is

dynamically assigned roles. To combine the hierarchies, control specifications are derived that enforce consistency across the

aspects. Controllers are created using three discrete event methodologies to show how computationally independent aspect-oriented

designs can be integrated to form a unified distributed system. The controller methodologies used are: (i) Petri Nets, (ii) finite state

automata (FSA) using the Ramadge and Wonham approach, and (iii) vector addition control using the Wonham and Li approach.

Finally, we contrast the controller design methodologies by presenting the advantages and disadvantages for each method. In

conclusion, for our Petri Nets modeled DSN system with n places and m transitions, constructing Petri Nets controller is

computationally efficient but with controller execution time complexity of Oðn � m2Þ: On the other hand, FSA controller provides

prompt response with time complexity of Oðn � mÞ at the cost of manual offline state space search and encoding. Thus this method
is only applicable to medium and small size system.

r 2004 Elsevier Inc. All rights reserved.

Keywords: Distributed sensor networks; Aspect oriented design; Surveillance; Discrete event control; Petri Nets
1. Introduction

Advances in micro-electro-mechanical systems
(MEMS) technology and wireless communication have
spurred the development of wireless sensor networks
consisting of a large number of low cost, low power, and
collaborating sensor nodes [2]. Since the positions of
sensor nodes are not pre-determined, and nodes are
prone to frequent failure, system must self-organize and
maintain the topology of its internal control structures.
As the number of sensor nodes becomes large, human
management becomes infeasible and self-organization
becomes critical. Moreover, the regions under surveil-
ing author. Present address: Department of Electrical

Engineering, Clemson University, P.O. Box 340915,

9634–0915, USA. Fax: +1-814-863-1396.

esses: rrb@acm.org (R.R. Brooks),

.lsu.edu (S.S. Iyengar).

e front matter r 2004 Elsevier Inc. All rights reserved.

dc.2003.12.003
lance are subject to unpredictable environmental dis-
turbances, requiring adaptation by the system.
We derive models of, and controllers for, distributed

sensor networks consisting of multiple cooperating
nodes. Each battery-powered node has wireless com-
munications, local processing capabilities, data storage,
and limited mobility. We derive hierarchical structures
that support user control of the distributed system. Of
particular interest is self-organization technology for
adapting the system to the user’s needs.
Many aspects need to be considered simultaneously

when designing distributed surveillance networks.
Firstly, some human guidance is needed to determine
global tasks that the network should perform. This is
especially important for military applications, where
rules of engagement may change abruptly. Secondly,
sensor nodes need to maintain communications con-
nectivity, even in the presence of non-trivial distur-
bances. Thirdly, the system must efficiently collect and



ARTICLE IN PRESS

P1
Spring 

T1
P2
Summer

P3
Autumn

T2

T3

T4

P4
Winter

n

Fig. 1. Petri Net model of the cycle of the seasons with four possible

markings: {1000,0100,0010, 0001}.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865854
interpret sensor readings. Each aspect is quite complex,
requiring coordination among nodes. This coordination
requires different nodes to have different roles. Self-
organization requires these roles to be chosen at run-
time.
The complexity of this system is non-trivial. The task

of designing the system could easily become intractable.
In recognition of this, we divide network control into
three hierarchies: (i) operational command, (ii) network
communication, and (iii) collaborative sensing. Each
hierarchy considers one aspect of the network’s opera-
tion. This divide and conquer approach simplifies the
system design task. Each aspect hierarchy maintains a
control structure suited to its goal and evolves
independently of the others.
Each aspect hierarchy has a hierarchical structure

with three roles: (i) leaf node, (ii) cluster head and (iii)
root node. We will explain how these roles create
command structures of an arbitrary number of levels for
scalability, reliability and energy conservation. Each
node fulfills multiple roles. Roles are chosen dynami-
cally and can change during the course of a mission.
Aspect-oriented design has flexibility, but also has

associated risks. Since three hierarchies control each
node simultaneously, inconsistencies due to conflicting
aspect goals need to be resolved. We use discrete event
control methods to integrate the hierarchies and resolve
conflicts. In addition, discrete event control allows us to
verify the integrated system for deadlocks, livelocks, and
uncontrollability.
The remainder of the paper is organized as follows.

Section 2 gives a review of Petri Nets. Section 3 describes
the structure of the network hierarchies. In Section 4, we
provide control specifications. The controllers are derived
in Section 5. Section 6 provides results from simulation run
using the controllers. Section 7 is the conclusion.
2. Petri Nets

Petri Nets are a graphic mathematical model for
describing information flow introduced by Carl Adam
Petri’s dissertation in 1962. The model proved versatile
in visualizing and analyzing the behavior of asynchro-
nous, concurrent systems. Later research led to the
direct application of Petri Nets in automata theory. Petri
Nets model the relationship between events, resources,
and system states [13].
A Petri Net is a bi-partite graph with two classes of

nodes: places and transitions. The number of places and
transitions are finite and non-zero. Directed arcs
connect nodes. Arcs either connect a transition to a
place or a place to a transition. Arcs can have an
associated integer weight. DEDS state variables are
represented by places. Events are represented by
transitions. Places contain tokens.
The DEDS state space is defined by the marking of the
Petri Net. A marking is a vector expressing the number
of tokens in each place. A transition is enabled when the
places with arcs incident to the transition all contain at
least as many tokens as the weight of the associated arcs.
The firing of a transition removes tokens from all places
with arcs incident to the transition and deposits tokens
in all places with arcs issuing from the transition. The
number of tokens removed (added) is equal to the
weight of the associated arc. The firing of a transition
thus changes the marking of the Petri Net and the state
of the DEDS system.
Mathematically, a Petri Net is represented as the tuple

S ¼ ðP;T ; I ;O; uÞ with P: Finite set of places, T: Finite
set of transitions, I: Finite set of arcs from places to
transitions, O: Finite set of arcs from transitions to
places and u is an integer vector representing the current
marking. Fig. 1 is a Petri Net modeling the cycle of
seasons. To design our FSA controllers, we derive
Karp–Miller trees from the Petri Nets [4]. Despite their
name, Karp–Miller trees are graph structures; they
represent all possible markings a Petri Net can reach
from a given initial marking.
3. Hierarchy models

3.1. Overview and terminology

In an effort to thoroughly describe the functionality
of a remote, multi-modal, mobile sensing network three
aspects of system behavior must be addressed:

* Network communication—maintaining communica-
tions within the network.

* Collaborative sensing—coordinating sensor data
interpretation.

* Operational command—assigning resources within
the network and controlling internal system logistics.

Each aspect hierarchy has three roles:

* Root—is the top level of the hierarchy. It coordinates
among cluster heads and provides top-level guidance.



ARTICLE IN PRESS
R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865 855
* Cluster head—coordinates lower level controllers and
propagates guidance from the root to lower layers.

* Leaf—performs low-level tasks and executes com-
mands coming from the upper layers.

In this paper, we provide a Petri Net plant model for
each role of each aspect. The Petri Net models of the
aspects are given in the appendix.
We have identified global consistency issues that

require the nodes to constrain the actions taken by
individual aspect hierarchies. These requirements were
captured as control specifications and used to derive the
appropriate control structures.
Fig. 2 shows the hierarchical relationship between the

three aspect roles. To make the hierarchy adaptive, a
cluster head can control any number of leaves. Similarly,
a root node can coordinate an arbitrary number of
cluster heads.
While there are three roles within each aspect

hierarchy, the design does not limit hierarchy instances
to only three levels. Networks that cover large regions,
or operate in highly cluttered environments require
more complex organizations. For this reason, internal
nodes are inserted between the root node and cluster
heads. In our implementation, internal nodes are either
root or cluster head nodes that are connected recur-
sively. This allows complex structures to arise as
required by the mission.
In the network communication and collaborative

sensing hierarchies, the internal nodes are root nodes.
A network containing four levels would consist of a
number of three-level subnets, each supervised by a root
node. Root nodes at the third tier would each in turn
report subnet statistics to an overseeing ‘‘master’’ root
at the fourth tier. The master root would manage each
of the three-level subnets according to subnet capacities.
In other words, collections of cluster heads are subnets
controlled by a root node. Combinations of cluster
heads and root nodes can be controlled by another root
Root

Cluster head Cluster head

Leaf Leaf Leaf Leaf

Fig. 2. Relationships between three nodes levels.
node. In this manner the network may be expanded to
manage an arbitrary level of complexity.
Recursion in the network communication and colla-

borative sensing hierarchies takes place at the root node;
however, for the command and control hierarchy
recursion takes place at the cluster head. As discussed
previously the network communication and collabora-
tive sensing network hierarchies are designed in a
fashion in which supervising nodes at each level oversee
the activities of subnets. This differs from the opera-
tional command hierarchy, where the top level of the
hierarchy must be designed as a supervisor overseeing
the network as opposed to a subnet. The mapping
functions as well as topology maintenance require
specific methods be implemented at the tier charged
with overseeing the entire network. For this reason, the
recursion in the operational command hierarchy is
implemented at the cluster head level, the highest level
in the hierarchy based on a supervisor–subnet philoso-
phy. The root node controls a set of cluster heads.
Cluster heads can coordinate leaf nodes and/or other
cluster heads. The independent design and implementa-
tion allows recursion in different hierarchies to be
designed at different tiers without complications.
A given physical node has a role in each of the three

aspect hierarchies. It is important to note that a nodes
role in one aspect hierarchy is completely independent of
its role for the other two aspects (e.g., a node can be root
for the communication aspect, cluster head for the
command and control aspect, and leaf for the colla-
borative sensing aspect). This allows maximum flex-
ibility in network configuration and provides the
network with the ability to configure sensing clusters
dynamically in order to best process sensor readings
from an individual target. Each aspect protocol includes
protocols for nodes to dynamically negotiate role
changes within the hierarchy (Fig. 3).

3.2. Operational command

The operational command aspect is responsible for
maintaining the core functions of the network. The
combined operational command aspect hierarchy con-
trols allocation of nodes to surveillance regions, includ-
ing mapping unknown territory and discovering
obstacles. It also controls node deployment, and retreat.
Fig. 6 of the appendix demonstrates the interaction
between the root, cluster heads, and leaf nodes.
The operational command hierarchy addresses all

issues related to network deployment. In general, the
topology or geography of the surveillance region is
unknown. The operational command hierarchy includes
mapping unknown terrains and algorithms for efficient
deployment. In addition to initial mapping, a mobile
network must update its global map as inaccuracies or
changes are discovered.



ARTICLE IN PRESS

Root

Cluster head

Cluster head

Cluster head

Internal node

Leaf Leaf

Leaf Leaf

Leaf Leaf

Fig. 3. Example of a more complex structure.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865856
The network reconfigures itself as priorities change.
Initial node deployments concentrate nodes in regions:
(i) where it is assumed enemy traffic will be heavy or (ii)
which are of strategic interest to friendly forces. Over
times the network finds areas where enemy traffic is
actually flowing, which are likely to differ from those
initially anticipated. The strategies of friendly forces will
also change over time.
The root node manages network resources and

oversees the following functions: mapping the region
of interest, node assignment, node reallocation, network
topology and network retreat. The root provides
information about these functions to the end user and
distributes user preferences and commands to appro-
priate subnets. A pictorial description of the root node is
provided in the upper portion of Fig. 6.
Cluster heads (Fig. 6 middle) manage the activities of

subnets of leaf nodes and other cluster heads, generate
topology reports, interpret commands from the root,
calculate resource needs, and monitor resource avail-
ability.
Leaf nodes (Fig. 6 bottom) only consider the area they

are currently monitoring and retain no global informa-
tion. Each leaf node directly interacts with its environ-
ment, performing terrain mapping and providing
position and status information as required by upper
levels of the hierarchy.

3.3. Network communications

Network communications is a critical aspect of any
mobile network. The network must maintain data flow
in the presence of environmental interference, jamming
and node loss. At the highest level, the network must
retain contact with the user. Throughout the hierarchy,
actions include adjusting transmission power, frequency
hopping schedules, ad-hoc routing, and movement to
correct interference. The combined Petri net models in
Fig. 8 of the appendix describe how and when these
actions are taken.
Messages within the network may be in one of three

classes. The first message class is intact. These messages
are not corrupted. The second type of message is
corrupted. They must be filtered or retransmitted before
proper processing is possible. The final type of message
does not reach the intended target at all. A special case
exists when the recipient is unaware of the transmission
and cannot initiate corrective actions.
Key pathologies, which contribute to message degra-

dation, include transmission range, multi-path fading,
background noise and jamming. Symptoms of these
pathologies can be used to indicate how the network
should react. Detection of multi-path fading should be
followed by a pattern of small movements designed to
minimize the effect without drastically exchanging the
network topology. Background noise may be overcome
by modifying the frequency hopping patterns as certain
frequencies are less susceptible to certain forms of noise.
Weak signals resulting from excessive distance between
nodes can be overcome by increasing transmission
power.
Beyond correcting packet corruption, the network

must also recover from packet losses. To ensure
connectivity between nodes and their immediate super-
visors, messages passing information up the hierarchy
have acknowledgments. If an acknowledgment is not
received, retransmission occurs according to parameters
set by end users. When retransmissions are exhausted, a
supervisor may have to be replaced. When communica-
tions with a supervisor is severed, leaf nodes (Fig. 8
bottom) and cluster head nodes (Fig. 8 middle)
immediately enter a promotion cycle. The node waits
for an indication that a replacement supervisor has been
chosen. If none is received, the node promotes itself to
the next level. It broadcasts that it has assumed control
of the subnet and overtakes supervisory responsibility. If
the previous supervisor rejoins the subnet, it may
demote itself.
Lost contact between the root node (Fig. 8 top) and

the user is more difficult to address. Upon exhausting
retransmissions, the root assumes that contact has been
lost and it is isolated from the network. The first action
taken is to broadcast a message throughout the network
indicating that root contact has been lost. Each node
tries to establish contact with the user and become the
new root. If this fails, the network is put to sleep by a
command propagated down the hierarchy. At this point
it is left to the user to re-establish contact. While in this
quiescent mode the network suspends operations, and
responds only to a wake command transmitted by user.



ARTICLE IN PRESS
R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865 857
3.4. Collaborative sensing

The collaborative sensing aspect addresses how well
the designated area is observed and how raw sensor data
are processed and fused. Coordination of sensor data
interpretation is shown in Fig. 7 of the appendix. This
aspect hierarchy is based on our sensor network
implementation, which was tested at 29 Palms Marine
Base in November 2001.
Each node has multiple sensors and may have multiple

sensing modalities reducing the node’s vulnerability to
mechanical failure and environmental noise [3].
Initial processing of sensor information is done by the

leaf node (Fig. 7 bottom). Time series data are
preprocessed. A median filter reduces white noise and
a low pass filter removes high frequency noise. If the
signal is still unusable, it is assumed either that the
sensor is broken, or that environmental conditions make
it impossible, and thus the node temporarily hibernates
to save energy. After filtering, sensor time series are
registered to a common coordinate system and given a
time stamp. Subsequently, data association determines
which detections refer to the same object. A state vector
with inputs from multiple sensing modalities can be used
for target classification [9]. Each leaf node can send
either a target state vector or Closest Point of Approach
(CPA) event to the cluster head.
Cluster heads (Fig. 7 middle) take care of combining

statistics into meaningful track information. A cluster
head is selected dynamically. Dynamic cluster head
selection chooses the node closest to the signal source
(target) as the new cluster head. This guarantees that the
cluster head is the one best suited to fuse sensor data
with minimal communication overhead.
Root nodes (Fig. 7 top) coordinate activities among

cluster heads and follow tracks traversing the area they
survey. In this hierarchy, internal nodes are root nodes.
They define the sensing topology, which organizes itself
from the bottom up. This topology mimics the flow of
targets through the system. It has been suggested that
this information can guide future node deployment [5].
Network topology reports are calculated by combining

computational geometry and graph theoretic techniques.
Based on information collected from leaf nodes, cluster
heads will generate voronoi diagram and calculate the
maximal breach path and best-served path of each cluster
and send their topology reports to the root node. The
root node generates an overall topology report in a
recursive manner. These data define the system topology
and the quality of service (surveillance) [10].
4. Control specifications for DSN

Now that we have designed protocols for the behavior
aspects of the sensor network and the roles needed for
coordination of the tasks performed by that aspect, we
need to merge the protocols into a unified system. We do
this by considering each aspect protocol a plant model
that needs to be controlled by the system. We then
synthesize a controller that constrains aspect behaviors
to actions that do not violate the needs of the other
aspects. Where irreconcilable conflicts exist, the con-
troller decides which aspect of system behavior is most
important. We find this a major advance in aspect-
oriented design, and the main contribution of this paper.
In this section, we derive the control specifications used
to integrate the three aspect hierarchies.
Given the set of states G and the set of events S, the

controller disables a subset of S as necessary at every
state gAG: Control specifications are defined by
identifying state and event combinations that lead the
system to an undesirable state. Each specification is a
constraint on the system and the controller’s behavior is
defined by the set of constraints. Control of the DSN
requires coordination of all aspects of individual node
activities within the constraints of mission goals. Each
node has a set of responsibilities and must act according
to its capabilities in response.
We identified events that lead to undesirable states.

Three primary issues were found that can cause conflicts
between system aspects: (i) movement of a node
conflicting with the needs of another hierarchy; (ii)
nodes attempting to function in the presence of
unrecoverable noise; and (iii) retreat commands from
the command hierarchy should have precedence over all
other commands. Following is the set of constraints the
controllers impose on the DSN:

OC—operational command,
CS—collaborative sensing,
NC—network communication.

1. When a node is waiting for on-board data fusion, it
should be prevented from moving by NC, OC and
CS. Also it should not be promoted by NC or by CS
until sensing is complete.

2. Hibernation induced by unrecoverable noise or
saturated signal in CS should also force the node
to hibernate in NC and OC (and vice versa, for leaf
nodes only). Wakeup in CS needs to send wake-up to
OC/NC.

3. While the cluster head is in the process of updating
its statistics, its leaves should be prevented from
moving by NC, OC, or CS.

4. While a cluster head node is receiving statistics from
its leaf nodes, it should be prevented from moving by
NC, OC, or CS.

5. When sensor nodes are in low power mode as
determined by NC, or damaged mode as determined
by OC, they should be prohibited from any
moving for prioritized relocation or occlusion
adjustments.



ARTICLE IN PRESS
R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865858
6. Retreat in OC should supercede all actions, except
propagation of retreat command.

7. Nodes encountering a target signal in the CS should
suspend mapping action in OC until sensing is
complete.

8. Move commands in OC/NC should be delayed while
node is receiving sensing statistics from lower levels
in the hierarchy.

A control specification is specified as: lmpb: l is a
k � n matrix (number of control specifications by the
number of places in the plant); m is an n � 1 matrix
representing number of tokens in each place of the
plant. b is a k � 1 integer matrix each element
representing the total maximal allowed number of
tokens in any combination of places.
5. Controller design for DSN

Several controller design methods exist. Each enforces
constraints in its own way. Vector controllers use state
vector comparison to determine the transitions that
violate the control specifications. Petri Nets controllers
use slack variables to disable the same transitions. FSA
controller uses Moore machines to determine which
events should be inhibited in terms of current encoded
state. In this section, we show how each of these
techniques can be used to create controllers that
adjudicate between conflicting aspect hierarchies.
Controller design is complicated by the existence of

uncontrollable and unobservable transitions. Un-
controllable transitions cannot be disabled; unobserva-
ble transitions cannot be detected. When uncontrollable
or unobservable transitions lead to undesirable states,
the controller design process requires creating
alternative constraints that use only controllable transi-
tions.

5.1. Finite state machine controller

Verifying system properties, such as safeness, bound-
edness and liveness, is done using the Karp–Miller tree.
It represents all possible states of the system. Ramadge
and Wonham described supervisory control of discrete
event process using finite state automaton [14]. We
generalized their contribution and proposed our own
innovations.
Ramadge and Wonham acquire the state feedback

map by enumerating all legal states in the FSA together
with their binary control patterns. Introducing the
Moore machine and state encoding in our method
automatically yields the control pattern from derived
logical expressions in terms of their current state.
First, we trim the Karp–Miller tree to reach a finite

state automaton as a recognizer for the legal language of
the plant. Then, the transition table is used to derive
logical expressions in terms of encoded state for each
controllable transition [1]. The binary control pattern bit
for a particular transition is set to 1 when control
specification lmpb continues to hold after the transition
firing. For multiple control specifications, the binary
control pattern for a particular transition is 1 if and only
if the current state satisfies the conjunction of all the
inequalities imposed by all constraints.
This approach to FSA modeled controller is unique in

two respects. Instead of exploring the algebraic or
structural property of a Petri Net as in the case of VDES
and Petri Net controllers, it utilizes traditional finite
automata to tackle the control problem of discrete event
system. In addition, the introduction of the Moore
machine to output controller variables guarantees quick
response. The quick response is acquired at the cost of
extensive searching and filtering of the entire reachable
state space offline.

5.2. Vector addition controller

The vector discrete event system (VDES) approach
represents system state as an integer vector. State
transitions are represented by integer vector addition
[7]. The VDES is an automaton that generates a
language over a finite alphabet S consisting of two
subsets: Sc and Suc. Sc is the set of controllable events
that can be disabled by the external controller. Suc is the
set of uncontrollable events that cannot be disabled by
the controller.
When illegal markings are reachable from the initial

marking by passing through a sequence of uncontrol-
lable events, it is an inadmissible specification. Inad-
missible control specifications must take an admissible
form before synthesizing a controller.
A VDES controller is very similar to a Petri Nets

modeled controller. A controller variable c is introduced
into the system as a place with the initial value to be b

minus the initial value of the transformed admissible
control specification [7]. A controllable event will be
disabled if and only if its occurrence will make c

negative. In our implementation, the controller exam-
ines all enabled controllable transitions. If the firing of a
transition leads to an illegal state, system rolls back and
continues looking for the next enabled transition.

5.3. Petri Net based control

Li and Wonham [7,8] made significant contributions
to the control of plants with uncontrollable events by
specifying conditions under which control constraint
transformations have a closed form expression. How-
ever, the loop-free structure of the uncontrollable sub-
plant is a sufficient but not necessary condition for
control. Moody [11] extended the scope of controller



ARTICLE IN PRESS
R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865 859
synthesis problems to include unobservable events,
in addition to uncontrollable events already discussed
in VDES. He also found a method for controller
synthesis for plants with loops containing uncontrolla-
ble events.
In the Petri Nets controller, a plant with n places and

m transitions has incidence matrix DpAZn�m: The
controller is a Petri Net with incidence matrix
DcAZnc�m; which contains all the plant transitions and
nc control places. Control places are used to control the
firing of transitions when control specifications will be
violated. Control places cannot have arcs incident on
unobservable or uncontrollable transitions. Arcs from
uncontrollable transitions to control places are per-
mitted.
In contrast with the VDES controller, a Petri

Nets controller explores the solution by inspecting
the incidence matrix. Plant/controller Petri Nets
provide a straightforward representation of the
relationship between the controller and controlled
components. The evolution of the Petri Net plant/
controller is easy to compute. In our implementation,
the plant/controller Petri Nets incidence matrix is the
output that results from the plant and control specifica-
tion as input [12].
6. Simulation results

6.1. Network simulation (Ns) and network animator

(Nam) tools

Ns is a discrete event driven simulation for both wired
and wireless network research. Began as a variant of
REAL in 1989, Ns has evolved extensively to support
most transport protocols such as TCP, UDP, several ad
hoc routing protocols, some router mechanisms, and
some link-layer mechanisms. Nam is a Tcl/TK-based
animation tool for viewing network simulation traces. It
enables user to view simulation results such as topology
layout and packet flow statistics. Fig. 4 gives a diagram
of Ns and Nam.
Fig. 4. A schematic view of Ns and Nam [6].
6.2. Example of network simulation result

Initially, there are 10 nodes deployed at different
locations in a designated grid, and nine of them range
from node 1 to node 9 are displayed as green circles.
Node 0 represented as the blue square is the target. All
nodes are capable of movement within this grid. Each
node is uploaded with a Petri Net as shown in appendix
Fig. 9, which is a reduced form of our DSN consisting of
three interactive hierarchies.
The 802.11 medium access control (MAC) Layer

standard is used here to provide functions that manage
and enhance the communications between nodes in a
wireless LANs. Our 802.11 MAC Layer uses an 802.11
Physical Layer to carry out the tasks of carrier sensing,
transmission, and frames receiving. When a target
travels through the grid, nodes that are sensing the
target will turn yellow. When the data flow rate of a
sensor node is 10 percent or more below that of its
neighbors, we say that unfair use of the wireless link is
detected, and that node would turn red. Red nodes are
supposed to move away from each other to alleviate the
unfairness problem.
However, for example, a node could be in the state of

sensing while unfairness is detected at the same time. We
may ask, should it move or not? According to the
control constraints, sensing has higher priority than
detecting unfairness. In other words, a node should
ignore unfairness detection and remain static while
sensing a target. On the contrary, if a node is in the
process of moving, it is not allowed to enter sensing state
until movement is finished. How could sensor handle
these conflicts then?
All conflicts arising from different aspects prove to be

effectively mediated by embedded Petri Net controller.
Fig. 9 in appendix is a plant/controller compound and is
imposed upon each node. Whenever MAC layer detects
event, control is conveyed to the Petri Net controller to
verify its validness for current system state. Only legal
events (transitions) are allowed to happen (fire). Other-
wise, system should inhibit corresponding actions.
Ns has been used to simulate the network surveillance

with controller imposed. Nam graphically displays the
animation results as shown in Fig. 5, two screenshots are
captured from the animation.
As seen in the left of Fig. 5, node 3 and node 7

detected unfairness, node 7 moves toward node 3 to
alleviate the problem as shown in the right. However,
when node 5 was sensing target and then unfairness is
detected later on, node 5 turns both red and yellow
color. Such nodes are not allowed to move in respond to
unfairness, because sensing task has the priority over
unfairness. If Petri Net controller is disabled for the
same animation, we could see such red/yellow nodes
movement. This behavior impairs system performance
by not able to properly sense interest target.



ARTICLE IN PRESS

Fig. 5. Snapshots from Nam animation.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865860
On the other hand, if we apply FSA controller to the
above example, an offline state-space screening needs to
be done manually to get a finite state automaton as a
legal language recognizer. This step would incur
prohibitively high computation and representation
expense for a large-scale system, and makes FSA
controller method inappropriate for large-scale
system. Then, the mapping between the encoded legal
states and the fire-able transitions will be used to derive
binary control pattern for controllable transitions.
Although it is tedious to construct a FSA controller
due to large amount of manual work, it is easy to see
that checking the validity for fire-able transitions by
evaluating logical expression is faster than doing matrix
algebra as in a Petri Nets controller. We assume that
almost all places contain zero or 1 token, which is the
case for our Petri Nets modeled DSN. In the Petri Net
controller, a plant with n places and m transitions has
incidence matrix of size n � m; the time complexity
needed to check the transition would be Oðn � m2Þ by
doing matrix algebra [15]. However, for FSA controller,
the time complexity is only Oðn � mÞ by evaluating the
logical expression with n Boolean variables for all m

transitions. The computation saving is considerable for
a large size system with big number of places and
transitions.
7. Discussions and conclusion

In this paper, we constructed protocols that defined
sensor network behaviors for specific aspects of the
network missions. Karp–Miller trees can then be used to
verify that each aspect protocol is free of livelock and
deadlock [4]. We then analyzed the aspects and
found atomic behaviors that were shared by the
aspects. In a unified implementation, this could
lead to individual nodes receiving conflicting orders.
Control specifications were constructed that constrained
the aspect behaviors in a manner that enforced over-all
mission goals. Discrete event controllers were con-
structed that enforce these constraints. We showed
how this could be done using the three most widely used
discrete event control design methods. Lastly, the
controller was implemented within a wireless network
simulation. Sample runs using the simulator showed
that our approach successfully integrated the individual
aspects and allowed the system to avoid violating
behavior constraints.
Petri Nets, which illustrate process synchronization,

concurrent operations, asynchronous events, conflicts
and resource sharing, were used to model three aspect
hierarchies. The hierarchies modeled the operational
command, network communication and collaborative
sensing aspects of sensor networks. Each node changes
its role in the aspect hierarchy dynamically. The
hierarchies evolve independently to best fulfill the
constraints of that hierarchy. This independence comes
at the cost of conflicts emerging as the hierarchies
evolve. Controllers are constructed to resolve these
conflicts. We thus achieve design flexibility and simpli-
city without losing validity.
Through comparison of three controller methodolo-

gies, we concluded that all approaches confine system
behavior within allowed region, each with pros and
cons. Generally speaking, the three approaches can be
classified into two categories: FSA belongs to traditional
finite automata based controller category and Petri Net
modeled and VDES belongs to the Petri Net based
controller family.
The traditional Ramadge and Wonham control model

is based on a classic finite automaton. Unfortunately,
FSA based controllers involve exhaustive searches or
simulation of system behavior and are especially
impractical for large and complex systems. Offline
searching of the entire set of reachable states and the



ARTICLE IN PRESS

Fig 6. Operational command hierarchy.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865 861



ARTICLE IN PRESS

Fig 7. Collaborative sensing hierarchy.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865862



ARTICLE IN PRESS

Fig 8. Network communication hierarchy.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865 863



ARTICLE IN PRESS

Fig. 9. Sample reduced DSN hierarchy for animation.

R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865864
direct evaluation of the logical expression assures
prompt online response, which is crucial for those
systems with strict real-time requirements.
On the contrary, Petri Net based controllers take full
advantage of the properties of the Petri Nets. Their
efficient mathematical computation employing linear



ARTICLE IN PRESS
R.R. Brooks et al. / J. Parallel Distrib. Comput. 64 (2004) 853–865 865
matrix algebra makes controller construction and
analysis much easier, but they are still inferior to FSA
in the performance of response time. Petri Nets offer a
much more compact state space than finite automata
and are better suited to model systems that exhibit a
repetitive structure. Vector discrete event system con-
trollers explore the maximally permissive control con-
straint on the Petri Net with uncontrollable transitions
by application of the integer linear programming
problem, assuming that the uncontrollable portion of
the Petri Net has no loops and the actual controller
exists [12]. The integrated graphical structure of the
Petri Net plant/controller makes system computation
and representation straightforward.
Concerns such as execution time and ease of

construction and representation can therefore guide
decision on which approach to use.
Acknowledgments and disclaimer

This material is based upon work supported by the
Defense Advanced Research Projects Agency (DAR-
PA), and administered by the Army Research Office
under ESP MURI Award No. DAAD19-01-1-0504.
Any opinions, findings, and conclusions or recommen-
dations expressed in this publication are those of the
authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DAR-
PA), and Army Research Office.
Appendix

Surveillance network Petri Nets plant models
(Figs. 6–9).
References

[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles,

Techniques and Tools, Addison-Wesley, Reading, MA, 1986.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramanian, E. Cayirci,

Wireless sensor networks: a survey, Computer Networks 38 (4)

(2002) 393–422.

[3] R. Brooks, S.S. Iyengar, Multi Sensor Fusion: Fundamentals and

Applications with Software, Prentice-Hall Publication Co.,

Englewood Cliffs, NJ, 1997.

[4] R. David, H. Alla, Petri Nets and Grafcet Tools for Modeling

Discrete Event Systems, Prentice-Hall, Englewood Cliffs, NJ,

ISBN: 0-13-327537-X, 1992.

[5] B. Deb, S. Bhatnagar, Badri Nath, A topology discovery

algorithm for sensor networks with applications to network

management, IEEE CAS workshop, September, 2002.

[6] http://nile.wpi.edu/NS.

[7] Y. Li, W.M. Wonham, Control of vector discrete-event systems I-

the base model, IEEE Trans. Automat. Control 38 (8) (August

1993) 1215–1227.

[8] Y. Li, W.M. Wonham, Control of vector Discrete-Event System

II controller synthesis, IEEE Trans. Automat. Control 39 (3)

(March 1994) 512–531.

[9] R.C. Luo, M.G. Kay, Multisensor integration and fusion in

intelligent systems, IEEE Trans. Systems Man Cybernet. 19 (5)

(September/October 1989) 901–931.

[10] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M.B. Srivasta-

va, Coverage problems in wireless ad-hoc sensor networks,

Computer Science Department, Electrical Engineering Depart-

ment, University of California, Los Angeles, May 2000.

[11] J.O. Moody, Petri Net supervisors for discrete event systems,

Ph.D. Dissertation, Department of Electrical Engineering, Notre

Dame University, April 1998.

[12] J.O. Moody, P.J. Antsaklis, Petri Net supervisors for DES with

uncontrollable and unobservable transitions, Technical Report,

ISIS Group, University of Notre Dame, February 1999.

[13] J.L. Peterson, Petri Nets, Comput. Surveys 9 (3) (September 1977)

223–252.

[14] P.J. Ramadge, W.M. Wonham, Supervisory control of a class of

discrete event progress, SIAM J. Control Optim. 25 (1) (January

1987) 206–230.

[15] W.M. Wonham, Notes on discrete event system control, System

Control Group, Electrical & Computer Engineering Department,

University of Toronto, 1999.


	Aspect-oriented design of sensor networks
	Introduction
	Petri Nets
	Hierarchy models
	Overview and terminology
	Operational command
	Network communications
	Collaborative sensing

	Control specifications for DSN
	Controller design for DSN
	Finite state machine controller
	Vector addition controller
	Petri Net based control

	Simulation results
	Network simulation (Ns) and network animator (Nam) tools
	Example of network simulation result

	Discussions and conclusion
	Acknowledgments and disclaimer
	References


