-63

On Autonomous Terrain Model Acquisition by a Mobile Robot

N.S.V. Rat and S.S. Iyengar Louisiana State University
Baton Rouge, LA 70803
C.R. Weisbin
Oak Ridge National Laboratory
Oak Ridge, TN 37831

ABSTRACT

In this paper we consider the following problem: A point robot is placed in a terrain populated by unknown number of polyhedral obstacles of varied sizes and locations in two/three dimensions. The robot is equipped with a sensor capable of detecting all the obstacle vertices and edges that are visible from the present location of the robot. The robot is required to autonomously navigate and build the complete terrain model using the sensor information. We establish that the necessary number of scanning operations needed for complete terrain model acquisition by any algorithm that is based on 'scan from vertices' strategy is given by $\sum_{i=1}^{n} N\left(O_{i}\right)^{-n}$ and $\sum_{i=1}^{n} N\left(O_{i}\right)-2 n$ in two and three dimensional terrains respecLively, where $O=\left\{O_{1}, O_{2}, \cdots, O_{n}\right\}$ is the set of the obstacles in the terrain, and $N\left(O_{i}\right)$ is the number of vertices of the obstacle O_{i}.

Keywords and Phrases:

Path Planning, Terrain Acquisition, Collision Avoidance.

1. INTRODUCTION

In recent years there has been an enormous amount of research activity generated in the area of navigation and path planning for mobile robots. Much of this work could be thought of as an offshoot of the pioneering works of Lozanoperez and Wesley [1], Ref [2], Schwartz and Shari [3], and O'Dunlaing and Yap [4]. In this work the robot is located in a terrain whose model is precisely known. A path ha to be planned to navigate a robot from a specified point to a specified destination point (if such path exists). A comprehensive survey of these and related techniques for robot path planning is available in Whitesides [5]. Another important problem is the navigation in unexplored terrains. Here the robot is equipped with a sensor with which the robot scans the terrain, and a navigation path is planned based on these sensor readings. In general several sensor operations are needed for planning a navigational course. Lumelsky 2:-d Stepanov [6] present nice solutions to a restricted version of
this problem. lyengar et al [7] and Rao et al [8] present a technique that utilizes the sensor readings to construct a world map through incidental learning. Nomen et al [9] presents a more formal treatment for the case of convex polygonal obstacles. In these approaches the terrain model acquisition is purely incidental ie., the construction of the terrain model is only secondary and scanning is performed for the purpose of navigation.

Another important problem in the navigation in unexplored terrains is the Terrain Acquisition Problem in which the robot is required to autonomously navigate and build the complete terrain model through the sensor readings. In this paper we consider the following version of terrain acquisition problem: A point-sized robot M is placed in a two/three dimensional obstacle terrain O. The terrain O is populated by the set of obstacles $\left\{O_{1}, O_{2}, \cdots, O_{n}\right\}$, where O_{i} is a polyhedron. We assume that O is finite, ie., O can be inscribed in a circle/sphere of finite radius in two/three dimensions. Furthermore each O_{i} is finite and had a finite number of vertices. Initially the sizes and locations of the obstacles are totally unknown to the robot. The robot M is equipped with an ideal sensor system capable of detecting all edges and vertices visible to the robot from its current positon. The robot is required to autonomously navigate in the terrain and acquire the complete obstacle terrain model, i.e. obtain the locations of all edges and vertices of each obstacle of O. The main motivation for this problem stems from the fact that after terrain acquisition phase, the future navigation of the robot can be carried out without sensor operations using the techniques for navigation in known terrains. In many cases navigational path can be made optimal in terms of the distance to be traversed by the robot.

A solution to this problem is given by Rap et al [10] based on the incremental construction of the visibility graph of the terrain. The same technique is extended to a finitesized robot in plane by Rat et al [11]. The algorithm of [10] is guaranteed to acquire the complete terrain model in finite time. The algorithm terminates when a scan operation is performed from each vertex of every obstacle and consequently
the number of scanning operation required is $\sum_{i=1}^{n} N\left(O_{i}\right)$, where $N\left(O_{i}\right)$ is the number of vertices of the obstacle O_{i}. However, this is oaly a sufficient condition on the number of scan operations. In this paper we establish that for any terrain acquisition algorithm (based on scan from vertex strategy) there exists a terrain O such that the necessary number of scan operations is given by $\sum_{i=1}^{n} N\left(O_{i}\right)^{-n}$ and $\sum_{i=1}^{n} N\left(O_{i}\right)^{-2 n}$ respectively for two and three dimensional terrains. In other words, no more than one (two) scan operations per obstacle can be skipped in two (three) dimensional terrains. We also show thex a strategy that randomly skips one vertex (two vertices) per obstacle will not acquire the complete terrain model in two (three) dimensional terrains. We then list a number of issues for future research.

The organization of the paper is follows: In section 2 , we briefly discuss the issues involved in the terrain acquisition problem and also the algorithm of [10]. In section 3, we present the bound on the necessary number of scan operations.

2. TERRAIN ACQUISITION METHODOLOGY

During the terrain acquisition the robot M is required to plan and execute a novigational course; robot stops at centain points, called the sensing points, on the path to carry out the scan operations. The terrain model is reconstructed by integrating the scanning information obtained from the individual scan operations. In general, the navigational path could only be planned in an incremental manner by utilizing the scan information because the terrain is unexplored. The main requirement on the terrain acquisition algerithm is that the complete terrain model should be acquired in a finite amount of time.

Here we deal with vertex-based terrain acquisition methods where the sensing points are always vertices of the obstacles, i.e., every scan operation is performed from an obstacle vertex. The robot M moves from vertex to vertex during the navigational course. The algorithm of [10] is based on this strategy. There are two key issues that are important for a terrain acquisition algorithm:
(a) Computing the next vertex to be visited,
(b) Detecting the completion of terrain acquisition (termination of the algorithm).
We now brietly discuss the terrain acquisition algorithm of [10]. Let $\operatorname{VER}\left(O_{i}\right)$ denote the set of vertices of O_{i}. Let $V=\sum_{i=1}^{n} V E R\left(O_{i}\right)$ be the set of all verices of the obstacles. The visibility graph of the terrain O, denoted by $V G(O)$, is a graph (V, E), where an edge $\left(\nu_{1}, \nu_{2}\right) \in E, \nu_{i}, \nu_{2} \in V$,exists if and only if $\left(v_{1}, v_{2}\right)$ is either an edge of an obstacle or v_{1} is visible from v_{2} and vice versa. In Fig.1. an obstacle terrain populated by three obstacles O_{1}, O_{2} and O_{3} is shown and its visi-

Fig. 1. Obstacle terrain
bility graph is shown in Fig.2. A vertex is said to be explored if a scan operation is performed from v, and otherwise v is said to be unexplored. Once v is explored then the adjacency list of v in the visibility graph is known. The robot M is initially placed at a point in the obstaile terrain. Then M scans and moves to a vertex. From this point the terrain acquisition algorithm, called algorithm ACQUIRE, of [10] is invoked. Let M start at vertex $v_{0} \in V$. A scan is performed and the adjacency list of v_{0} is stored. Then M moves to an adjacemt unvisited vertex and recursively applies this method When an unexplored vertex is visited it is poshed onto a stack callec path-stack. Let M be located at a vertex v from which it performed a scan operation. Then M moves to a nearest unexplored vertex adjacent to v if one exiss. The M can move to this chosen vertex in a straight line because it is seen frem v. If all the vertices adjacent to v are vir: ed then the parh-stack is used to obtain the next sensing point. The top of the pathstack is recursively popped till a node $\%_{1}$ with unvisited adjacent nodes is found. Shortest paths to all the unvisited adja-

Fig. 2. The visibility graph for the terrain of Fig. 1.

- Fice

th the next xection we show that for any vertex-based serran xyumanom algonthm there exists a termin such that the neceswary number of scanning operations is given by $\sum_{i=1}^{\infty} N(0,1)$.

3. NUMBER OF SCAN OPERATINNS

Consider a verrex-based teriain exploration algorithm (and algorithm of [10] is one such). The algorithm performs scans and detects newer vertices which will be explored in subsequent scans. During terrain exploration by a vertex based algorithm no more than one vertex per obstacle can be left unexplored in two dimensional terrain constructed as

(a) Navigational path (shown in dark)

(t) Partially built visibility graph

Fig.4. Intermediate stage of exploration
explained below. For three dimensional terrains no more than two vertices per obstacle can be left unexplored in our specially constructer? terrain. The basic idea is illostrated in Fig.5. We consider a single convex polygonal obstacle in Fig.S(a). If M starts at a vertex it detects one new vertex with one exploration (except when the first vertex is explored) of a vertex as the robot moves along the circumference of the obstacle. In other words at no point of time the terrain acquisition could be declared complete if there are two unexplored vertices say v_{1} and v_{2}. This is because the robot does not, in general, know what lies on the hinder (mexplered) side of the line joining v_{1} and v_{2}. There could a single vertex or a number of edges on the other side of the line joining v_{1} and v_{2} as in Fig. 5 (b) and (c). For three dimensional eerrains, rn more then two ve.tices per obstacle can be left unexplored. This is because if three vertices (say v_{1}, v_{2} and ν_{3}) are left unexplored then the information on the hinder side of the plane formed by the vertices v_{1}, v_{2} and v_{3} is $n=t$ known in general. The hidden side of the obstacle can be either a simple plane or composed of a a number of planes as shown in Fig. 6 (a) and (b).

Fig.S. Two dimensional case

Theorem 1:

For a vertex-based terrain acquisition algonithm and given positive integer n there exists a terrain $\left\{O_{1}, O_{2}, \cdots, O_{n}\right\}$ of n polyhedral obstacles such that the necessary number of scan operations is
$\sum_{i=1}^{n} N\left(O_{i}\right)^{-n}$ for two dimensional terrain
$\sum_{i=1}^{n} N\left(O_{i}\right)-2 n$ for three dimensional terrain
Proof: We use induction on the number of obstacles in the terran. Consider $n=1$. In two dimensional terrains censider a convex polygon as in Fig 5(a). Note that from a vertex v_{2}, we can only see two verices that are adjacent to v. Apant from the first scan, $n 0$ more than one unexplored vertex can be seen in any scan operation. From the discussion above M has to carry out scanning till no more than one verex is unexplored. Thus $N\left(O_{1}\right)-1$ is the necessary number of scan operations for two dimensional terrains. By similar arguments we can show the the necessary number of scan operation is

Fig.6. Three dimensional case
$N\left(O_{1}\right)^{-2}$. Hence the claim is true for $n \approx 1$.
Assume that the claim is true for $n=k$. There exist a terrain of k obstacles with the necessary number of scan operations given in the theorem. Now construct a temin of $k+1$ obstacles as follows: In two dimensions add a big polygon O_{k+1} outside the circle inscribing the terrain that satisfies the induction hypothesis as shown in Fig.7. The $k+1$ th polygon has a long edge joining v_{1} and v_{2} that obscures the remaining edges of the polygon from the scan operations carried out in the terrain of k obstacle. Thus the scan operations needed during the exploration of the $k+1$ th obstacle is $N\left(O_{k+1}\right)-1$. Hence total number of necessary scan operations for two dimensional terrains is given by $\sum_{i=1}^{t+1} N\left(O_{i}\right)-(k+1)$. For three dimensioal terrains the obstacle O_{2+1} is such that a plane formed by three verices v_{1}, v_{2} and v_{3} obscures the rest of the obstrcle from a scan in the terrain of k obstacles as in Figs. The O_{k+1} lies outside the sphere the encloses the terrin of k obstacles. Using the arguments similar to two dimensional case we can show that the necessary number of scan operations to acquire O_{k+1} is $N\left(O_{k+1}\right)-2$. Thus the theorem follows by mathematical induction.
In the above theorem we have seen that no more than one (two) vertices per obstacle can be left unexplored in two (three) dimensional terrain. The natural question is to ask if we can always skip one (two) vertices per obstacle for two (three) dimensional terrains. The answer is 20 as the verices

Circle contu: :ing k obstacles
Fig.7. Two dimensional case - Addition of $O_{\mathbf{L}+1}$

Fig.8. Three dimensional case - Addition of $\boldsymbol{O}_{\mathbf{k}+1}$

Fig 9. Configuration - two dimensional case

Fig. 10. Configuration - three dimensional case
are to be randomily skipped. This is illustrated in Fig. 9 and Fig. 10. In two dimensions the if the robot stips the vertices ν_{1}, v_{2} and v_{3} then the obstacle O_{4} will not be detected. Fig. 10 shows a three dimensional example. The configurations such as shown in Fig. 9 and 10 can be formed with any (finite) number of obstacles which could be other than triangles or tetrahedrons. Fig. 11 shows one such example. It is open at this point to design a vertex-based terrain acquisition algorithm (or show algorithm does not exists) that skips one (two) vertices for each obstacle and guaranteed to acquire the cont plete obstacle terrain model.

Fig. 11. A general configuration

4. CONCLUSIONS

In this paper we have shown that for any veriex-based terrain acquisition algorithm there exists a terrain such tha the necessary number of scan operations is given by $\sum_{i=1}^{n} N\left(O_{i}\right)-1$ and $\sum_{i=1}^{n} N\left(O_{i}\right)-2$ respectively for two and three dimensional obstacle terrains. In other words, we do not expect to design a vertex-based terrain acquisition algorithm that has complexity lower than the above staxed sums (in
tums of the semor qpermioms). There exits a ternia soquitition algorithm with the mumber of semoor operations givea by $\sum_{i=1}^{E} N\left(O_{j}\right)$ [10]. In would be interesting to see if there exists a terria scquisition algorithm with only the mecessary sumber of sensor operations given in this paper.

BEPERENCES

[1] LOZANO-PEREZ, T., and M. A. WESLEY, An Algorithm for Plaming Collision-free Paths Among Polyhedral Obstacles, Commeni. ACM, Vol. 22, No. 10, October 1979, pp. 560-570.
[2] REIF, J., Complexity of the mover's problem and generalizations, Proc. 20th Symp. on Foundation of Computer Science, 1979, pp. 421-427.
[3] SCHWARTZ, J.T., and M. SHARIR, On the piano movers' problem I: The special case of a rigid polygoaal body moving amidst polygonal barriers, Communications Pure Applied Mathematics, Vol. 36, 1983, pp. 345-398.
[4] O'DUNLAING, C., and C. YAP, A 'Retraction' method for planning the motion of a disc, Journal of Algorithms, Vol.6, 1985, pp.104-111.
[5] WHITESIDES, S.H., Computational Geometry and Motion Planning, Computational Geometry, Editor G.T. Toussaint, Elsevier Science Publishers B.V. (NorthHolland), 1985, pp 377-427.
[6] LUMELSKY, V.J., and A.A. STEPHANOV, Effect of Uncertainity on Continuous Path Planning for an Autonomous Vehicle, Proc. 23rd Conf. on Decision and Control, Las Vegas, Nevada, December 1984.
[7] S.S. IYENGAR, C.C. JORGENSEN, S.V.N. RAO and C.R. WEISBIN, Robot Navigation Algorithms Using Learned Spatial Graphs, Robotica, Vol. 4, 1986, pp. 93100.
[8] N.S.V. RAO, S.S. IYENGAR, C.C. JORGENSEN and C.R. WEISBIN, Robot Navigation in an Unexplored Terrain, Journal of Robotic Systems, Vol. , 1986, pp.
[9] B.J. OOMMEN, S.S. IYENGAR, N.S.V. RAO, R.L. KASHYAP, Robot Navigation in Unknown Terrains Using Learned Visibility Graphs. Part I: The disjoint Convex Obstacle Case, IEEE Transactions on Robotics and Automation, 1987, to appear.
[10] N.S.V. RAO, S.S. PYENGAR, B.J. OOMMEN and R.L. KASHYAP. Terrain Acquisition by Point Robot Amidst Polyhedral Obstacles, Proc. The 3rd Conf. on Arificial Intelligence Applications, Oriando, F1., Feb. 22-28, 1987. to appear.
[11] NS.V. RAO, SS. IYENGAR, CC. JORCENSEN and CR. WEISBIN, On Termin Acquisition by a Firite-cized Mobile Robot in Piane, Proc. of 1987 The IEEE Inr. Conf. on Robotics and Autamation, Raleigh, North Caroline, March 30-April 3, 1987, to appear.

