
ON TERRAIN  ACQUISITION BY A  FINITE-SIZED  MOBILE ROBOT IN PLANE t 

Nageswara S.V. Rao S.S. Iyengar 
Department of Computer Science 

Louisiana State University 
Baton Rouge, LA 70803 

ABSTRACT 

The terrain  acquisition  problem deals with the acquisition 
of the complete obstacle terrain model by a mobile robot 
placed in an unexplored terrain.  This is a  precursory problem 
to many well-known find-path and related problems which 
assume the availability of the complete terrain model. In this 
paper, we present a method for terrain acquisition by a  finite- 
sized robot operating in plane populated by an  unknown  (but, 
finite) number of polygonal obstacles; each obstacle is arbi- 
trarily located and has  unknown (but, finite) number of ver- 
tices. The robot progressively explores newer vertices of the 
obstacles using sensor equipment. We show that the complete 
terrain model will be built by the robot in  a  finite  time. We 
also show that at any point of  time the partially acquired ter- 
rain suffices for the navigation of the robot during the explora- 
tion. Hence we conclude that the navigation techniques for 
known terrains can be applied for the robot navigation during 
exploration. 

1. INTRODUCTION 
The  Terrain  Acquisition  Problem deals with acquiring the 

terrain model by an autonomously roving robot. After the ter- 
rain model is completely acquired: (A) The existing algorithms 
for the find-path problems can be used to plan the navigation 
paths. (B) Sensor equipment may not be needed for the pur- 
poses of navigation (at least in theory). Thus, the terrain 
acquisition could be conceived as a precursory problem to 
robot navigation problem in known terrains. The main motiva- 
tion for this problem stems from the availability of  a host of 
techniques for navigation in known terrains [1,3,5,6,8,12,13]. 
In  many earlier research efforts for navigation in unexplored or 
partially explored terrains, the terrain acquisition is intermixed 
with the navigation. In these techniques, the terrain model is 
acquired through incidental  learning as the robot moves in the 
terrain. See Iyengar et al [2], Oommen et al [9], Rao et al 
[9,10] for different terrain acquisition strategies. 

The terrain acquisition problem discussed in this paper 
can be defined as follows: A finite-sized robot is placed in an 
obstacle terrain populated by an unknown (but, finite) number 
of polygonal obstacles of varied sizes and locations in the 
plane. We consider a robot that can be inscribed in  a circle of 
diameter 6, 6,O. For instance the exact shape of the robot can 
be  a circle, a polygon, a rod or a ladder. We consider finite 
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obstacle terrains, i.e., there exists a circle of radius R (rO) that 
contains all the obstacles. In the terrain, the envelop of width 6 
surrounding each obstacle is free of obstacles. Furthermore, 
we assume that the robot is equipped with algorithm A for the 
navigation in  a known 2 dimensional obstacle terrain of polyg- 
onal obstacles. For example, if the robot is a polygon  then  we 
may choose A from the algorithms of Lozano-perez and Wes- 
ley [3], Reif [12], or Schwartz and Sharir [13], etc. If the robot 
is circular, then A may  be as described in O’Dunlaing and Yap 
[6]. In case the robot is a rod or a ladder A may correspond to 
the algorithms of O’Dunlaing et a1 [5 ]  or ones used for polygo- 
nal robot (as appropriate). The technique proposed in this 
paper is valid for the above mentioned cases. The robot is 
capable of translating and rotating around the center and 
around a point on the periphery of the circle in which it is 
inscribed. Moreover we assume that the robot knows its coori- 
dinates at any point of time. The sensor is located at any point 
on the robot and is capable of detecting all the obstacle vertices 
and edges that are visible from the present location of the 
robot. Initially, the robot is placed at an arbitrary point in the 
obstacle terrain and is required to autonomously navigate and 
acquire the complete obstacle terrain model. 

We deal with navigating the robot in the terrain with  the 
only purpose of acquiring the terrain ( as in [10,14]). This has 
to be clearly contrasted from the navigation based  on inciden- 
tal learning. In the latter case, the navigation is goal-directed 
and the terrain acquisition is of secondary concern. Our solu- 
tion is based on the terrain acquisition algorithm proposed by 
Rao  et al [ 101 for a rather ideal version of the problem.  In [ 101 
a terrain acquisition algorithm for a point robot is given for a 
terrain populated by polygonal obstacles in two/three dimen- 
sions. However, this algorithm can not be directly applied to a 
robot of finite-size for the following reasons: (A) The sensor 
can not always be placed at the vertices of the obstacles as 
required in [lo]. (B) Another important issue is  the navigation 
of the robot using the partially built  model during terrain 
acquisition. 

In  this paper, we present a  method which guarantees the 
completion of terrain acquisition in a finite time. Our discus- 
sion  here is brief and a  more detailed discussion is found in 
[ 111. This paper is organized as follows: In section 2 the ter- 
rain acquisition algorithm of Rao et al [ 101 is  briefly  discussed. 
This method is theoretically extended in section 3; specifically 
we show that the terrain acquisition will be complete in finite 
time. We also show that the partially acquired terrain informa- 
tion suffices for intermediate navigation needed during the pro- 
cess of terrain acquisition. 
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2. BASIC  TERRAIN  ACQUISITION  ALGORITHM 
In this section we  briefly present the basic terrain acquisi- 

tion algorithm of Rao  et a1 [lo] for a point robot. The Point 
Robot  Autonomous  Machine (PRAM) of [ 101 is a point-sized 
robot equipped with a computing device and an ideal sensor 
capable of detecting all vertices visible from the present loca- 
tion of the robot. The PRAM is capable of  moving in a straight 
line to a specified destination point from its present location. 
The obstacle terrain is populated by  an  unknown (but, finite) 
number of polygonal obstacles of unknown sizes and locations 
in plane. The terrain acquisition involves autonomously navi- 
gating the robot, and acquiring all the vertices of each obstacle 
(using the sensor information acquired locally time-to-time). 
The terrain acquisition algorithm is based on incrementally 
constructing the Visibility Gruph of the terrain 0, denoted by 
V G ( 0 ) .  Formally, the V G ( 0 )  is defined  as  a graph (V,E), 
where (i) V is a set of all vertices of all obstacles, and (ii) The 
line joining two vertices u and v , u ,v E V ,  forms an edge 
(u ,v )E E if it is not obstructed by an obstacle or  it is an edge of 
an obstacle. 
Note that the VG (0 ) is  an undirected graph and is unique for a 
given obstacle terrain. 

The outline of the terrain acquisition algorithm of [lo] is 
as follows: The PRAM initially starts at a point in the obstacle 
terrain, and scans and moves to a nearest obstacle vertex. 
From this starting vertex the algorithm ACQUIRE  is invoked. 
The PRAM moves from vertex to vertex in a systematic 
manner (as described below in case(A) and case (B)); when  a 
vertex is visited for the first time, a ‘scan’ operation is per- 
formed (a vertex may be visited again during the navigation of 
the robot to an unvisited vertex from its present location). Let 
the robot be located (for the first time) at vertex v , The adja- 
cency list of v (in VG (0) ) is built by detecting all the vertices 
visible from v using the scan operation. The vertex v is 
marked ’visited’ and then pushed onto a  stack. We have two 
cases: 
Case (A): If v has unvisited adjacent nodes, then the PRAM 
moves to a node, say w ,  which is nearest (to v )  among the 
unvisited adjacent nodes. From w the algorithm ACQUIRE is 
recursively invoked. 
Case (B): If all adjacent nodes of v are visited, then the nodes 
on the stack are repeatedly popped till a node x with at least 
one unvisited adjacent node is obtained. Then shortest paths to 
each of the unvisited adjacent nodes of x are computed using 
the Dijkstra’s shortest path algorithm. The PRAM chooses 
shortest (among the computed ones) and moves to the 
corresponding unvisited node w. From the node w the algo- 
rithm ACQUIRE is recursively invoked. 

The algorithm (and hence the terrain acquisition process) 
terminates when the PRAM is located at a vertex u such that 
(a) all nodes adjacent to u are visited, and (b) the adjacent 
nodes of each node on the stack (at this time) are all visited. At 
this point, PRAM moves  back to the starting vertex along the 
shortest path. 
Lemma 1:[10] The visibility graph of the terrain of polygonal 
obstacles in the plane is conneczed, i.e. there exists a  path 
between any two nodes. 0 

Lemma 2:[101 The order in which  the unexplored vertices of 
the obstacles are visited by the PRAM while executing 
ACQUlRE is exactly the same as the order in which the new 
nodes of the VG (0 ) are visited by a depth-first-search algo- 
rithm (if V G ( 0 )  were available). 0 

The sufficiency condition on the ACQUIRE  is  that  a 
‘scanning’ operation be performed from every vertex of each 
obstacle. The correctness of the algorithm ACQUIRE follows 
from Lemmas 1 and 2. The fact that a depth-first-search on a 
connected graph visits all the nodesis used to show that 
PRAM executing ACQUIRE completely builds the terrain 
model. There are two important conditions involved in the 
correctness proof  of the algorithm that are of subsequent 
interest to our discussion: (i) the underlying graph, namely 
VG(O),  is connected, (ii) the ACQUIRE visits all nodes of 
VG (0). We use these two points as a  basis for our presenta- 
tion in the next sections. 
3. FINITE-SIZED ROBOT 

The detection of all vertices visible from a given vertex is 
a prerequisite for the execution of the algorithm ACQUIRE. If 
the robot is finite-sized then it is not possible, in general, to 
locate the sensor at the exact location of a given  vertex that is 
currently being visited. Consequently, the sensor is displaced 
from the location of the present vertex, and as a result the 
graph constructed based on the visibility information obtained 
by an ideal sensor may not be same as the VG (0). Further- 
more, the connectivity property - which is very vital to the 
completion of the terrain acquisition - may not be satisfied by 
the graph constructed based on the sensor readings. In this first 
part of this section we show that the connectivity of the con- 
structed graph is assured if the sensor is always located on a 
point on the equi-distance line (to be  defined formally) of the 
present vertex within a specified distance from the vertex. 
Then, we consider the navigation of a finite-sized robot during 
the intermediate stages of terrain acquisition. The point-sized 
robot of [lo] could move along the edges of the graph, but  the 
navigation of a finite-sized robot makes it necessary to con- 
sider the terrain information in the regions in which the robot 
navigates. We show, in the second half of the section, that the 
regions through which the robot navigates during the explora- 
tion stages are basically ‘known’ and hence a suitably chosen 
A suffices for the purpose of navigation. 
3.1. Positioning for Sensing 

In the case of  a finite-sized robot, the sensor may be dis- 
placed by a two dimensional vector p’, from the vertex v which 
is currently being visited by the robot As a result, some ver- 
tices visible from v may not be visible to the sensor, and some 
vertices not visible from v may become visible to the sensor. 
In Fig. l., the sensor is located at the point v when the vertex 
v is visited by a finite-sized robot. As a result of the displaced 
sensor location we  have: the vertices 4 and 5, which are visible 
from v ,  become invisible from v 1, and the vertices 6 and 7, 
invisible from v , become visible from v Thus the graph con- 
structed based on the sensor information may not be the same 
as the VG (0)  defined in the previous section. In fact, the con- 
structed graph may not even be connected [ 111. The algorithm 
ACQUIRE, in this case, is mt guaranteed to completely 
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acquire the obstacle terrain model. In order that the ACQUIRE 
execute correctly, the graph constructed using the sensor read- 
ings has to be connected. 

Let the qui-distance line of a vertex v ,  denoted by 
EL (V ), be a portion of the bisector line (straight line through v 
that makes equal angles with  both the edges that are incident at 
v )  that extends from v to the outwards of the obstacle. Let 
0 ( v )  denote the angle subtended by  an obstacle at its vertex v . 
A vertex v is said to form a convex comer if 0(v)<n. The ver- 
tex v is said to form a concave comer otherwise (i.e. e(v)>n).  
Let us define a function f :V-+ u E L ( v )  called sensing 
function, where V is the set of all vertices of the obstacles. 
The function assigns a unique point on EL  (v ) for each v E V ,  
i.e. f ( V ) E  EL(v) .  Now, let us define the Modified Visibility 
Graph of the obstacle terrain 0 with*respect  to a sensing func- 
tion f , denoted by VG* (0 )=(V,E ), as follows: (i) V is the 
set of all*vertices of the obstacles, (ii) There exists an edge 
(v ,w ) E  E if and only  if the vertex w is visible from f (v ). In 
other words a sensor located at f (v  ), which  is a point on 
EL ( v ) ,  will be able to detect the vertex w. This visibility 
information is represented by the edge (v , W ) E  E . 

In the terrain acquisition algorithm for a point-robot the 
exploration of a vertex v corresponds to locating the robot at 
v , and finding the vertices visible from v . Now, for a finite- 
sized robot when a vertex v is visited for exploration, the robot 
is positioned in such a way that the sensor f" located at f (v ) ( 
on EL ( v )  ). Now, the robot constructs VG (0), for some f , 
in place of VG (0)  constructed by the PRAM. Note that th: 
edges of VG* ( 0 )  are directed, i.e.  an edge (v1,v2) E E 
does not necessarily imply the existence of the edge (v 2,v 1) E 

E .  Now, note that the VG * (0 ) for a given obstacle terrain 
0 ,  depends upon f and is not unique (unlike VG (0)). For a 
given obstacle terrain 0 ,  there exists a family of modified visi- 
bility graphs, denoted by {VG * (0 )I corresponding to all pos- 
sible f s. For each v E V ,  there are infinitely  many potential 
images in E L ( v )  sincef ( v )  E EL ( v ) ,  and EL ( v )  is a subset of 
the real-linei Consequently the cardinality of the family of 
graphs {VG (0)J may not be finite and may not even be 
countably infinite. We now show a result that helps us in prov- 
ing the convergence of our terrain acquisition. 
Lemma 3 [ll]: The VG* ( 0 )  E {VG* ( O ) ]  is connected for 
all f such that for v E V 

V € V  

if e(v)<n 
I I v - f ( v ) /  I S  0(v ) if 6(v )>n &in(-) 

2 

where I I v1-v2 I 1 denotes the euclidian distance between two 
points v and v 2  in plane. 

We subsequently assume that the robot is placed at f (v  ) 
satisfying the condition stated in Lemma 3 for exploring the 
vertex v . In other words, when a vertex v is to be explored as 
per the algorithm ACQUIRE, the robot must first compute the 
f (v  ) and locate the sensor accordingly at f (v  ). If v forms a 
convex comer, then the robot can always be positioned such 
that the center of the circle in which it is contained lies on 
EL  (v ) of a given vertex v at a distance 6/2 from v . For ease 
of presentation we refer to the 'center of the circle of diameter 

Fig. 1. Result of a displaced sensor 
6 that contains the robot' as simply 'center of the robot'. At 
this point the robot rotates around its center so that the sensor 
can be located on EL  (v ) pig.  2(a)).  If v forms a concave 
comer then again the robot can  be similarly positioned in such 
a way that the sensor is no farther than &in(-) e(v 1 (see Fig. 

2(b)). Notice that the robot located its center on EL ( v )  so that 
it touches the vertex v (as  in Fig.2(a)) or it touches both  the 
edges that are incident on v (Fig.2(b)). Then it rotates around 
it center to bring the sensor onto EL ( v ) .  The position of sen- 
sor achieved like this will always define f (v ) that satFfies the 
condition in Lemma 3.  Any for any  such f the VC (0)  is 
connected. In other words f specifies a sensing point for each 
vertex v so that the constructed VG * (0 ) is connected. But, 
before the robot computes EL (v ) both the edges incident at v 
must be known; which may not be known in general. In order 
to compute E L ( v )  the robot takes an exploratory traversal 
around v (if needed), and then positions the sensor at f (v ). 
Then the exact motion of the robot during the exploratory trip 
around v and trip to f ( v )  has to be computed. Both these 
issues are discussed in the next subsection. 

2 

(a) Convex Corn,.: 

L 

(b) Conca ic  corner 

Fig. 2. Robot positioning for sensing 
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3.2. Navigation  During  Exploration 
Now, consider the navigation of the finite-sized robot dur- 

ing the exploration. If the navigation is along the edges of obs- 
tacles, then the minimum clearance 6 assures the collision-free 
navigation of the robot; as the robot can graze along the edges 
of the obstacles. However, if the navigation  is  along  the other 
graphs edges (those edges that do not correspond to obstacles 
edges), then the regions around these edges have to be  taken 
into account for the sake of navigation. We  basically  show  that 
these regions are 'known', and  hence algorithm A can  be  used 
for navigational purposes. Another point of importance stems 
from the fact that the robot has to locate itself  such  that  the 
sensor is placed at f ( v ) .  We say that an edge incident on v is 
known if a  point  on  it other than v is known.  Note  that if both 
the edges incident on v are known then the line EL ( v )  can be 
computed. When the robot is  at  an intermediate stage of 
exploration, it may  be required to explore a vertex v , if one of 
the obstacle edges incident on w is not  known.  At least one 
edge is known when v is detected from  some other vertex. In 
such a case, the robot moves into the  region  around v to obtain 
the information needed to compute EL(v) ,  and it then moves 
to f (v ). The scan operation is  then performed from  this loca- 
tion. We modify  the algorithm ACQUIRE as follows: Let w 
be the vertex on the stack with unvisited adjacent nodes when 
the stack is accessed for finding  the next univisited vertex. 
Note that w is obtained by repeatedly  popping  the  nodes of the 
stack whose adjacent nodes are all visited.  Then the robot 
moves to w and  then  moves  to the nearest unvisited neighbor 
of w for scan operation. The path  to w is planned  using  the 
Dijkstra's algorithm. Recall that  the algorithm ACQUIRE 
computes shortest path to each of the unvisited adjacent nodes 
of w are computed and  the nearest is chosen. 

Consider a vertex v . Exploration of v involves navigat- 
ing the robot from  its present location to f ( v ) .  Note that f ( v )  
can be  any point on EL  (v ) such that its distance from v is  as in 

known edge 
\ 

Perpcnd~culsr 

( 3 )  

Fig. 3. Exploration of vertex v 

shown in Fig.4. Consider the strip formed out of  "this rectangle 
by replacing the side containing v 2  by  arc cd which  is  the 
boundary  of the obstacle-free envelop of the obstacle that con- 
tains v p  as shown in Fig.5. Let this strip enclosure be called 

Lemma 3. If one of the edges incident on v are not known rectangle --2--+ 

then  the robot makes  an exploratory move into the neighbor- 
hood  of v to explore the edges incident on v .  It is clear that 
the need for the exploration of vertex v occurs only  when 
8(v)<n,  and one of the edges incident on v are not known. 
The robot first moves to  a point such that its center lies  on the kt! \ 
perpendicular line at v of the known edge as in Fig. 3(a). I E L  ( v 2 )  

Navigation from the present location of the robot to  this point 
on  the perpendicular is achieved using A as described subse- 
quently in this section. After reaching this  point  on  the  perpen- Fig. 4. The rectangle 
dicular, the robot rotates around v till it sees the  hidden edge 
(Fig. 3(b)). Then it computes E L ( v )  and  moves  back  to EL(v )  f ( V l )  ". 
by rotating around v till its center of the robot lies on EL  (v ) 
(Fig. 3(c)). Then the robot moves  around the center till the 
sensor lies on EL ( v )  as in Fig. 3(d). \, \ ' 

Let the robot be located at f ( v )  and  is required to navi- ' \ 'I 
gate  to f (u ) ,  where u is another explored vertex, i s .  both  the \ I !  

vertices incident at u are k n o ~ .  The navigation is along the 
edges of the partially built VG f (0 ) is carried out as follows: 
If the edge (v  1," 2)  of partially-built VG * f (0 ) is an edge of  an '2 

obstacle, then the robot navigates along  the edge; the clearance 
6 accounts for the finite-size of  the  robot. If the edge (v l ,v2)  is 
not an obstacle edge then consider the rectangle of  width 26 
and  with f (v  1) and v2 as midpoints of  the opposite sides as Fig. 5 .  The capsule CP (v 1 . ~ 2 )  

(a) B(r 2 ) ~ "  (b) B(r.2)>x 

f ( v 1 )  _- - 7 - -i 
' I  

, -1' \ 
\ \  \ 

\ \ ) d  
0.. ' 

c --if 

I I , ' d  \ 
\ 

! ., ?, i 
: 1  v 2  

(a) B(L , , i< l r  ( h i  O ( v 2 i > X  
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capsule, denoted by CP (v 1,v2). The straight line joining f (v 1) 
to v 2  is free of obstacles. So any obstacle lying  in the capsule 
will push the robot at most to the other side of this line. But 
the circle that surrounds the robot still stays within the capsule. 
As a result there exists a  path for the robot to move from f (v  1) 

to a point p on the curve cd such that the center of the robot 
\ 

\ '  

(21 e(L :) :x 
(b)  O ( v 2 ) > x  

Fig. 6. Robot motion from a point on  the curve cd tof ( v )  

lies on cd (Fig. 6). The point p exists as a result of the clear- 
ance 6 and the fact that no obstacle lies on the line joining 
f (vl) and v 2  If €)(v~)>R then, from this point p the robot 
moves parallel to the line joining f(vl) to v 2  Then it slides 
along the edges of the obstacle till the circle touches v 2  Then 
it rotates around v 2  as in Fig. 6(b) to position itself on the 
required point on EL (v2). If B(v2)at then let p' be the inter- 
section point of cd and the periphery of the circle that contains 
the robot and is nearest to the line joining f (v 1) and v 2  Then 
the robot rotates around p'  into the obstacle free region till its 
center coincides with the line joining f (vl) and v2. Then it 
rotates around v till it aligns the center along EL (v2) and then 
rotates around its center to place the sensor on EL(v2). This 
process is shown in Figd(a). Note that this navigation from p 
to f (v2) can be carried out by utilizing the information about 
v 2  and the edges incident on v 2  For navigation from f (v 1) to 
the required point p on cd it is enough to consider the vertices 
that lie inside CP(vl,v2). If CP (v1,v2) contains no vertices 
then the robot moves directly to f(v2). If €)(v~)>x, any vertex 
w seen from v and contained in CP (v l,v 2 )  will be closer to v 
than v2, and would have been explored earlier to v2. If  a  ver- 
tex x is  in CP (v ,,v2)uCP (w ,v2) but  hidden by a  an obstacle 
with  a vertex w , is also explored earlier to v 2  as it is nearer to 
w . On the other hand if 0 ( v 2 ) ~ x ,  then consider the circular arc 
ef of radius I I f  (v l)-v2 I I with center at f (v 1) superimposed 
on the rectangle as shown in Fig.7. This radius is at least 6. 

Fig. 7. The unexplored regions are not entered by the 

The obstacle vertices that lie in the shaded regions may not be 
visited by the robot as  they are farther than v 2 from f (v 1). The 
radius described by any point o? the periphery of the robot 
describes a circular arc around p whose radius is at most 6. 
TFus  the region 'swept' by the robot during its rotation around 
p is contained in the rectangle with the v 2  end replaced by ef . 
After this rotation the robot is in obstacle-free region. Thus, as 
shown in Fig.7 the robot will not enter the shaded regions ( 
possibly unknown regions ) during navigation. Thus the algo- 
rithm A can now be used to plan a  path from f (v 1) to required 
point p on cd . From this point on cd the navigation is carried 
out as explained above. In summary, we described a method to 
navigate the*robot along the path specified  by  a sequence of 
edges of VG (0 ) consisting of all visited  vertices. 

Now, consider navigation to an  unexplored vertex v 2  
from an explored vertex v 1. As described in section 2, the ver- 
tex v could be nearest among the unvisited neighbors of v 1 or 
obtained as  a result of popping the nodes on the path stack till a 
vertex w with unvisited neighbor vertices is found. In this 
latter case v 2  is nearest unvisited vertex of w . In this case the 
robot moves to w from v along a  path  specified by the edges 
of the V G * f ( 0 )  (obtained by the Dijkstra's algorithm). At 
this point the robot navigates from the visited vertex w to an 
unvisited vertex v2. Hence, it suffices to consider the case 
where the robot moves from a visited vertex v to an unvisited 
vertex v2. If both the edges incident on v 2  are known then 
navigation is same as explained in the pre$eding  paragraph. If 
not, say the robot navigates to a point v which lies on the 
perpendicular to the known edge at v 2  Now again consider 
the capsule CP (v p 2 )  again. We can show that the robot navi- 
gates to v* 2 by utilizing A and rotational motions as described 
in the earlier paragraph. Thus the algorithm A can be applied 
here also. 

Now let us extend the algorithm ACQUIRE, with the 
capability to (a) navigate a finite-sized robot (as described in 
the preceding paragraphs), and (b) visit f (v ) whenever v is to 
be visited. Let the new algorithm be called ACQUIRE1. Also 
note that ACQUIRE1 builds VG*,-(O) in the place of VG ( 0 )  
built by ACQUIRE such f satisfies the condition stated in the 
Lemma 3. Now  we have the following theorem. 
Theorem 1: The algorithm ACQUIREl builds the complete 
obstacle terrain model in finite  time. 
Proof The algorithm ACQUIREl visits the unexplored  ver- 
tices in exactly the same order as ACQUIRE, i.e. in the order 
of depth-first-search. Thus the Lemma 2.2. holds for the algo- 
rithm ACQUIREl. By Lemma 3.1 the V G * f ( 0 )  is connected. 
Thus the Theorem is true from the fact the depth-first-search 
on a connected graph visits all nodes. 0 
4. CONCLUSIONS 

We have presented a method for terrain acquisition by a 
finite-sized robot placed in a terrain populated by polygonal 
obstacles in the plane. We have theoretically established the 
correctness of the method. A restricted version of this terrain 
acquisition algorithm is implemented on HERMIES-I1 robot at 
Oak Ridge National Laboratory. Handling of errors and impre- 
cissions associated with the real-life robots and sensors has to 
be given serious consideration. This is a  very important aspect r( bot during its navigation to a vertex to be explored 
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of robot  navigation  and  general  methods to handle this issue [I31 
are extremely  useful  for  practical  implementation of many 
theoretical  algorithms. 
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