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Abstract 
This paper presents new heuristic algorithms 

using the guided A* search method : Guided Minimum 

Detour (GMD) algorithm and Line-by-Line Guided 

Minimum Detour (LGMD) algorithm for finding optimal 

rectilinear (L,) shortest paths in the presence of rectilin- 

ear obstacles. The GMD algorithm runs O(nhr(1ogN) + 
tN) in time and takes O(N) in space, where N is the num- 

ber of extended line segments including boundary of the 

obstacle; and t is the number of intersected boundary of 

the obstacles on the trial or the escape line in n xn grid 

graphs. In the LGMD algorithm, we derive an 
O(N(1ogN) + tN) time and O(N) space algorithm in 

gridless graphs. 

1. Introduction and overview 
There are two basic classes of sequential 

algorithms: maze-running algorithms and line-search 

algorithms. These algorithms are mostly aimed at fmding 

an obstacle-avoiding path, preferably the shortest one, 

between two given points on the routing space. The fiist 

such algorithm is the Lee algorithm 1111, which is an 

application of the breadth-first shortest path search 

algorithm. There are a large number of variations [l ,  

6,7, 10, 15-18,20,21] of the original Lee algorithm. 

'This project is in part funded by LEQFS-RD-A04 grant. Feb. 1,1992. 

The line search algorithms have been proposed 

to improve the performance. The fiist of such 

algorithms is reported in [8] and [13]. Several recent 

line search algorithms 14, 14, 19,221 are based on pow- 

erful computational geometry techniques. Wu et al. [22] 

introduce a rather small connection graph, track graph, 

that contains the shortest path but it is not strong. For 

the n points shortest paths problem, the run time is O((e 

+ k)logt), where e is the total number of edges, t is the 

extreme edges of all obstacles, and k is the number of in- 

tersections among obstacle tracks, which is bounded by 

O(t2). De Rezende et al. [19] construct a strong connec- 

tion graph in time O(n1ogn) with rectangle obstacles. 

Clarkson et al. [4] generalize the shortest problem to the 

case of arbitrarily-shaped obstacles in time O(n(logn)2). 

When obstacles are just rectilinear line segments, Berg et 

al. [2] studies the shortest path problem in a combined 

metric that generalizes the L, metric and the rectilinear 

link metric. 

In this paper, we introduce new algorithms, the 

Guided Minimum Detour (GMD) algorithm and the Line- 

by-Line Guided Minimum Detour (LGMD) algorithm. 

Our GMD algorithm uses a heuristic, guided A*, search 

method. Also we present another modified algorithm, 

the LGMD algorithm, using a priority queue to select the 
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line segment that has the lowest detour length and some 

superimposed data structure. 

2. The Guided Minimum Detour algorithm 

Let E be a Jordan curve consisting of n axis 

parallel line segments that contain no two consecutive 

line segments which are collinear. Let B be a set of ob- 

stacles each of which is a simple rectilinear polygon 

consisting of E and its interior without holes in the inte- 

rior. We use Gp to denote the partial grid obtained by 

deleting all grid nodes covered by obstacles of B .  We 

assume that a path P is a set of E that consists of a finite 

number of axis pardlel line segments in Gp such that a 

directed path P is (v l ,  v2, . . . , v,) from v1 to vm in Gp 

i.e., P = (vl-+v2+ . . . -+v,,,) with vertex set {v l ,  v2, . . . , 
v,} and edge set {(vi, vi+l): i = 1, . . . , m-l}. If a grid 

node v1 neighbors to v2, the line segment vI+v2 is called 

a unit line segment. The length of P ,  denoted by h(P), is 

the number of the unit line segments in P. A grid node c 

of Gp is called a critical node if one of the following 

conditions holds: (i) c is the source node s, (ii) c is a 

boundary node of Gp, and (iii) c is on a horizontal or 

vertical line that passes through the target node t. 

For the shortest path from s to t in Gp, the Man- 

hattan distance M(s, t )  between s and t is used as a lower 

bound. The detour length of a path P, denoted by 

DL(P), from s to t is the total number of grid nodes that 

proceed away from the target node t in P. The following 

theorem shows the properties of the shortest path in 

Minimum Detour (MO) algorithm in K71. 

Theorem 1 [7]. 
1. A path P = (s+ . . . +t) has length @P) = M(s, b)  + 

2. Let P' be a subpath o j  P from s to x with DL(s, x). 

3. I f  DL(P) is minimized, then n(P) is the shortest path 

2 * DL(s, t). 

Then XP')  = M(s, t )  + 2 . DL(s, x) - M(x, t). 

from s to t. 

4. The path generated by MD is the shortest ont: with the 

A subpath D = (r+u-tv+w) in P is calledl a detour 

(Fig. l.a), if the directions of the consecutive line 
segments r-su, u-sv, and v-sw are different, where u-sv 

consists of one or more than one line segment with the 

same direction. We say that a detour D is reducible if (i) 

there exists a detour R = (p+u+v+q) of D where rSpcu, 

v q l w ,  and h(P-su) = h(v+q); and (ii) the rectangle 

composed by comer nodes (p, U, v, and q) is the largest 

non-zero area and the edge (p, q) does not intersect any 

obstacle. The path R is called reducible detour (Fig. 1.b). 

minimized DL(s, t). 

~~ ~~~~ 

w -3- 
a. A Detour (T+u+v+w) b. Reducible Detours (p+u-+v+q) 

Fig. 1 Detours 

Each line segment 1 is extended without 

changing its direction until it hits a critical node c from a 

non-critical node, or reaches a comer critical node c 

from a critical node on a same boundary line segment. 

We call such a critical node c as a base node. We also 

classify the source node s as a base node. 

We maintain three priority queues: NEW, OLD, 

and TEMP of line segments: the line segmeints to be 

extended for next iteration are stored in NEW, the hie  

segments that have already been extended from thie 

previous iteration are stored in OLD; and the currently 

extending line segments are stored in TEMP. Also, 

using some superimposed data structures to be described 

in section 2 we maintain two sets of line segments: (i) 

COMPLETE contains line segments that have alreadly 

been extended; (ii) CRITICAL is the set of critical nodes 

represented by line segments. Fig. 2 shows examples 

solved by the GMD algorithm. 
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s: Source Node, t Target Node 

Fig. 2 Examples for The GMD Algorithm 

By the Theorem 2, we show that the size of the 

searched space generated by the GMD algorithm is less 

than the one of the searched space by MD algorithm, 

which is the primary advantage of our GMD algorithm. 

In order to assure that the path found is the shortest one, 

we need to show that a path P generated by the GMD 

algorithm has the minimized detour length DL(P) by the 

Theorem 3. 

Theorem 2. The set of searched nodes by the GMD 
algorithm is a subset of the one by the MD algorithm. 

Theorem 3. The path P=(sfi . . . fi t )  generated by the 
GMD algorithm is the shortest path. 

The data structures realizing the GMD 

algorithm are the next element subdivision of CRITICAL, 

(the set of N, line segments) with some superimposed 

structure [5] and the set of extended line segments 

COMPLETE (the set of Ne line segments) with the 

priority search tree [12]. The former can be built in 

O(N,logN,) and the latter can be done in O(NelogNe). 

The line segments in COMPLETE are grouped 

to co-horizontal and co-vertical line segments and each 

group is stored into the priority search tree. Whenever a 
line segment is extended to a neighbor node, the node 

should be investigated whether it is visited, base node, or 

not. This operation can be done in O(logNe + logNJ 

time using O(Ne + N,) space by the Theorems 4 and 5. 

If N is I?, + N,, the operation can be done in O(1ogN) 

time using O(N) space. 

Theorem 4 [5]. The t elements that intersect a query 
line segment can be found in O(1ogN + t) time with a 
data structure that uses O(N) space. This structure can 
be constructed in O(N1ogN) time. 

Theorem 5 [12]. For a set of line segments and a query 
line segment, the first point that intersects the query line 
segment can be found in O(1ogN) time with the priority 
search tree that uses O(N) space. This structure can be 
constructed in O(N1ogN) time. A new line segment can 
be added or an old one deleted in O(N1ogN) time. 

3. A modified algorithm: line-by-line Guided 
Minimum Detour algorithm 

Let us now consider another modification of our 

GMD algorithm. Without loss of general features of the 

GMD algorithm, we contemplate line-by-line extensions 

to generate a line segment instead of node-by-node 

extensions. Each line segment in COMPLETE must be 

from a base node to a base node except the line segment 

constructed by deleting reducible detour. In other words, 

all alive line segments in OLD are extended until base 

nodes are hit regardless their lower bound. The line 

segment that has the lowest detour length will be chosen 

for the next extensions. To implement this modification, 

we use a priority queue, called OPEN, to select the line 

segment that has the lowest detour length. By the queue 

OPEN, the global variable d, detour length, in the GMD 

algorithm is not needed. Such a modified algorithm is 
called Line-by-Line Guided Minimum Detour (LGMD) 

algorithm. Unlike the GMD algorithm, the LGMD 

algorithm does not need grid graph but directly consider 

polygonal regions as space for routing. Moreover, the 
algorithm not only compromises the existing the GMD 

algorithm’s drawback-the running time-but also shares 

the optimality of the GMD algorithm. The generated 

whole line segments with sequence numbers and detour 

lengths are shown in Fig. 3. A comparison of new 

algorithm with the existing algorithms is presented in the 

following Fig. 4. 
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- - - :Trlal Line for Deletlng Reducible Detour, : Base Node, 
A/5 : A - Order of Extenslons, B - Detour Length 

Fig. 3 Extended Line Segments for The LGMD 

1 
Fig. 4 Bounds on the Algorithms 

4. Conclusions 

We introduced a heuristic approach to find an 

optimal rectilinear ( L l )  shlortest path. Our GMD and 

LGMD algorithms dways find an optimal rectilinear 

shortest path using the guided A* search method without 

constructing a connection graph. The GMD algorithm 

runs U(nhT(10gN) + tlv) in time and takes U(N)  in space 

in n x n grid graphs. Also, we derive an O(N(1ogN) + 
tN) time and U(N) space algorithm, the LGMD 

algorithm, in n x n gridless graphs. 

Since the detour length as a lower bound in the 

GMD or the LGMD algorithm can be substituted for !the 

number of bends in ths rectilinear linlk (L,) metric [2] or 

the channel wiring density [3], our algorithms can be 

easily extended to the problems both L, metric and the 

channel wiring density without losing the opthali ty. 

Moreover, if we combine the lower bounds--detour 

length, number of bends, and/or channel wiring density-- 

by some control strategies, the algorithms could be 

applied to smooth out the wiring density with the 

minimum-bend shortest path. 
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