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Abstract 
We consider here the Ramadge-Wonham framework for dis- 
crete event (dynamical) systems. Therein arise situations 
when the Supervisory Marking Problem (SMP) or the Su- 
pervisory Control Problem (SCP) is not solvable and hence, 
a unique minimally restrictive language does not exist. In 
such cases, a basis is needed for language comparison to se- 
lect an appropriate alternative. 
We consider the case of prefix-closed regular languages con- 
taining “illegal” strings. Languages are naturally partially 
ordered by inclusion. The aim here is to define a measure 
for these languages based upon the nature of “illegal” strings 
they contain. The measure should impose a total ordering 
on such languages and thus enable selection of better con- 
trollers. 

Keywords: Discrete Event Systems, Regular Languages, Fi- 
nite State Automata. 

1 Introduction 

Following the notation in [4]. L(G) is the set of all pos- 

sible finite sequence of events that can occur ; while 

L,,,(G) c L(G) is a distinguished subset of these se- 

quences that may be ‘marked .  L,(S/G) is the lan- 

guage marked by S/G (G under supervision of S). and 

L J S / G )  = L(S/G)  n L,(G) 

Let L,. L ,  c C* be given such that 

4) # L,  c L,  c L,(G) 

L ,  is interpreted as ‘-legal behavior“: L ,  as “minimal ac- 
ceptable behavior“: i.e.. control of G in such a way that 

‘Dcpartrncrit or Computer Scicricc, Louisiaria Statc Criivcrsity, 

t Jct Propulsiori Laboratory, 4800 Oak Grove Dr., M S  303-310, 

Dcpartrricrit or Corripiitcr Sciciicc, Louisiana State Uriivcrsity, 

Baton Rouge, L h  70808 

Pa5adcIla, Ch 91109 

Batuii Rouge, L,i 70808 

a language smaller than L,  is generated is considered 

inadequate. 

The Supervisory Marking Problem (SMP) is to con- 

struct a proper supervisor S for G such that 

The Supervisory Control Problem (SCP) is to construct 

a proper supervisor S for such that 

When SMP or SCP is solvable: it  is considered desirable 

that the solution be minimally restrict,ive in the sense 

that L,,,(S/G) or L,-(S/G): considered as a sublanguage 

of L,(G): be as large as possible: subject to the con- 

straint that it is a sublanguage of L, [ii]. 

When SMP or SCP are not solvable: a unique mini- 

mally restrictive language does not exist and it becomes 

necessary to find a criterion to select an appropriate 
alternative. R’e consider here the set of prefix-closed 

regular languages only. Since languages are o d y  par- 

tially ordered by inclusion, a measure which imposes a 

total order is required. 
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2 Computation of Mi 

For the purpose of the ensuing discussion, it will suf- 

fice to define a finite state autoiriaton as the quadruple 
(Q:  C: 6, yo): where Q is the finite set of states, its 

finite alphabet! 5 :  the set of transitions and yo: the ini- 

tial state. E is easily extensible to E’ to be defined over 

strings. Since the languages we consider are all prefix- 

closed [4]: the set of final states need not be exclusively 



defined. We restrict our attention to the case where 

C; c C is the set of "illegal" symbols. Any string within 
the language containing a ci E C; is rendered '*illegal". 

Legal as well as illegal strings (illegal with respect to 

L,) are in the language. [3] contains a good exposition 

on regular languages. 

Comparing languages depending upon the proportion of 

illegal strings they have is likely to prove worthless be- 

cause languages could have an infinite number of illegal 

strings. We consider their unique minimal finite state 
representations instead. Then: we calculate the proba- 

bility of the machine generating illegal strings. We have 

the following definitions : 

Definition 1. A string is called loop-free if the corre- 

sponding unique niininial finite state graph (machine) 

that generates it does not visit the same vertex (state) 

twice to generate it. 

Definition 2. I denotes the set of loop-free illegal 

strings. For an n-state machine: 

where: Pr(y;) is the probability that the machine is in 
state y; before the generation of si, E ( y ; , s i )  is defined, 
and IE (y ; ,  *)I  denotes the number of transitions defined 

from the state y;. 

Definition 3. A state y; is primary-illegal with respect 

to a string s E I ,  if C;*(yo, s) = y;. 

If we consider strings of length 0: the probability that 
the machine is in the initial state is 1. yo denotes the 

initial state. Let Qi denote the set of states reachable 

from yo by paths of length i :  i.e.: 

Q a  = { q l O ( y o ,  s )  = y, s E I: Is1 = i ) .  

From the above definitions, we have the following propo- 

sition. 

Proposition 1. The sum of the probabilities of strings 

of any given length is 1. For all k, 

Pr(s )  = 1. (4 
s E L . l s l = k  

Proof. We prove the proposition by induction. 

Basis(n = 0). For the empty string, E ,  Pr(yo) = 1. I : { s e  1 s E {C-Xi}* cLnd loop- f ree,  e E 1;: lscl 5 n-1) 
(n  = 1). For each s i :  such that S(y0,s;) is defined: 

Any string, having a member of I as its prefix, is illegal 

too. I t  follows from the definition that any proper prefix 
of a string s E I is legal. We now define a measure of 

illegality, M;, of a language L,: such that, 

where Pr(I )  is the probability that the machine gen- 

erates strings in I. Let s = s ~ s ~ . . s (  be a string in I. 
Then: 

Pr(1) = Err(.) (2) 
S E I  

(7) 
1 

Pr(s,) = - 

Therefore. CsEL,lal=,Pr(s) = 1. It also follows from the 

above that. 

I q Y o .  *)I. 

1 Pr(y) = Pr(s )  = 1. (8) 
qEQi sEL, l s l=I  

Hypothes is (n  = k). Assume C1sl=k P r ( s )  = 1. 

Inductior&ep(n. = k + 1). Let the string. se; ,  be of 

length k + l .  After the execution of s. the machine is in 

y E Q k .  Then. we have 

v y . y  E Qk. Pr(c,) = PdY) (9) 
z,.b(q,x, )rsdefrned 

125 



But it is known that, 

lows that, 
Pr(q)  = 1. Hence: it fol- 

Pr(s )=  Pr(q)  = 1. (10) 
s E L , l s J = k + l  9inQk+l 

Thus proved.1 

I t  is evident that the above measure gives a quantitative 
comparison basis between any pair of languages and if 

Mi(L1) > M;(L2),  L2 has a lesser probability of gener- 
ating ‘!illegal” strings than Ll and hence is preferable. 

3 An algorithm to compute Mi 

For the algorithm co7n.puteXi: we will consider a di- 

rected graph G = (V ,E)  to represent the finite state 

automaton: where 1.; is the set of vertices (states) and 
E is the set of directed edges [transitions). computed& 

is actually a modified version of the traditional depth 

first search (df s) algorithm [l].  Its first visit to the ver- 

tices is in the same order as df s : but it differs from d j s  

in the following respects : 

1. After traversing an edge with label ri E Xi: it back- 

tracks. 

2. There is no restriction on the number of times an 
edge may be traversed. 

3. I t  does not traverse edges that complete cycles in the 

graph. 

The basic idea is to traverse edges till either a loop is 

completed or an element of Ci is encountered. The 

search is exhaustive in that every element of I is tra- 

versed. Backtracking is done the same way as in d f s .  
For graph theoretic concepts, the reader is referred to 

[2]. A proof of correctness is also given. 

markstate(qi)  : an array of flags to indicate if state q; is 

primary-illegal. A value of 1 means it is primary-illegal 

and 0 means i t  is not. 

edgeqrob(l..lEl) : an array of numbers for the set of 

edges of the graph denoting the probability that the 

edge is traversed. 

troz:ersed(l..lEl) : an array of flags for the set of edges 

to indicate if a particular edge has been traversed or not. 

0 indicates that it has not been traversed, 1 indicates it 
has. 

state-prob(l..lVI) : an array of numbers for the set of 

vertices of the graph denoting the probability that the 

state is visited. 

currsta.te : the current vertex being visited. 

O(q;) : the set of outgoing edges a t  vertex q;. 

I (q ; )  : the set of incoming edges a t  vertex q;. 

1. 

2. 

3. 

4. 

d. 

6. 

7 

For all vertices E 1’: mark-state(v) = 
state-prob(v) = 0. 

For all edges e E E: initialize edge-prob(e;) = 0. 

curr-state = qo. 

For all e E O(currs ta te ) ,  tra.cersed(e) = 0. For 
all q E E(currsta,te, e ) ,  

?n.a.rk-sta.te(E(currstate: e ) )  = 0. 

Select an outgoing edge e and set traversed(e) = 1. 
If all the edges incident upon c w r s t a t e  have been 
traversed: backtrack. If no vertices are left: stop. 

Set traversed(e) = 1. If e is a results in a cy- 

cle: go to step 4. If e E X;: then edge-prob(e) = 
16(curr-itote,t), : markstate(6(currstate:  e ) )  = 
1. Otherwise, edge-prob(e) = 16(currfrtate,ll,, 
currstate  = E(currstate, e):  and go to step 3. 

After the graph has been traversed: the edge prob- 
abilities along a path are to be multiplied. The 

sun1 of the path probabilities of the paths ending 

in primary-illegal vertices evaluate to M;: i.e.: 
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M1 M2 

Figure 1: If11 and 1312. 

Proof of Correctness. Step 1 to 4 are initialization 
steps. All the outgoing edges incident upon a vertex 

are selected one after the other to be traversed in Step 

5. Their respective subtrees are traversed (depth first 

search) first. Step 6 is the main step it checks if the 
edge results in cycle, it is not updated and i t  goes on 
to the next edge; if the edge is an element of C;: then 

the adjacent vertex is marked primary-illegal. Since any 

vertex is primary- illegal only with respect to a partic- 

ular string, Step 4 reinitializes the mark-state for all 

adjacent vertices. The algorithm terminates because it 

can detect loops: has finite states and because of Step 

5 . 1  

4 Anexample 

Let the consider the two finite state graphs in Figure 1. 

For both the graphs, C = {a. b: c} and C, = { b } .  Figure 

2 shows the details of the computation. 

In these examples. all the leaves of T1 and T2 are 

primary-illegal. This need not be the case ahays.  From 
the values shown in the figures, M;(Ll) = 0.33 x 1 x 

0.3 + 0.33 + 0.33 x 0.163 x 0.3 + 0.33 x 0.163 = 0.768, 
and Afi(L2) = 0.3 x 1+0.2 x 0.167+0.3 x 0.167 x 0.123 = 

0.294. From these considerations, L2 is preferable to L1. 

n n 

Figure 2: T1 and T2. 

5 Conclusions 

We introduced a measure to allow comparison among 

controllers when a unique "best" one does not exist. 

We restricted our attention to the case where the ille- 

gal symbols are a subset of the alphabet. A possible 

generalization would be to describe the Wegal" strings 

themselves as a regular language, and not restrict them 

to being a subset of the alphabet. The extension to 

non-regular languages may be more difficult. For non- 

regular languages, the computability of M; can be ex- 

amined under some restrictions, such as the finiteness of 

the primary-legal states: the finiteness of the outgoing 

edges a t  all states, etc. 
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