
WM2-2:45
1 SKU IEEE International Sympo*um on

Intelligent Control
1&18AugUst, 1w.

CO*-, WO. USA

A Total Ordering on Languages with a Bipartite Alphabet

Xmit Ani1 Iianavati * Sancleep Gulati i S. S . Iyengar 7

Abstract
We consider here the Ramadge-Wonham framework for dis-
crete event (dynamical) systems. Therein arise situations
when the Supervisory Marking Problem (SMP) or the Su-
pervisory Control Problem (SCP) is not solvable and hence,
a unique minimally restrictive language does not exist. In
such cases, a basis is needed for language comparison to se-
lect an appropriate alternative.
We consider the case of prefix-closed regular languages con-
taining “illegal” strings. Languages are naturally partially
ordered by inclusion. The aim here is to define a measure
for these languages based upon the nature of “illegal” strings
they contain. The measure should impose a total ordering
on such languages and thus enable selection of better con-
trollers.

Keywords: Discrete Event Systems, Regular Languages, Fi-
nite State Automata.

1 Introduction

Following the notation in [4]. L(G) is the set of all pos-

sible finite sequence of events that can occur ; while

L,,,(G) c L(G) is a distinguished subset of these se-

quences that may be ‘marked . L,(S/G) is the lan-

guage marked by S/G (G under supervision of S). and

L J S / G) = L(S/G) n L,(G)

Let L,. L , c C* be given such that

4) # L, c L, c L,(G)

L , is interpreted as ‘-legal behavior“: L , as “minimal ac-
ceptable behavior“: i.e.. control of G in such a way that

‘Dcpartrncrit or Computer Scicricc, Louisiaria Statc Criivcrsity,

t Jct Propulsiori Laboratory, 4800 Oak Grove Dr., M S 303-310,

Dcpartrricrit or Corripiitcr Sciciicc, Louisiana State Uriivcrsity,

Baton Rouge, L h 70808

Pa5adcIla, Ch 91109

Batuii Rouge, L,i 70808

a language smaller than L, is generated is considered

inadequate.

The Supervisory Marking Problem (SMP) is to con-

struct a proper supervisor S for G such that

The Supervisory Control Problem (SCP) is to construct

a proper supervisor S for such that

When SMP or SCP is solvable: it is considered desirable

that the solution be minimally restrict,ive in the sense

that L,,,(S/G) or L,-(S/G): considered as a sublanguage

of L,(G): be as large as possible: subject to the con-

straint that it is a sublanguage of L, [ii].

When SMP or SCP are not solvable: a unique mini-

mally restrictive language does not exist and it becomes

necessary to find a criterion to select an appropriate
alternative. R’e consider here the set of prefix-closed

regular languages only. Since languages are o d y par-

tially ordered by inclusion, a measure which imposes a

total order is required.

0-7803-1990-7/94/$4.00 Q1994 IEEE 124

2 Computation of Mi

For the purpose of the ensuing discussion, it will suf-

fice to define a finite state autoiriaton as the quadruple
(Q: C: 6, yo): where Q is the finite set of states, its

finite alphabet! 5 : the set of transitions and yo: the ini-

tial state. E is easily extensible to E’ to be defined over

strings. Since the languages we consider are all prefix-

closed [4]: the set of final states need not be exclusively

defined. We restrict our attention to the case where

C; c C is the set of "illegal" symbols. Any string within
the language containing a ci E C; is rendered '*illegal".

Legal as well as illegal strings (illegal with respect to

L,) are in the language. [3] contains a good exposition

on regular languages.

Comparing languages depending upon the proportion of

illegal strings they have is likely to prove worthless be-

cause languages could have an infinite number of illegal

strings. We consider their unique minimal finite state
representations instead. Then: we calculate the proba-

bility of the machine generating illegal strings. We have

the following definitions :

Definition 1. A string is called loop-free if the corre-

sponding unique niininial finite state graph (machine)

that generates it does not visit the same vertex (state)

twice to generate it.

Definition 2. I denotes the set of loop-free illegal

strings. For an n-state machine:

where: Pr(y;) is the probability that the machine is in
state y; before the generation of si, E (y ; , s i) is defined,
and IE (y ; , *)I denotes the number of transitions defined

from the state y;.

Definition 3. A state y; is primary-illegal with respect

to a string s E I , if C;*(yo, s) = y;.

If we consider strings of length 0: the probability that
the machine is in the initial state is 1. yo denotes the

initial state. Let Qi denote the set of states reachable

from yo by paths of length i : i.e.:

Q a = { q l O (y o , s) = y, s E I: Is1 = i) .

From the above definitions, we have the following propo-

sition.

Proposition 1. The sum of the probabilities of strings

of any given length is 1. For all k,

Pr(s) = 1. (4
s E L . l s l = k

Proof. We prove the proposition by induction.

Basis(n = 0). For the empty string, E , Pr(yo) = 1. I : { s e 1 s E {C-Xi}* cLnd loop- f ree, e E 1;: lscl 5 n-1)
(n = 1). For each s i : such that S(y0,s;) is defined:

Any string, having a member of I as its prefix, is illegal

too. I t follows from the definition that any proper prefix
of a string s E I is legal. We now define a measure of

illegality, M;, of a language L,: such that,

where Pr(I) is the probability that the machine gen-

erates strings in I. Let s = s ~ s ~ . . s (be a string in I.
Then:

Pr(1) = Err(.) (2)
S E I

(7)
1

Pr(s,) = -

Therefore. CsEL,lal=,Pr(s) = 1. It also follows from the

above that.

I q Y o . *)I.

1 Pr(y) = Pr(s) = 1. (8)
qEQi sEL, l s l=I

Hypothes is (n = k). Assume C1sl=k P r (s) = 1.

Inductior&ep(n. = k + 1). Let the string. se; , be of

length k + l . After the execution of s. the machine is in

y E Q k . Then. we have

v y . y E Qk. Pr(c,) = PdY) (9)
z,.b(q,x,)rsdefrned

125

But it is known that,

lows that,
Pr(q) = 1. Hence: it fol-

Pr(s)= Pr(q) = 1. (10)
s E L , l s J = k + l 9inQk+l

Thus proved.1

I t is evident that the above measure gives a quantitative
comparison basis between any pair of languages and if

Mi(L1) > M;(L2), L2 has a lesser probability of gener-
ating ‘!illegal” strings than Ll and hence is preferable.

3 An algorithm to compute Mi

For the algorithm co7n.puteXi: we will consider a di-

rected graph G = (V ,E) to represent the finite state

automaton: where 1.; is the set of vertices (states) and
E is the set of directed edges [transitions). computed&

is actually a modified version of the traditional depth

first search (df s) algorithm [l]. Its first visit to the ver-

tices is in the same order as df s : but it differs from d j s

in the following respects :

1. After traversing an edge with label ri E Xi: it back-

tracks.

2. There is no restriction on the number of times an
edge may be traversed.

3. I t does not traverse edges that complete cycles in the

graph.

The basic idea is to traverse edges till either a loop is

completed or an element of Ci is encountered. The

search is exhaustive in that every element of I is tra-

versed. Backtracking is done the same way as in d f s .
For graph theoretic concepts, the reader is referred to

[2]. A proof of correctness is also given.

markstate(qi) : an array of flags to indicate if state q; is

primary-illegal. A value of 1 means it is primary-illegal

and 0 means i t is not.

edgeqrob(l..lEl) : an array of numbers for the set of

edges of the graph denoting the probability that the

edge is traversed.

troz:ersed(l..lEl) : an array of flags for the set of edges

to indicate if a particular edge has been traversed or not.

0 indicates that it has not been traversed, 1 indicates it
has.

state-prob(l..lVI) : an array of numbers for the set of

vertices of the graph denoting the probability that the

state is visited.

currsta.te : the current vertex being visited.

O(q;) : the set of outgoing edges a t vertex q;.

I (q ;) : the set of incoming edges a t vertex q;.

1.

2.

3.

4.

d.

6.

7

For all vertices E 1’: mark-state(v) =
state-prob(v) = 0.

For all edges e E E: initialize edge-prob(e;) = 0.

curr-state = qo.

For all e E O(currs ta te) , tra.cersed(e) = 0. For
all q E E(currsta,te, e) ,

?n.a.rk-sta.te(E(currstate: e)) = 0.

Select an outgoing edge e and set traversed(e) = 1.
If all the edges incident upon c w r s t a t e have been
traversed: backtrack. If no vertices are left: stop.

Set traversed(e) = 1. If e is a results in a cy-

cle: go to step 4. If e E X;: then edge-prob(e) =
16(curr-itote,t), : markstate(6(currstate: e)) =
1. Otherwise, edge-prob(e) = 16(currfrtate,ll,,
currstate = E(currstate, e): and go to step 3.

After the graph has been traversed: the edge prob-
abilities along a path are to be multiplied. The

sun1 of the path probabilities of the paths ending

in primary-illegal vertices evaluate to M;: i.e.:

126

M1 M2

Figure 1: If11 and 1312.

Proof of Correctness. Step 1 to 4 are initialization
steps. All the outgoing edges incident upon a vertex

are selected one after the other to be traversed in Step

5. Their respective subtrees are traversed (depth first

search) first. Step 6 is the main step it checks if the
edge results in cycle, it is not updated and i t goes on
to the next edge; if the edge is an element of C;: then

the adjacent vertex is marked primary-illegal. Since any

vertex is primary- illegal only with respect to a partic-

ular string, Step 4 reinitializes the mark-state for all

adjacent vertices. The algorithm terminates because it

can detect loops: has finite states and because of Step

5 . 1

4 Anexample

Let the consider the two finite state graphs in Figure 1.

For both the graphs, C = {a. b: c} and C, = { b } . Figure

2 shows the details of the computation.

In these examples. all the leaves of T1 and T2 are

primary-illegal. This need not be the case ahays. From
the values shown in the figures, M;(Ll) = 0.33 x 1 x

0.3 + 0.33 + 0.33 x 0.163 x 0.3 + 0.33 x 0.163 = 0.768,
and Afi(L2) = 0.3 x 1+0.2 x 0.167+0.3 x 0.167 x 0.123 =

0.294. From these considerations, L2 is preferable to L1.

n n

Figure 2: T1 and T2.

5 Conclusions

We introduced a measure to allow comparison among

controllers when a unique "best" one does not exist.

We restricted our attention to the case where the ille-

gal symbols are a subset of the alphabet. A possible

generalization would be to describe the Wegal" strings

themselves as a regular language, and not restrict them

to being a subset of the alphabet. The extension to

non-regular languages may be more difficult. For non-

regular languages, the computability of M; can be ex-

amined under some restrictions, such as the finiteness of

the primary-legal states: the finiteness of the outgoing

edges a t all states, etc.

Acknowledgement

The authors wish to thank the anonymous refree for his

coninients and suggestions.

References

[l] A. Aho, J.E. Hopcroft and J.D. Ullmann, "De-

sagn and Analysis of Algorithms": Addison-Wesley:

Reading, Mass., 1974.

[2] N. Deo, "Graph Theory with applications to Engi-
neering and Computer Sc,ien,ce'': Prentice Hall Inc.,

New Jersey, 1974.

1 27

[3] J.E. Hopcroft and J.D. Ullman, .‘Fornaal Languages

and thew Relatzon to Automata, Addison-Wesleay:

Reading, Mass., 1963.

[4] P.J. Raniadge and 1V.M Wonham: “Supervisory

control of a class of discrete event processes’!: SIAM

J . Con,trol and Optimization: 25(1): pp. 206 230:

1987.

128

