
Routing Using Implicit Connection Graphs 

S.Q. Zheng, J.S. Lim and S.S. Iyengar 
Department of Computer Science 

Louisiana State University 
Baton Rouge, LA 70803 

Abstract 

We introduce a framework for a class of algorithms solv- 
ing shortest path related problems, such as the one-to-one 
shortest path problem, the one-to-many shortest paths pmb-  
lem and the minimum spanning tree problem, in the pres- 
ence of obstacles. For these algorithms, the search space is 
restricted to a sparse strong connection graph which is im- 
plicitly represented and its searched portion is constructed 
incrementally on-the-fly during search. The time and space 
requirements of these algorithm essentially depend on aic- 
tual search behavior. These algorithms are suitable for 
large VLSI design applications with many obstacles. 

1 Introduction 

Finding shortest paths in the presence of obstacles is 
an important problem in robotics, VLSI design, and ge- 
ographical information systems. In VLSI design, circuit 
components or previously laid out wires are treated as ob- 
stacles. Finding an obstacle-avoiding shortest path be- 
tween a pair of nodes is a fundamental operation used in 
many layout algorithms. There are two basic classes of 
shortest path algorithms: maze-running algorithms and 
line-search algorithms. Maze-running algorithms can be 
characterized as target-directed grid propagation. All par- 
tial paths generated by maze-running algorithms are rep- 
resented by unit grid line segments. These algorithms are 
considered memory and time inefficient. Line-search all- 
gorithms have been proposed to achieve improved perfor- 
mance. Almost all of these algorithms are based on a graph 
that original grid and contains a path from s to t. Such 
a graph is named a connection graph in [4]. Wu et al. [6] 
introduced a rather small connection graph, called track 
graph. The track graph is not a strong connection graph 
in the sense that it may not contain a shortest path be- 
tween a source node s and a target node t. However, their 
algorithm is able to detect the cases where the shortest 
paths are not contained by the track graph, and handle 
such cases appropriately to obtain shortest paths. The 
run time and space of their algorithm are O ( ( e  + I C )  log t:) 
and O(e + I C ) ,  respectively, where e is the total numbei- 
of boundary sides of obstacles, t is the total number of 
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extreme sides of all obstacles, and k is the number of in- 
tersections among obstacle tracks, which is bounded by 
O(t2 ) .  In the worst case, t = (e) and k = (e2) .  

In this paper, we propose a new approach to solving the 
problem of finding rectilinear shortest paths in the pres- 
ence of rectilinear obstacles using connection graphs. Un- 
like some existing algorithms (e.g. [l, 5, SI), the connec- 
tion graph used in an algorithm based on this approach is 
not explicitly constructed prior to the path search process, 
but generated by interrogating a rather small “database” 
that characterizes the search space in an on-the-fly fash- 
ion during the search. The construction of the complete 
connection graph is avoided. Only searched portion of the 
connection graph is represented so that further exploration 
of the graph is possible and a solution, once found, can be 
retrieved. The implicit representation and demand-driven 
elaboration of the connection graph open possibilities for 
incorporating heuristics into search procedure to further 
improve the overall algorithm performance. The heuristic 
used in our algorithm is the A* heuristic search [3]. Like 
the minimum detour (MD) algorithm of [2], it uses the pa- 
rameter detour length, which is a concept generalized from 
the detour number, to control the search process. However, 
the A’ search of our algorithm is more target directed, be- 
cause of the use of an additional “don’t change direction” 
heuristic, and the underlying connection graph. We also 
show how to use our approach to design efficient algorithms 
for the problems of finding rectilinear one-to-many shortest 
paths and rectilinear minimum spanning trees (MST’s) in 
the presence of rectilinear obstacles. These two problems 
have important applications in VLSI design [6, 71. 

2 A Shortest Path Algorithm 

Let R be an m x n uniform grid graph that consists of 
a set of grid nodes {(z,y)lz and y are integers such that 
1 _< 3: _< n, l  5 y 5 m} and grid edges connecting grid 
nodes. The length of grid edges connecting adjacent nodes 
in R is assumed to be 1. Let B={Bl, B z , . . .  , Bp}  be a set 
of mutually disjoint rectilinear polygons with boundaries 
on R. Each polygon in B is an obstacle. Let G denote a 
partial grid of R that consists of grid nodes that are not 
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contained in the interior of any obstacle in B, and grid 
edges that are not incident to interior grid nodes of any 
obstacle in B. It is a simple fact that to find a path from s 
to t ,  we only need to consider a subset of nodes in G. Let 
V‘ be a subset of grid nodes of G, and H be a graph such 
that there exists a subgraph G‘ of G that spans V’ and 
G‘ is homeomorphic to H .  According to [4], H is called a 
connection graph for V‘ in G if all pairs of nodes in V‘ are 
connected in H ;  H is called a strong connection graph for 
V’ in G, if H is a connection graph for V‘ in G and the 
lengths of all shortest paths between pairs of nodes in V’ 
are the same in G and H. In what follows, we introduce 
a strong connection graph Gc for a given pair of nodes s 
and t in G. 

We say that two line segments overlap if they share 
more than one point. Define a maximal horizontal (resp. 
vertical) line segment I = (U, U) in R as a horizontal (resp. 
vertical) line segment such that I does not cross any Bj 
in B, 1 does not overlap with any boundary of R and ob- 
stacles in B,  and U and v are the only two points in I 
that are on the boundaries of R or obstacles in B. Let 
L z  = (111 = (u,v) is a maximal horizontal line segment 
in R such that at least one of its endpoints U and v is a 
corner of some Bi in B}, and LF = {Ill = (u,w) is a max- 
imal vertical line segment in R such that at least one of 
its endpoints U and v is a comer of some Bj in B}. Let 
L(R ,  B )  be the set of l i e  segments that form the bound- 
aries of R and obstacles in B. Let L, be the set of all 
maximal line segments that include s and Lt be the set of 
all maximal line segments that include t. The nodes of G c  
are the intersection points of the l i e  segments in set L = 
L( R, B )  U L z  U LF U L, U Lt, and the edges of Gc are the 
subsegments of the segments of L generated by the inter- 
sections. Let e = IL(R,B)I. Clearly, each of LE and L q  
contains O(e) line segments. Therefore, ILI = O(e),  and 
the numbers of nodes and edges in Gc are at most O(e3). 
Consider any rectilinear obstacle-avoiding path P from s 
to t. Note that here we are not insisting that P must be 
on Gc. It is easy to verify that, starting from s, one c m  
”bend” P to obtain a modified path P‘ in Gc such that 
the length of P‘ is no larger than the length of P .  This 
transformation implies the following fact: 

Lemma 1 Gc i s  a strong connection graph f o r s  and t in 
G. 

Based on strong connection graph Gc, we propose a 
line-search version of the M D  algorithm. We first gener- 
alize the concept of detour number. Consider a direction 
assigned to an edge (U, U) of Gc, say the direction is from 
U to v. With this direction assignment, we have a directed 
edge U -i U .  We define the detour length of U + v with 
respect to  a target node t ,  denoted by dl (u  --+ U), as follows. 
Let 1 be the line passing through t and perpendicular to 
U -+ U, and let 1% -+ v )  denote the length of U -+ U. Define 

df(u -b U) = 

’ 0, ifu and v are on the same 
side of 1 and U is further 
from 1 than v; 
if U and U are on the same 
side of 1 and U is closer 
to I than U; 
if 1 intersects U + v at w. 

[u --+ v[, 

, Iw -i V I ,  
The detour length of a node U with respect to a source 

node s and a target node t, denoted by &(U), is the sum 
of the detour lengths of all directed edges in any directed 
shortest path from s to U in Gc. Let P* be a shortest 
path from s to t in Gc. Clearly, the length of P’ is equal 

Starting from the source node s, our algorithm explores 
Gc node by node. A global detour length d, which initially 
has value 0, is used to control the search process. Each 
node U is associated with a field DL[u], which contains an 
upper bound of the detour length &(U) of U computed dur- 
ing the execution of the algorithm. Two subsets of nodes 
of Gc, VISITED and QUEUE, are maintained. Initially, 
VISITED =a. The search starts with QUEUE containing 
all neighboring node of s in Gc. The search proceeds as 
follows: a node U in QUEUE with the smallest DL value 
is selected for grid expansion. For all neighboring nodes of 
U that are not currently in VISITED, compute their new 
D L  values and perform QUEUE update operations using 
procedure update to ensure that they are in QUEUE with 
their current smallest DL values. When a node U is d e  
tected that DL[u] = &(U), it is inserted into VISITED and 
this equality remains unchanged thereafter. Each node U 

has another field PRED[u],  which links node U to its pre- 
decessor in a path from s to U. When the algorithm termi- 
nates, the chain of predecessors originating at node t runs 
backward along a shortest path from s to t. To increase 
the chance of reaching the target node quickly, a guided 
depth-first search feature is incorporated into the search 
process. A procedure forward effects “don’t change direc- 
tion” search whenever possible. Our algorithm is given 
below. 

to M ( s ,  t)  + 2S(t). 

procedure PATHFINDER 
begin 

QUEUE := 0; DL[s] := 0; insert( VISITED+); 
for each neighbor U of s in Gc do 

DL[u] := dZ(s +U); PRED[u] := s; 
insert( Q UE UE,u) 

endfor 
repeat 

U := deletemin( QUEUE); insert( VISITEDp); 
d := DL[u]; 
if U = t then stop; 
if U has a neighbor v in Gc such that 
dE(u + U) = 0 and v $! VISITED then 

begin 
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update(QUEUE,u,u,d); 
for each such neighbor v of U do 

dir := direction of U 3 U ;  
f orward(u, dir, d ) ;  

endfor 
end 

for each neighbor v of U in Gc such that 
v f$ V I S I T E D  do 

endfor 

else 

update( QUEUE,u, U, DL[u] + dl(u + U)) 
endrepeat 

end 

procedure forward(u, dir, d )  
begin 

newdl := d; 
while newdl = d and U has a neighboring node v 
in G c  such that the direction 
of U -+ v = dir and v $Z VISITED do 

newdl := DL[u] + dl(u -+ v ) ;  
update( QUEUE,u,v,newdl) 
if newdl = d then 

begin 
DL[u] := d; PRED[v]  := U; 
insert( VISITED,v); 
if v = t then stop 

end 

endwhile 
U := U 

end 

procedure update( QUEUE,u, U, dl) 
begin 

if v E QUEUE and dl < DL[v] 
then delete( QUEUE,v); 
DL[v] := dl; PRED[u] := U; insert(QUEUE,v) 

end 

We want to represent Gc implicitly. A basic operatiou 
of PATHFINDER is for a node U in Gc, find all its neigh-, 
bors in Gc. We name this operation as neighbor finding inr 
the connection graph. Suppose that we have all the line seg- 
ments in L available. Partition L into two subsets LV and 
L H ,  which contain vertical and horizontal segments of L,  
respectively. The line segments of L can be used to deter- 
mine the degree of U in Gc.  This can be done by the follow- 
ing operation: Find all the line segments in LV (resp. L x )  
that include U. We can represent LV by a balanced two- 

vertical line segments in L that include U can be found in 
O(l0g ILvl) time. Similarly, we can construct a binary tree 
TA for horizontal segments in L. Therefore, the operation 
of finding all the line segments in L that include U can 
be carried out in time O(log ILI), which is O(1og e )  since 
ILI = O(IL(R, B)I) = O(e) .  Then, the problem of finding 
neighbors of a given node U in GC can be reduced to the 
following operation: given a grid node U of GC and a di- 
rection a,  find the f is t  line segment in L encountered by 
a line emanating from U in direction a .  For this operation, 
we can represent L v  (resp. L H )  by a special balanced bi- 
nary search tree T$ (resp. TJ) of the structure described 
in [S] or [14]. The construction of T; (resp. 5";) requires 
two steps. The first step normalizes the coordinates of end 
points of segments in LV (resp. L E )  to their ranks, and 
the second step builds T; (resp. TS) using the normalized 
integer coordinates. Both steps take O(e1oge) time and 
O(e)  space. Using T; and T;, the above mentioned oper- 
ation can be carried out in O(1oge) time. Note that the 
data structure T:, T;, Tlfi,and Ti are static data struc- 
tures, i.e. once they are constructed, their structures are 
not changed during subsequent search process. Based on 
these discussions, we can use sets LV and LH as a database 
to assist the seaxch process. We can compute LV and 
LH using a straightforward version of the powerful plane- 
sweep technique developed in computational geometry in 
O(e log e )  time, using O(e)  space. This preprocessing al- 
gorithm is similar to the one described in [4] (pp. 407). 

The operations related to set VISITED are the inser- 
tion and the operation of testing whether or not a given 
node of GC is in VISITED. We can represent VISITED 
by a dynamically balanced binary search tree TVISITED 
using lexicographical order of node coordinates. Each in- 
sertion and membership testing operation can be carried 
out in O(1ogN) time, where N is the number of nodes 
in VISITED when algorithm PATHFINDER terminates. 
Since N 5 O(e2),  O(1ogN) = O(1oge). Similarly, the 
set QUEUE can be implemented using two dynamically 
balanced binary search trees, one using the D L  values as 
keys (for deletemin), and the other using the node coor- 
dinates as keys (for membership testing). An insertion 
(resp. deletion) operation on QUEUE effects two inser- 
tion (resp. deletion) operations, one on each of these 
two trees. Since every node in QUEUE has at least 
one neighbor in GC that is in VISITED, we know that 
IQUEUEl 5 41VISITED) = O(N) .  Any of insertion, 
deletion, deletemin and membership testing operations on 
QUEUE can be done in O(1og N) time, which is no greater 
than O(1og e) .  We summarize above discussions by the fol- 
lowing theorem. 
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3 Generalizations 

Wu et al. [6] considered the problem of finding rectilin- 
ear shortest paths from one point in the given point set S to 
all other points in S [the one-to-many SP’s problem) and 
the problem of finding a rectilinear minimum spanning tree 
of a set S of points (the MST problem) in the presence of 
rectilinear obstacles. These two problems can be stated as 
follows. Let boundary R, a set B=Bi, B2,. - -, Bp of obsta- 
cles and grid G be defined as in Section 2, and let S be a set 
of n nodes of G. The one-to-many SP’s problem is to find 
obstacle-avoiding rectilinear shortest paths from a point s 
in S to all other points in S. The minimum spawing tree 
considered is defined by treating  point^ in S as nodes and 
rectilinear shortest paths among them as edges of an im- 
plicitly given complete graph. The MST problem is to find 
a spanning tree of S in this graph that has m i n i u m  total 
edge length. Their approach consists of two phases. In the 
first phase, a grid-like connection graph, called track graph 
GT, is completely constructed. In the second phase, an op- 
timal solution is computed using GT. For some problem in- 
stances, the track graphs are not strong connection graphs 
for S in G. In such a situation, an obstacle-avoiding opti- 
mal solution may not be found in GT. The second phase is 
able to detect cases where the optimality can be violated, 
and handle them appropriately. The construction of GT 
takes O(n log n + e log t + k) time, and the space required 
for storing GT is O(n + e + k), where n is the number of 
points in S, e is the total number of boundary sides of 
obstacles, IC is the number of nodes in GT, and t is the 
total number of extreme sides in the obstacles (for the def- 
inition of extreme sides, refer to [6]). The second phase, 
for either the one-to-many shortest paths problem or the 
MST problem, takes O(n log n + N log t )  time, where N is 
the total number of nodes of GT searched when the algo- 
rithm terminates. The total time and space complexities 
of these two algorithms are O(n1ogn + (e  + N )  log t + k )  
and O(e+n+k), respectively. For some problem instances, 
t = O ( e )  and k = O(e2) ,  the performance of these algo- 
rithms is dominated by the term of O(k). Clearly, the 
preprocessing time is the bottleneck of their algorithms, 
since N < k for most cases. In a large VLSI design with 
many obstacles, the space requirement for GT is too costly. 

Let Lg and LF be as defined in Section 2. Let LS be 
the set of all maximal line segments that include points in 
S. The connection graph, GL, is defined as follows. The 
nodes of GL are the intersection points of the line segments 
in the set L = L(R, B)ULzULvULs, and the edges of G& 
are the subsegments of segments in L generated by their 
intersections. We have the following fact: 

Lemma 2 GL i s  a strong connection graph for S in G. 

Using the same techniques presented in the previous 
section, an implicit representation of G’, can be con- 
structed in O ( ( e  + n)log(e + n)) time and O(e + n)) 
space, where e is the number of boundary sides of ob- 
stacles in B and n is the number of points in S. Using 

similar data structures that support the operations of the 
PATHFINDER algorithm, we can convert the algorithms 
of [S] for the one-to-many SP’s problem and the MST prob- 
lem into new algorithms that do not explicitly construct 
connection graphs. For details of these new algorithms, 
refer to [7]. We summarize the performances of our algo- 
rithms in the following theorem. 

Theorem 2 Using implicit strong connection graph GL, 
the algorithm of [6] for finding obstacle-avoiding rectilinear 
shortest paths from a point in S to all other points in S, 
and the algorithm of (61 for finding an obstacle-avoiding 
rectilinear minimum spanning tree of a set S of points can 
be implemented in O((e+n+N) log(e+n)) time and O(e+ 
n + N )  space, where e is the number of boundarql sides of 
obstacles, n is the number of points in S ,  and N is the 
total number of visited grid nodes of Gh when the algorithm 
terminates. 

If e >> n, then the time and space required by our one- 
to-many SP’s algorithm and MST algorithm are O((e + 
N)loge) and O(e + N ) ,  respectively. If n >> e, then 
the time and space required by our algorithms are O((n + 
N )  log n) and O(n + N ) ,  respectively. Since the input size 
is O(e+n), our algorithms can be expected more time and 
space efficient than the ones given in [6] in most cases. 
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