
Routing Using Implicit Connection Graphs

S.Q. Zheng, J.S. Lim and S.S. Iyengar
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803

Abstract

We introduce a framework for a class of algorithms solv-
ing shortest path related problems, such as the one-to-one
shortest path problem, the one-to-many shortest paths pmb-
lem and the minimum spanning tree problem, in the pres-
ence of obstacles. For these algorithms, the search space is
restricted to a sparse strong connection graph which is im-
plicitly represented and its searched portion is constructed
incrementally on-the-fly during search. The time and space
requirements of these algorithm essentially depend on aic-
tual search behavior. These algorithms are suitable for
large VLSI design applications with many obstacles.

1 Introduction

Finding shortest paths in the presence of obstacles is
an important problem in robotics, VLSI design, and ge-
ographical information systems. In VLSI design, circuit
components or previously laid out wires are treated as ob-
stacles. Finding an obstacle-avoiding shortest path be-
tween a pair of nodes is a fundamental operation used in
many layout algorithms. There are two basic classes of
shortest path algorithms: maze-running algorithms and
line-search algorithms. Maze-running algorithms can be
characterized as target-directed grid propagation. All par-
tial paths generated by maze-running algorithms are rep-
resented by unit grid line segments. These algorithms are
considered memory and time inefficient. Line-search all-
gorithms have been proposed to achieve improved perfor-
mance. Almost all of these algorithms are based on a graph
that original grid and contains a path from s to t. Such
a graph is named a connection graph in [4]. Wu et al. [6]
introduced a rather small connection graph, called track
graph. The track graph is not a strong connection graph
in the sense that it may not contain a shortest path be-
tween a source node s and a target node t. However, their
algorithm is able to detect the cases where the shortest
paths are not contained by the track graph, and handle
such cases appropriately to obtain shortest paths. The
run time and space of their algorithm are O ((e + I C) log t:)
and O(e + I C) , respectively, where e is the total numbei-
of boundary sides of obstacles, t is the total number of

1063-9667/95 $04.00 0 1995 IEEE

extreme sides of all obstacles, and k is the number of in-
tersections among obstacle tracks, which is bounded by
O(t2) . In the worst case, t = (e) and k = (e2) .

In this paper, we propose a new approach to solving the
problem of finding rectilinear shortest paths in the pres-
ence of rectilinear obstacles using connection graphs. Un-
like some existing algorithms (e.g. [l, 5, SI), the connec-
tion graph used in an algorithm based on this approach is
not explicitly constructed prior to the path search process,
but generated by interrogating a rather small “database”
that characterizes the search space in an on-the-fly fash-
ion during the search. The construction of the complete
connection graph is avoided. Only searched portion of the
connection graph is represented so that further exploration
of the graph is possible and a solution, once found, can be
retrieved. The implicit representation and demand-driven
elaboration of the connection graph open possibilities for
incorporating heuristics into search procedure to further
improve the overall algorithm performance. The heuristic
used in our algorithm is the A* heuristic search [3]. Like
the minimum detour (MD) algorithm of [2], it uses the pa-
rameter detour length, which is a concept generalized from
the detour number, to control the search process. However,
the A’ search of our algorithm is more target directed, be-
cause of the use of an additional “don’t change direction”
heuristic, and the underlying connection graph. We also
show how to use our approach to design efficient algorithms
for the problems of finding rectilinear one-to-many shortest
paths and rectilinear minimum spanning trees (MST’s) in
the presence of rectilinear obstacles. These two problems
have important applications in VLSI design [6, 71.

2 A Shortest Path Algorithm

Let R be an m x n uniform grid graph that consists of
a set of grid nodes {(z,y)lz and y are integers such that
1 _< 3: _< n, l 5 y 5 m} and grid edges connecting grid
nodes. The length of grid edges connecting adjacent nodes
in R is assumed to be 1. Let B={Bl, B z , . . . , Bp} be a set
of mutually disjoint rectilinear polygons with boundaries
on R. Each polygon in B is an obstacle. Let G denote a
partial grid of R that consists of grid nodes that are not

49
9th Internutionul Conference on VLSI Design - Junuury 1996

contained in the interior of any obstacle in B, and grid
edges that are not incident to interior grid nodes of any
obstacle in B. It is a simple fact that to find a path from s
to t , we only need to consider a subset of nodes in G. Let
V‘ be a subset of grid nodes of G, and H be a graph such
that there exists a subgraph G‘ of G that spans V’ and
G‘ is homeomorphic to H . According to [4], H is called a
connection graph for V‘ in G if all pairs of nodes in V‘ are
connected in H ; H is called a strong connection graph for
V’ in G, if H is a connection graph for V‘ in G and the
lengths of all shortest paths between pairs of nodes in V’
are the same in G and H. In what follows, we introduce
a strong connection graph Gc for a given pair of nodes s
and t in G.

We say that two line segments overlap if they share
more than one point. Define a maximal horizontal (resp.
vertical) line segment I = (U, U) in R as a horizontal (resp.
vertical) line segment such that I does not cross any Bj
in B, 1 does not overlap with any boundary of R and ob-
stacles in B, and U and v are the only two points in I
that are on the boundaries of R or obstacles in B. Let
L z = (111 = (u,v) is a maximal horizontal line segment
in R such that at least one of its endpoints U and v is a
corner of some Bi in B}, and LF = {Ill = (u,w) is a max-
imal vertical line segment in R such that at least one of
its endpoints U and v is a comer of some Bj in B}. Let
L(R , B) be the set of l i e segments that form the bound-
aries of R and obstacles in B. Let L, be the set of all
maximal line segments that include s and Lt be the set of
all maximal line segments that include t. The nodes of G c
are the intersection points of the l i e segments in set L =
L(R, B) U L z U LF U L, U Lt, and the edges of Gc are the
subsegments of the segments of L generated by the inter-
sections. Let e = IL(R,B)I. Clearly, each of LE and L q
contains O(e) line segments. Therefore, ILI = O(e), and
the numbers of nodes and edges in Gc are at most O(e3).
Consider any rectilinear obstacle-avoiding path P from s
to t. Note that here we are not insisting that P must be
on Gc. It is easy to verify that, starting from s, one c m
”bend” P to obtain a modified path P‘ in Gc such that
the length of P‘ is no larger than the length of P . This
transformation implies the following fact:

Lemma 1 Gc i s a strong connection graph f o r s and t in
G.

Based on strong connection graph Gc, we propose a
line-search version of the M D algorithm. We first gener-
alize the concept of detour number. Consider a direction
assigned to an edge (U, U) of Gc, say the direction is from
U to v. With this direction assignment, we have a directed
edge U -i U . We define the detour length of U + v with
respect to a target node t , denoted by dl (u --+ U), as follows.
Let 1 be the line passing through t and perpendicular to
U -+ U, and let 1% -+ v) denote the length of U -+ U. Define

df(u -b U) =

’ 0, ifu and v are on the same
side of 1 and U is further
from 1 than v;
if U and U are on the same
side of 1 and U is closer
to I than U;
if 1 intersects U + v at w.

[u --+ v[,

, Iw -i V I ,
The detour length of a node U with respect to a source

node s and a target node t, denoted by &(U), is the sum
of the detour lengths of all directed edges in any directed
shortest path from s to U in Gc. Let P* be a shortest
path from s to t in Gc. Clearly, the length of P’ is equal

Starting from the source node s, our algorithm explores
Gc node by node. A global detour length d, which initially
has value 0, is used to control the search process. Each
node U is associated with a field DL[u], which contains an
upper bound of the detour length &(U) of U computed dur-
ing the execution of the algorithm. Two subsets of nodes
of Gc, VISITED and QUEUE, are maintained. Initially,
VISITED =a. The search starts with QUEUE containing
all neighboring node of s in Gc. The search proceeds as
follows: a node U in QUEUE with the smallest DL value
is selected for grid expansion. For all neighboring nodes of
U that are not currently in VISITED, compute their new
D L values and perform QUEUE update operations using
procedure update to ensure that they are in QUEUE with
their current smallest DL values. When a node U is d e
tected that DL[u] = &(U), it is inserted into VISITED and
this equality remains unchanged thereafter. Each node U

has another field PRED[u], which links node U to its pre-
decessor in a path from s to U. When the algorithm termi-
nates, the chain of predecessors originating at node t runs
backward along a shortest path from s to t. To increase
the chance of reaching the target node quickly, a guided
depth-first search feature is incorporated into the search
process. A procedure forward effects “don’t change direc-
tion” search whenever possible. Our algorithm is given
below.

to M (s , t) + 2S(t).

procedure PATHFINDER
begin

QUEUE := 0; DL[s] := 0; insert(VISITED+);
for each neighbor U of s in Gc do

DL[u] := dZ(s +U); PRED[u] := s;
insert(Q UE UE,u)

endfor
repeat

U := deletemin(QUEUE); insert(VISITEDp);
d := DL[u];
if U = t then stop;
if U has a neighbor v in Gc such that
dE(u + U) = 0 and v $! VISITED then

begin

50

update(QUEUE,u,u,d);
for each such neighbor v of U do

dir := direction of U 3 U ;
f orward(u, dir, d) ;

endfor
end

for each neighbor v of U in Gc such that
v f$ V I S I T E D do

endfor

else

update(QUEUE,u, U, DL[u] + dl(u + U))
endrepeat

end

procedure forward(u, dir, d)
begin

newdl := d;
while newdl = d and U has a neighboring node v
in G c such that the direction
of U -+ v = dir and v $Z VISITED do

newdl := DL[u] + dl(u -+ v) ;
update(QUEUE,u,v,newdl)
if newdl = d then

begin
DL[u] := d; PRED[v] := U;
insert(VISITED,v);
if v = t then stop

end

endwhile
U := U

end

procedure update(QUEUE,u, U, dl)
begin

if v E QUEUE and dl < DL[v]
then delete(QUEUE,v);
DL[v] := dl; PRED[u] := U; insert(QUEUE,v)

end

We want to represent Gc implicitly. A basic operatiou
of PATHFINDER is for a node U in Gc, find all its neigh-,
bors in Gc. We name this operation as neighbor finding inr
the connection graph. Suppose that we have all the line seg-
ments in L available. Partition L into two subsets LV and
L H , which contain vertical and horizontal segments of L,
respectively. The line segments of L can be used to deter-
mine the degree of U in Gc. This can be done by the follow-
ing operation: Find all the line segments in LV (resp. L x)
that include U. We can represent LV by a balanced two-

vertical line segments in L that include U can be found in
O(l0g ILvl) time. Similarly, we can construct a binary tree
TA for horizontal segments in L. Therefore, the operation
of finding all the line segments in L that include U can
be carried out in time O(log ILI), which is O(1og e) since
ILI = O(IL(R, B)I) = O(e) . Then, the problem of finding
neighbors of a given node U in GC can be reduced to the
following operation: given a grid node U of GC and a di-
rection a, find the f is t line segment in L encountered by
a line emanating from U in direction a . For this operation,
we can represent L v (resp. L H) by a special balanced bi-
nary search tree T$ (resp. TJ) of the structure described
in [S] or [14]. The construction of T; (resp. 5";) requires
two steps. The first step normalizes the coordinates of end
points of segments in LV (resp. L E) to their ranks, and
the second step builds T; (resp. TS) using the normalized
integer coordinates. Both steps take O(e1oge) time and
O(e) space. Using T; and T;, the above mentioned oper-
ation can be carried out in O(1oge) time. Note that the
data structure T:, T;, Tlfi,and Ti are static data struc-
tures, i.e. once they are constructed, their structures are
not changed during subsequent search process. Based on
these discussions, we can use sets LV and LH as a database
to assist the seaxch process. We can compute LV and
LH using a straightforward version of the powerful plane-
sweep technique developed in computational geometry in
O(e log e) time, using O(e) space. This preprocessing al-
gorithm is similar to the one described in [4] (pp. 407).

The operations related to set VISITED are the inser-
tion and the operation of testing whether or not a given
node of GC is in VISITED. We can represent VISITED
by a dynamically balanced binary search tree TVISITED
using lexicographical order of node coordinates. Each in-
sertion and membership testing operation can be carried
out in O(1ogN) time, where N is the number of nodes
in VISITED when algorithm PATHFINDER terminates.
Since N 5 O(e2), O(1ogN) = O(1oge). Similarly, the
set QUEUE can be implemented using two dynamically
balanced binary search trees, one using the D L values as
keys (for deletemin), and the other using the node coor-
dinates as keys (for membership testing). An insertion
(resp. deletion) operation on QUEUE effects two inser-
tion (resp. deletion) operations, one on each of these
two trees. Since every node in QUEUE has at least
one neighbor in GC that is in VISITED, we know that
IQUEUEl 5 41VISITED) = O(N) . Any of insertion,
deletion, deletemin and membership testing operations on
QUEUE can be done in O(1og N) time, which is no greater
than O(1og e) . We summarize above discussions by the fol-
lowing theorem.

51

3 Generalizations

Wu et al. [6] considered the problem of finding rectilin-
ear shortest paths from one point in the given point set S to
all other points in S [the one-to-many SP’s problem) and
the problem of finding a rectilinear minimum spanning tree
of a set S of points (the MST problem) in the presence of
rectilinear obstacles. These two problems can be stated as
follows. Let boundary R, a set B=Bi, B2,. - -, Bp of obsta-
cles and grid G be defined as in Section 2, and let S be a set
of n nodes of G. The one-to-many SP’s problem is to find
obstacle-avoiding rectilinear shortest paths from a point s
in S to all other points in S. The minimum spawing tree
considered is defined by treating point^ in S as nodes and
rectilinear shortest paths among them as edges of an im-
plicitly given complete graph. The MST problem is to find
a spanning tree of S in this graph that has m i n i u m total
edge length. Their approach consists of two phases. In the
first phase, a grid-like connection graph, called track graph
GT, is completely constructed. In the second phase, an op-
timal solution is computed using GT. For some problem in-
stances, the track graphs are not strong connection graphs
for S in G. In such a situation, an obstacle-avoiding opti-
mal solution may not be found in GT. The second phase is
able to detect cases where the optimality can be violated,
and handle them appropriately. The construction of GT
takes O(n log n + e log t + k) time, and the space required
for storing GT is O(n + e + k), where n is the number of
points in S, e is the total number of boundary sides of
obstacles, IC is the number of nodes in GT, and t is the
total number of extreme sides in the obstacles (for the def-
inition of extreme sides, refer to [6]). The second phase,
for either the one-to-many shortest paths problem or the
MST problem, takes O(n log n + N log t) time, where N is
the total number of nodes of GT searched when the algo-
rithm terminates. The total time and space complexities
of these two algorithms are O(n1ogn + (e + N) log t + k)
and O(e+n+k), respectively. For some problem instances,
t = O (e) and k = O(e2) , the performance of these algo-
rithms is dominated by the term of O(k). Clearly, the
preprocessing time is the bottleneck of their algorithms,
since N < k for most cases. In a large VLSI design with
many obstacles, the space requirement for GT is too costly.

Let Lg and LF be as defined in Section 2. Let LS be
the set of all maximal line segments that include points in
S. The connection graph, GL, is defined as follows. The
nodes of GL are the intersection points of the line segments
in the set L = L(R, B)ULzULvULs, and the edges of G&
are the subsegments of segments in L generated by their
intersections. We have the following fact:

Lemma 2 GL i s a strong connection graph for S in G.

Using the same techniques presented in the previous
section, an implicit representation of G’, can be con-
structed in O ((e + n)log(e + n)) time and O(e + n))
space, where e is the number of boundary sides of ob-
stacles in B and n is the number of points in S. Using

similar data structures that support the operations of the
PATHFINDER algorithm, we can convert the algorithms
of [S] for the one-to-many SP’s problem and the MST prob-
lem into new algorithms that do not explicitly construct
connection graphs. For details of these new algorithms,
refer to [7]. We summarize the performances of our algo-
rithms in the following theorem.

Theorem 2 Using implicit strong connection graph GL,
the algorithm of [6] for finding obstacle-avoiding rectilinear
shortest paths from a point in S to all other points in S,
and the algorithm of (61 for finding an obstacle-avoiding
rectilinear minimum spanning tree of a set S of points can
be implemented in O((e+n+N) log(e+n)) time and O(e+
n + N) space, where e is the number of boundarql sides of
obstacles, n is the number of points in S , and N is the
total number of visited grid nodes of Gh when the algorithm
terminates.

If e >> n, then the time and space required by our one-
to-many SP’s algorithm and MST algorithm are O((e +
N)loge) and O(e + N) , respectively. If n >> e, then
the time and space required by our algorithms are O((n +
N) log n) and O(n + N) , respectively. Since the input size
is O(e+n), our algorithms can be expected more time and
space efficient than the ones given in [6] in most cases.

References

K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Recti-
linear Shortest Paths through Polygonal Obstacles in
O(n(10gn)~) Time”, Proceedings of the Third Annual
Conference on Computational Geometry, pp. 251-57,
AGM, 1987.

F. 0. Hadlock, “The Shortest Path Algorithm for Grid
Graphs”, Networks, 7, pp. 323-34, 1977.

P. Hart, N. Nilsson and B. Raphael, “A Formal Ba-
sis for the Heuristic Determination of Minimum Cost
Paths”, IEEE B-ansactions on Systems, Science and
Cybernetics, SCC-4(2), pp. 100-107, 1968.

T. Lengauer, Combinatorial Algorithms for Integrated
Circuit Layout, Wiley, England, 1990.

P. J. b e n d , D. T. Lee, and Y.-F. Wu, “Rectilinear
Shortest Paths with Rectangular Barriers”, in Proceed-
ings of the Second Annual Conference on Computa-
tional Geometry, pp. 204-13, ACM, 1985.

Y.-F. Wu, P. Widmayer, M. D. F. Schlag, C. K. Wong,
“Rectilineax Shortest Paths and Minimum Spanning
Trees in the Presence of Rectilinear Obstacles”, IEEE
Transactions on Computers, C-36(3), pp. 321-31,1987.

S.Q. Zheng, J.S. Lim and S.S. Iyengar, “Finding
Obstacle-Avoiding Shortest Paths Using Implicit Con-
nection Graphs”, to appear in IEEE Transactions on
Computer-Aided Design.

52

